JP2007083284A - Core for die casting - Google Patents

Core for die casting Download PDF

Info

Publication number
JP2007083284A
JP2007083284A JP2005275136A JP2005275136A JP2007083284A JP 2007083284 A JP2007083284 A JP 2007083284A JP 2005275136 A JP2005275136 A JP 2005275136A JP 2005275136 A JP2005275136 A JP 2005275136A JP 2007083284 A JP2007083284 A JP 2007083284A
Authority
JP
Japan
Prior art keywords
casting
sand
spherical
core
die
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005275136A
Other languages
Japanese (ja)
Other versions
JP4754309B2 (en
Inventor
Yoshimitsu Ina
由光 伊奈
Masayuki Kato
雅之 加藤
Shigeo Nakai
茂夫 仲井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP2005275136A priority Critical patent/JP4754309B2/en
Publication of JP2007083284A publication Critical patent/JP2007083284A/en
Application granted granted Critical
Publication of JP4754309B2 publication Critical patent/JP4754309B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a core having such an excellent high temperature strength as to resist the injection pressure of a molten metal in a die casting method. <P>SOLUTION: The core for die casting is obtained by using a spherical molding sand manufactured by a flame-fusion method or by using a spherical molding sand having a water absorption rate of ≤0.5 wt.%. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、ダイカスト法による鋳物の製造用に用いられる中子に関するものである。更に詳しくは、球状鋳物砂を用いて得られるダイカスト法による鋳物の製造用に用いられる中子に関するものである。   The present invention relates to a core used for manufacturing a casting by a die casting method. More specifically, the present invention relates to a core used for producing a casting by a die casting method obtained by using spherical casting sand.

鋳造方式の1種として、精密な金型に熔湯金属を圧入することにより、高精度の鋳物を大量に生産するダイカスト法が知られている。その中で、中空部を有する製品を鋳造する場合は、あらかじめ中子をキャビティ内に置き、その周りに熔湯を流しこんで、金属の凝固後に型を外し、中子を取り除くことによって鋳物製品を得る方法が行われている。   As one type of casting method, a die casting method is known in which a molten metal is press-fitted into a precise mold to produce a high-precision casting in large quantities. Among them, when casting a product having a hollow part, a core is placed in the cavity in advance, and a molten metal is poured around the core, and after the metal is solidified, the mold is removed and the core is removed. A way to get it done.

ダイカスト法による加圧金属鋳造では、熔湯の射出圧力に耐える強度の中子が要求される。特許文献1では、球形状ムライト質耐火物粒を用いた鋳造用中子が開示されている。
特開平7−178506号公報
In pressure metal casting by the die casting method, a core that is strong enough to withstand the injection pressure of the molten metal is required. Patent Document 1 discloses a casting core using spherical mullite refractory particles.
JP 7-178506 A

しかしながら、特許文献1の鋳造用中子では、ダイカスト法による、熔湯の射出圧力に充分耐える中子強度が得られないという欠点がある。   However, the casting core of Patent Document 1 has a drawback that the core strength that can sufficiently withstand the injection pressure of the molten metal cannot be obtained by the die casting method.

本発明は、ダイカスト法における、熔湯の射出圧力に耐えるような熱間強度に優れる中子を提供することが課題である。   An object of the present invention is to provide a core excellent in hot strength that can withstand the injection pressure of molten metal in a die casting method.

本発明は、火炎熔融法で製造された球状鋳物砂を用いて得られるダイカスト用中子に関するものである。   The present invention relates to a core for die casting obtained by using spheroidal molding sand produced by a flame melting method.

また、本発明は、吸水率0.5重量%以下の球状鋳物砂を用いて得られるダイカスト用中子に関するものである。   Moreover, this invention relates to the core for die-casting obtained using the spherical casting sand whose water absorption is 0.5 weight% or less.

さらに、本発明は、上記本発明のダイカスト用中子を用いるダイカスト鋳型の製造方法及びそのダイカスト鋳型を用いる鋳物の製造方法に関するものである。   Furthermore, the present invention relates to a method for producing a die casting mold using the die casting core of the present invention and a method for producing a casting using the die casting mold.

本発明によれば、ダイカスト法における、熔湯の射出圧力に耐えるような熱間強度に優れる中子を得ることができる。   ADVANTAGE OF THE INVENTION According to this invention, the core excellent in hot strength which can endure the injection pressure of a molten metal in a die-casting method can be obtained.

<球状鋳物砂>
本発明の中子に用いられる球状鋳物砂は大きく2つの態様からなる。第1の態様は、火炎熔融法で製造された球状鋳物砂である。また、第2の態様は、吸水率が0.5重量%以下である球状鋳物砂である。以下、これら2つを総称して「球状鋳物砂」ということがある。
<Spherical casting sand>
The spherical foundry sand used for the core of the present invention is roughly composed of two aspects. A 1st aspect is the spherical foundry sand manufactured by the flame fusion method. Moreover, a 2nd aspect is the spherical foundry sand whose water absorption is 0.5 weight% or less. Hereinafter, these two may be collectively referred to as “spherical casting sand”.

本発明の球状鋳物砂の形状である球状とは、球形度0.88以上、好ましくは0.90以上のものをいう。球状であるか否かについては、たとえば、後述の実施例に記載するように、鋳物砂を光学顕微鏡やデジタルスコープ(たとえば、キーエンス社製、VH-8000型)等で観察し、判定することができる。   The spherical shape which is the shape of the spherical casting sand of the present invention refers to a sphericity of 0.88 or more, preferably 0.90 or more. Whether or not it is spherical can be determined by observing the foundry sand with an optical microscope, a digital scope (for example, VH-8000, manufactured by Keyence Corporation) or the like, as described in Examples below. it can.

本発明の球状鋳物砂の主成分は、従来公知の耐火物及び耐火物原料を火炎溶融法にて球状化したものが用いられ、特に限定されない。これら耐火物及び耐火物原料の中で、耐火性や入手のしやすさなどの観点から、SiO2を主成分としたもの、Al23及びSiO2を主成分としたもの、MgO及びSiO2を主成分としたものが好ましい。それらの中でも、耐火性、熱膨張性の観点から、特にAl23及びSiO2を主成分としたものが好ましい。 The main component of the spherical foundry sand of the present invention is not particularly limited, and conventionally known refractories and refractory raw materials obtained by spheronization by a flame melting method are used. Among these refractories and refractory raw materials, those containing SiO 2 as the main component, those containing Al 2 O 3 and SiO 2 as the main components, MgO and SiO from the viewpoint of fire resistance and availability. Those having 2 as a main component are preferred. Among these, those mainly containing Al 2 O 3 and SiO 2 are preferable from the viewpoint of fire resistance and thermal expansion.

ここで「主成分」とは、上記成分が合計量で鋳物砂全体の全成分中に60重量%以上、好ましくは80重量%以上含有されていることをいう。主成分の含有量としては、耐火性の向上という観点から、これら成分の合計量は、球状鋳物砂の全成分中、好ましくは85〜100重量%、より好ましくは90〜100重量%である。   Here, the “main component” means that the above components are contained in a total amount of 60% by weight or more, preferably 80% by weight or more in all components of the entire foundry sand. As the content of the main component, from the viewpoint of improving fire resistance, the total amount of these components is preferably 85 to 100% by weight, and more preferably 90 to 100% by weight, based on all components of the spherical casting sand.

なお、本発明の球状鋳物砂に主成分以外の成分として含まれ得るものとしては、たとえば、CaO、Fe23、TiO2、K2O、Na2O等の金属酸化物が挙げられる。これらは、出発原料に由来するものである。 Incidentally, as may be included as a component other than the main component in the spherical molding sand of the present invention, for example, CaO, Fe 2 O 3, TiO 2, K 2 O, and metal oxides Na 2 O and the like. These are derived from starting materials.

Fe23とTiO2が含まれる場合、それらの含有量としてはそれぞれ5重量%以下が好ましい。また、Fe23の含有量は2.5重量%以下がより好ましく、2重量%以下がさらに好ましい。K2OとNa2Oが含まれる場合、それらの含有量としては合計量として3重量%以下が好ましく、より好ましくは1重量%以下である。 When Fe 2 O 3 and TiO 2 are contained, their content is preferably 5% by weight or less. Further, the content of Fe 2 O 3 is more preferably 2.5% by weight or less, and further preferably 2% by weight or less. When K 2 O and Na 2 O are contained, the total content is preferably 3% by weight or less, more preferably 1% by weight or less.

また、Al23及びSiO2を主成分とする場合、Al23/SiO2重量比率は1〜15であることが好ましい。耐火性及び鋳物砂の再生効率の向上の観点から、1.2〜12が好ましく、1.5〜9がより好ましい。また、このAl23及びSiO2、若しくはSiO2のみが主成分である場合、主成分以外の成分としてCaOとMgOが含まれ得る。その場合、球状鋳物砂の耐火性の向上の観点から、それらの含有量としては合計量として5重量%以下が好ましい。 In the case of mainly composed of Al 2 O 3 and SiO 2, Al 2 O 3 / SiO 2 weight ratio is preferably 1 to 15. From the viewpoint of improving fire resistance and casting sand regeneration efficiency, 1.2 to 12 is preferable, and 1.5 to 9 is more preferable. Further, when only Al 2 O 3 and SiO 2 or SiO 2 are the main components, CaO and MgO may be included as components other than the main components. In that case, from the viewpoint of improving the fire resistance of the spherical casting sand, the total content thereof is preferably 5% by weight or less.

また、MgO及びSiO2を主成分とする場合、MgO/SiO2の重量比率は0.1〜10が好ましい。球状化のし易さ及び耐蝕性、耐火性及び鋳物砂の再生効率の向上の観点から、0.2〜9が好ましく、0.3〜5がより好ましい。 In the case of the main component MgO and SiO 2, the weight ratio of MgO / SiO 2 is preferably 0.1 to 10 is. From the viewpoints of easiness of spheroidization, corrosion resistance, fire resistance, and improvement in recycle efficiency of foundry sand, 0.2 to 9 is preferable, and 0.3 to 5 is more preferable.

また、このMgO及びSiO2が主成分である場合、主成分以外の成分としてAl23が含まれうる。これは原料に由来するが、球状鋳物砂の耐蝕性向上の観点から含有量として10重量%以下が好ましい。 When MgO and SiO 2 are the main components, Al 2 O 3 can be included as a component other than the main components. Although this originates in a raw material, 10 weight% or less is preferable as content from a viewpoint of the corrosion-resistant improvement of a spherical casting sand.

本発明の球状鋳物砂の平均粒径(mm)は中子の熱間強度向上の観点から、0.02〜1mmが好ましく、更に0.05〜0.5mm、更に0.05〜0.2mm、更に0.05〜0.12mm特に0.05〜0.10mmが好ましい。砂粒子間への溶湯の差し込みを低減する観点から、砂粒径は小さいことが好ましい。   From the viewpoint of improving the hot strength of the core, the average particle size (mm) of the spherical casting sand of the present invention is preferably 0.02 to 1 mm, more preferably 0.05 to 0.5 mm, and further 0.05 to 0.2 mm. Further, 0.05 to 0.12 mm, particularly 0.05 to 0.10 mm is preferable. From the viewpoint of reducing the insertion of the molten metal between the sand particles, the sand particle size is preferably small.

本発明の球状鋳物砂のAFS粒度指数は、AFS60〜200が好ましく、更にAFS110〜200、特にAFS110〜170が好ましい。なお、AFS粒度指数はAmerican Foundry Societyの規格(AFS1106-00-S)による粒度指数である。   The AFS particle size index of the spherical casting sand of the present invention is preferably AFS 60 to 200, more preferably AFS 110 to 200, and particularly preferably AFS 110 to 170. Note that the AFS granularity index is a granularity index according to the American Foundry Society standard (AFS1106-00-S).

前記平均粒径は以下のようにして求めることができる。すなわち、球状鋳物砂粒子の粒子投影断面からの球形度=1の場合は直径(mm)を測定し、一方、球形度<1の場合は球状鋳物砂粒子の長軸径(mm)と短軸径(mm)を測定して(長軸径+短軸径)/2を求め、任意の100個の球状鋳物砂粒子につき、それぞれ得られた値を平均して平均粒径(mm)とする。長軸径と短軸径は、以下のように定義される。粒子を平面上に安定させ、その粒子の平面上への投影像を2本の平行線ではさんだとき、その平行線の間隔が最小となる粒子の幅を短軸径といい、一方、この平行線に直角な方向の2本の平行線で粒子をはさむときの距離を長軸径という。   The average particle diameter can be determined as follows. That is, the diameter (mm) is measured when the sphericity from the particle projection cross section of the spherical casting sand particles is 1, while the major axis diameter (mm) and the minor axis of the spherical casting sand particles are measured when the sphericity <1. The diameter (mm) is measured to determine (major axis diameter + minor axis diameter) / 2, and the average value of the average particle diameter (mm) is obtained for any 100 spherical cast sand particles. . The major axis diameter and the minor axis diameter are defined as follows. When the particle is stabilized on a plane and the projected image of the particle on the plane is sandwiched between two parallel lines, the width of the particle that minimizes the distance between the parallel lines is called the minor axis diameter. The distance when a particle is sandwiched between two parallel lines in a direction perpendicular to the line is called the major axis diameter.

なお、球状鋳物砂粒子の長軸径と短軸径は、光学顕微鏡又はデジタルスコープ(例えば、キーエンス社製、VH-8000型)により該粒子の像(写真)を得、得られた像を画像解析することにより求めることができる。また、球形度は、得られた像を画像解析することにより、該粒子の粒子投影断面の面積及び該断面の周囲長を求め、次いで、〔粒子投影断面の面積(mm2)と同じ面積の真円の円周長(mm)〕/〔粒子投影断面の周囲長(mm)〕を計算し、任意の50個の球状鋳物砂粒子につき、それぞれ得られた値を平均して求める。 In addition, the major axis diameter and minor axis diameter of the spherical casting sand particles are obtained by obtaining an image (photograph) of the particles with an optical microscope or a digital scope (for example, VH-8000 type, manufactured by Keyence Corporation). It can be obtained by analysis. The sphericity is obtained by image analysis of the obtained image to obtain the area of the particle projection cross section of the particle and the perimeter of the cross section, and then [the area of the same area as the area of the particle projection cross section (mm 2 ). The circumference of the perfect circle (mm)] / [perimeter of the particle projection cross section (mm)] is calculated, and the obtained values are averaged for any of 50 spheroidal molding sand particles.

本発明の球状鋳物砂としては、その球形度が、0.95以上であるものが好ましく、0.98以上であるものがより好ましく、0.99以上であるものがさらに好ましい。よって、本発明の第1の態様の球状鋳物砂としては、たとえば、Al23及びSiO2を主成分として含有してなり、Al23/SiO2重量比率が1〜15、平均粒径が0.02〜0.5mm、球形度が0.95以上である火炎溶融法でつくられた球状鋳物砂が好適である。 The spherical casting sand of the present invention preferably has a sphericity of 0.95 or more, more preferably 0.98 or more, and even more preferably 0.99 or more. Therefore, the spherical casting sand according to the first aspect of the present invention contains, for example, Al 2 O 3 and SiO 2 as main components, and has an Al 2 O 3 / SiO 2 weight ratio of 1 to 15, average grains. Spherical casting sand made by a flame melting method having a diameter of 0.02 to 0.5 mm and a sphericity of 0.95 or more is suitable.

本発明の第1の態様の球状鋳物砂は火炎溶融法により得られるものである。従って、球形度が高く、緻密であるという構造的特徴を有する。当該構造的特徴は、流動性、鋳型強度、鋳造された鋳物の表面平滑性の向上に大きく寄与する。   The spherical foundry sand according to the first aspect of the present invention is obtained by a flame melting method. Therefore, it has a structural feature of high sphericity and denseness. The structural feature greatly contributes to improvement of fluidity, mold strength, and surface smoothness of a cast product.

また、本発明の球状鋳物砂の吸水率(重量%)としては、鋳型の製造の際に使用する樹脂の鋳物砂内部への吸収による樹脂使用量の増加の抑制や、鋳型強度の向上等の観点から、0.5重量%以下が好ましく、0.3重量%以下がより好ましい。吸水率はJIS A1109細骨材の吸水率測定方法に従って測定することができる。また、粘結剤で被覆されたRCS(レジンコーテッドサンド)や、鋳込み後の粘結剤残分が残留している場合は、熱処理(例えば1000℃以上)等、適切な方法によって、それら成分を取り除いた後に吸水率を測定する。   Further, the water absorption rate (% by weight) of the spherical casting sand according to the present invention includes an increase in the amount of resin used due to absorption of the resin used in the production of the mold into the casting sand, an improvement in the mold strength, etc. From the viewpoint, 0.5% by weight or less is preferable, and 0.3% by weight or less is more preferable. The water absorption can be measured according to the method for measuring the water absorption of JIS A1109 fine aggregate. In addition, when RCS (resin coated sand) coated with a binder or a binder residue after casting remains, these components are removed by an appropriate method such as heat treatment (for example, 1000 ° C. or more). Measure water absorption after removal.

一方、本発明の第2の態様の球状鋳物砂の吸水率は0.5重量%以下である。鋳型の製造の際に使用する樹脂の鋳物砂内部への吸収による樹脂使用量の増加の抑制や、鋳型強度の向上等の観点から、0.3重量%以下が好ましく、0.1重量%以下がより好ましい。   On the other hand, the water absorption of the spherical casting sand according to the second aspect of the present invention is 0.5% by weight or less. From the viewpoint of suppressing increase in the amount of resin used due to absorption of the resin used in the production of the mold into the molding sand and improving the mold strength, it is preferably 0.3% by weight or less, and 0.1% by weight or less. Is more preferable.

なお、球状鋳物砂の吸水率は、火炎溶融法により該砂を調製した場合、該方法以外の焼成方法により調製した砂と比べて、同じ球形度であれば、通常、吸水率は低くなる。   In addition, the water absorption rate of spherical cast sand is usually lower when the sand is prepared by a flame melting method and the same sphericity as compared with sand prepared by a firing method other than the method.

本発明の第2の態様の球状鋳物砂の主成分は、第1の態様の球状鋳物砂と同様であり、耐火性、熱膨張性の観点から、特にAl23及びSiO2を主成分としたものが好ましく、Al23/SiO2重量比率は1〜15が好ましい。 The main components of the spherical molding sand of the second aspect of the present invention are the same as the spherical molding sand of the first aspect, and particularly Al 2 O 3 and SiO 2 are the main components from the viewpoint of fire resistance and thermal expansion. The Al 2 O 3 / SiO 2 weight ratio is preferably 1-15.

一方、本発明の球状鋳物砂の球形度が0.98以上である場合、かかる球状鋳物砂が、珪砂等の流動性の低い公知の鋳物砂との混合物中に好ましくは50体積%以上含有されておれば、該混合物からなる鋳物砂は充分に本発明の所望の効果を発揮し得る。すなわち、前記のような公知の鋳物砂に本発明の球状鋳物砂を徐々に添加していけば、添加量に応じて本発明の所望の効果を発揮するようになるが、前記混合物からなる鋳物砂中に、前記所定の球形度を有する本発明の球状鋳物砂が50体積%以上含まれると、その効果は顕著になる。なお、当該混合物からなる鋳物砂中の、球形度が0.98以上である本発明の球状鋳物砂の含有量としては、より好ましくは60体積%以上、さらに好ましくは80体積%以上である。従って、本発明の球状鋳物砂としては、その利用性に優れることから、球形度が0.98以上であるものが特に好適である。また、かかる球状鋳物砂を50体積%以上含む鋳物砂は、本発明の球状鋳物砂と同等の効果を発揮し得ることから、かかる鋳物砂も本発明に包含される。   On the other hand, when the sphericity of the spherical casting sand of the present invention is 0.98 or more, the spherical casting sand is preferably contained in a mixture with a known casting sand having low fluidity such as silica sand in an amount of 50% by volume or more. In this case, the foundry sand made of the mixture can sufficiently exhibit the desired effect of the present invention. That is, if the spherical foundry sand of the present invention is gradually added to the known foundry sand as described above, the desired effect of the present invention will be exhibited depending on the amount added, but the cast comprising the above mixture. The effect becomes remarkable when 50% by volume or more of the spherical cast sand of the present invention having the predetermined sphericity is contained in the sand. In addition, as content of the spherical foundry sand of this invention whose sphericity is 0.98 or more in the foundry sand which consists of the said mixture, More preferably, it is 60 volume% or more, More preferably, it is 80 volume% or more. Accordingly, as the spherical casting sand of the present invention, one having a sphericity of 0.98 or more is particularly suitable because of its excellent utility. Further, since the foundry sand containing 50% by volume or more of the spherical foundry sand can exhibit the same effect as the spherical foundry sand of the present invention, such foundry sand is also included in the present invention.

前記の通り、本発明の第1の態様の球状鋳物砂は火炎溶融法により製造される。一方、本発明の第2の態様の球状鋳物砂は、たとえば、造粒して焼結する方法、電融アトマイズ法等の公知の方法により製造することが可能であるが、中でも、本発明の第1の態様の球状鋳物砂と同様に火炎溶融法により製造するのが好適である。そこで、以下においては、火炎溶融法による、本発明の球状鋳物砂の製造方法の一例を説明する。   As described above, the spherical foundry sand according to the first aspect of the present invention is manufactured by the flame melting method. On the other hand, the spherical foundry sand according to the second aspect of the present invention can be produced by a known method such as a method of granulating and sintering, an electromelting atomizing method, etc. It is preferable to manufacture by the flame melting method similarly to the spherical casting sand of the first aspect. Therefore, in the following, an example of a method for producing the spherical casting sand of the present invention by the flame melting method will be described.

本発明の球状鋳物砂は、例えば、特開2004−202577号に示されるような火炎溶融法により製造される。   The spheroidal sand of the present invention is produced, for example, by a flame melting method as disclosed in JP-A-2004-202577.

即ち、例えば平均粒径が0.05〜2mmの耐火物粉末粒子を出発原料とし、当該粉末粒子を酸素等のキャリアガスに分散させ、下記火炎中で溶融して球状化する。用いる火炎はプロパン、ブタン、メタン、天然液化ガス、LPG、重油、灯油、軽油、微粉炭等の燃料を酸素と燃焼させることによって発生させたものや、N2不活性ガス等を電離させて生じるプラズマジェット火炎などが使用できる。 That is, for example, refractory powder particles having an average particle diameter of 0.05 to 2 mm are used as a starting material, and the powder particles are dispersed in a carrier gas such as oxygen and melted into a sphere to form a sphere. Occurs flame propane, butane, methane, natural liquefied gas, LPG, heavy oil, kerosene, gas oil, and that is generated by burning the fuel oxygen pulverized coal etc., ionizes the N 2 inert gas or the like used Plasma jet flames can be used.

本発明の球状鋳物砂は、耐火度はSK17(1480℃)以上が好ましく、低熱膨張性で、耐火度は1800℃以上がより好ましく、SK37(1825℃)以上が更に好ましい。上限は特に限定されないが、SK42(2000℃)以下が好ましい。この耐火度は、JIS R 2204に基づくゼーゲルコーン法に従って測定したものである。   The spheroidal foundry sand of the present invention preferably has a fire resistance of SK17 (1480 ° C.) or higher, low thermal expansion, a fire resistance of 1800 ° C. or higher, more preferably SK37 (1825 ° C.) or higher. Although an upper limit is not specifically limited, SK42 (2000 degreeC) or less is preferable. This fire resistance is measured according to the Seegel cone method based on JIS R 2204.

本発明の球状鋳物砂を用いることにより、ダイカスト法における、熔湯の射出圧力に耐えるような熱間強度に優れる中子を得ることができる。ダイカスト法とは、溶融もしくは半溶融した合金を大気圧より大きい力で金型の内部に圧入して鋳物を製造する方法である。特に本発明においては、その中でも一般的な砂中子の使用が困難である中圧鋳造(加圧力1〜50MPa)及び高圧鋳造(加圧力50MPa以上)を言う。  By using the spherical casting sand of the present invention, a core excellent in hot strength that can withstand the injection pressure of the molten metal in the die casting method can be obtained. The die casting method is a method for manufacturing a casting by pressing a molten or semi-molten alloy into a mold with a force larger than atmospheric pressure. In particular, in the present invention, medium-pressure casting (pressing pressure of 1 to 50 MPa) and high-pressure casting (pressing pressure of 50 MPa or more), which are difficult to use general sand cores, are mentioned.

<ダイカスト用中子>
本発明のダイカスト用中子は、上記の球状鋳物砂とそれらを結合するバインダーを用いて、下記の硬化方法によって製造することができる。バインダーとしては、粘土、水ガラス、シリカゾル、硫酸塩、リン酸塩、硝酸塩などの無機塩等の無機質バインダー、又はフラン樹脂、フェノール樹脂、フランフェノール樹脂、ウレタン樹脂、不飽和ポリエステル樹脂、アルキド樹脂等の有機質バインダーが好適に用いられる。硬化方法としては、自硬性法、熱硬化法、ガス硬化法等の従来公知の硬化方法が用いられる。特に好ましい中子の製造法としては、熱硬化法におけるシェルモールド法が好ましく、上記の球状鋳物砂をノボラック樹脂、又はレゾール樹脂等のフェノール系樹脂で被覆したレジンコーテッドサンドを加熱された金型に充填及び硬化させることにより行うことができる。これらのバインダーの含有量は、鋳物砂に対して好ましくは0.2〜10重量%、更に好ましくは0.5〜5重量%の範囲で選ばれる。尚、球状鋳物砂は再生された球状鋳物砂を用いることも可能である。
<Die-cast core>
The core for die casting of the present invention can be produced by the following curing method using the above spherical foundry sand and the binder for binding them. As the binder, inorganic binders such as inorganic salts such as clay, water glass, silica sol, sulfate, phosphate, nitrate, or furan resin, phenol resin, furan phenol resin, urethane resin, unsaturated polyester resin, alkyd resin, etc. The organic binder is preferably used. As the curing method, a conventionally known curing method such as a self-curing method, a thermal curing method, a gas curing method or the like is used. As a particularly preferable method for producing a core, a shell mold method in a thermosetting method is preferable, and a resin-coated sand obtained by coating the above spherical cast sand with a phenolic resin such as a novolak resin or a resole resin is used in a heated mold. This can be done by filling and curing. The content of these binders is preferably selected in the range of 0.2 to 10% by weight, more preferably 0.5 to 5% by weight with respect to the foundry sand. It is also possible to use regenerated spheroidal foundry sand as spheroidal foundry sand.

本発明のダイカスト用中子はそのまま使用することも可能であるが、表面に従来一般に知られている表面被覆剤、即ちジルコンフラワー、合成雲母、コロイダルシリカ等の耐火物及び糖蜜、ベントナイト等のバインダー成分を水、低級アルコール等に混合してなる表面被覆剤を塗布・乾燥せしめて被覆を形成した後、ダイカスト鋳造中子とすることもできる。なお、中子のコーティング法に関しては、砂中子の表面にオリビン粉末と鱗状黒鉛粉末とバインダーよりなる第1コーティング層を形成し、その上にバーキュライト粉末とバインダーからなる第2のコーティング層を形成する方法(特開平2−280944)や、中子を補強するための樹脂を含浸させた後、ジルコン系微粉末からなる目指し防止塗型を施しさらに雲母を含む離型用塗型を施す例(特開平8−132178)などが知られている。   Although the core for die casting of the present invention can be used as it is, a surface coating agent generally known on the surface, that is, a refractory such as zircon flour, synthetic mica, colloidal silica, and a binder such as molasses and bentonite. After forming a coating by applying and drying a surface coating agent obtained by mixing the components in water, lower alcohol or the like, it is also possible to form a die-casting core. Regarding the core coating method, a first coating layer made of olivine powder, scaly graphite powder, and a binder is formed on the surface of the sand core, and a second coating layer made of barculite powder and a binder is formed thereon. After impregnating a resin for reinforcing the core (Japanese Patent Laid-Open No. 280944), a prevention coating mold made of zircon fine powder is applied, and a mold release mold containing mica is applied An example (Japanese Patent Laid-Open No. 8-132178) is known.

本発明の中子には、球形度が0.88〜1.00の耐火性骨材、粘結剤、及び溶剤を含有する砂型鋳造用塗型剤組成物を用いることが好ましい。すなわち、本発明の中子には、かかる砂型鋳造用塗型剤組成物を用いた塗型が形成されていることが好ましい。具体的には、シリカアルミナ系、シリカ、ムライト、黒曜石等を火炎溶融法に得る球形度が0.88〜1.00の球状骨材、糖類等の粘結剤、及び水やメタノール等の溶剤を含有する砂型鋳造用塗型剤組成物を本発明の中子に塗布することにより、鋳型砂粒間へ塗型の球形骨材が密に充填されるため、高い目指し防止効果が得られる。さらに、熱時の塗膜変形によるクラック防止の観点から塗型の球形骨材としては低熱膨張性のものが好ましく、例えば、溶融シリカ、シリカアルミナ系、ムライト等の材質が好ましい。かかる砂型鋳造用塗型剤組成物は、特開2005−224815号公報記載のものを参照できる。   In the core of the present invention, it is preferable to use a sand casting casting composition containing a refractory aggregate having a sphericity of 0.88 to 1.00, a binder, and a solvent. In other words, the core of the present invention is preferably formed with a coating mold using such a sand casting casting composition. Specifically, a spherical aggregate having a sphericity of 0.88 to 1.00 to obtain silica-alumina, silica, mullite, obsidian and the like in a flame melting method, a binder such as saccharide, and a solvent such as water and methanol By applying the coating composition for sand mold casting containing the composition to the core of the present invention, the spherical aggregate of the coating mold is densely filled between the mold sand grains, so that a high aim prevention effect can be obtained. Further, from the viewpoint of preventing cracks due to coating film deformation during heating, the coating type spherical aggregate is preferably a low thermal expansion material, and for example, a material such as fused silica, silica alumina, mullite is preferable. Refer to JP-A-2005-224815 for such a mold casting composition for sand casting.

<鋳物の製造法>
本発明の鋳物の製造法は、本発明の中子を用いてダイカスト法により行うことができる。具体的には、ダイカストで使用する金型は、鋳造した鋳物を取り出し可能なように少なくとも2つの部分からなっており、その金型内に本発明の中子をセットした後、溶融もしくは半溶融金属を1〜100MPa程度で圧入し、金属の凝固後に金型を開いて鋳物を取り出すことにより行うことができる。ダイカスト法は上記のサイクルを繰り返し行うことにより大量に鋳物を生産することができる。ダイカスト法において好適な鋳物の金属としては、アルミニウム合金、亜鉛合金、マグネシウム合金、銅合金、鉄が挙げられる。本発明の中子は、従来の中子に比べて非常に熱間強度が優れるため、中子の形状をより薄く、細くすることが可能である為、特に精密な自動車用鋳物の製造に好適である。
<Casting manufacturing method>
The manufacturing method of the casting of the present invention can be performed by a die casting method using the core of the present invention. Specifically, a die used in die casting is composed of at least two parts so that a cast casting can be taken out. After the core of the present invention is set in the die, it is melted or semi-molten. It can be carried out by press-fitting a metal at about 1 to 100 MPa, opening the mold after solidifying the metal, and taking out the casting. The die casting method can produce a large amount of castings by repeating the above cycle. Suitable casting metals in the die casting method include aluminum alloys, zinc alloys, magnesium alloys, copper alloys, and iron. The core of the present invention has excellent hot strength compared to the conventional core, so that the core can be made thinner and thinner, and is particularly suitable for the production of precision automotive castings. It is.

<鋳物砂の製造>
表1の鋳物砂中、本発明品1〜3、焼成法ムライト砂1〜3は、それぞれ以下の方法で得られたものである。
<Manufacture of foundry sand>
In the casting sands of Table 1, the inventive products 1 to 3 and the calcination method mullite sands 1 to 3 are respectively obtained by the following methods.

(1)本発明品1〜3
Al23とSiO2を合計量で96重量%含有する、Al23/SiO2重量比率が2.7、含水率が0重量%、平均粒径が0.21mm、長軸径/短軸径比が1.5、のムライト粉末を出発原料とし、当該粉末を、酸素をキャリアガスとして用い、LPG(プロパンガス)を対酸素比(容量比)1.1で燃焼させた火炎(約2000℃)中に投入し、単分散した球状鋳物砂(表1の本発明品1)を得た。得られた球状鋳物砂の粒径の細かい部分のみを集め本発明品2及び3とした。
(1) Invention products 1-3
96% by weight of Al 2 O 3 and SiO 2 in total, Al 2 O 3 / SiO 2 weight ratio is 2.7, moisture content is 0% by weight, average particle size is 0.21 mm, major axis diameter / A flame in which a mullite powder having a minor axis diameter ratio of 1.5 is used as a starting material, oxygen is used as a carrier gas, and LPG (propane gas) is burned at an oxygen ratio (volume ratio) of 1.1 (volume ratio) Into a spherical casting sand (invention product 1 in Table 1). Only the fine particles of the resulting spherical casting sand were collected and designated as products 2 and 3 of the present invention.

(2)焼成法ムライト砂1〜3
Al23/SiO2重量比率が2.7となるよう水酸化アルミニウムとカオリンを混合し、スプレードライヤーを用いて球状にした粉末粒子(Al23とSiO2を合計量で96重量%含有)を電気炉中にて1500℃で1時間焼成することにより球状鋳物砂(表1の焼成法ムライト砂1)を得た。得られた球状鋳物砂の粒径の細かい部分のみを集め焼成法ムライト砂2及び砂3とした。
(2) calcination method mullite sand 1-3
Powder particles in which aluminum hydroxide and kaolin are mixed so that the weight ratio of Al 2 O 3 / SiO 2 is 2.7 and are made spherical using a spray dryer (96% by weight in total amount of Al 2 O 3 and SiO 2) Containing) was fired in an electric furnace at 1500 ° C. for 1 hour to obtain spherical cast sand (calcined mullite sand 1 in Table 1). Only the fine particles of the obtained spherical cast sand were collected and used as the calcination method mullite sand 2 and sand 3.

実施例1〜4及び比較例1〜3
(1)RCSの製造
鋳物砂として上記で得られた鋳物砂を用いた。それらの化学組成等を表1に示した。表1中、焼成法ムライト砂は、従来の球状鋳物砂に相当する。また、吸水率は、JIS A1109細骨材の吸水率測定方法に従って測定したものである。
Examples 1-4 and Comparative Examples 1-3
(1) Production of RCS The foundry sand obtained above was used as the foundry sand. Their chemical composition and the like are shown in Table 1. In Table 1, calcined mullite sand corresponds to conventional spherical casting sand. The water absorption is measured according to the method for measuring the water absorption of JIS A1109 fine aggregate.

表1の鋳物砂を用いRCSを製造した。具体的には、鋳物砂を150℃で加熱した後、鋳物砂100重量部に対してフェノール樹脂を1重量部添加して混練した。次いで、温度を105℃に下げ、この温度でヘキサメチレンテトラミン水溶液(硬化剤)(濃度18重量%)を樹脂100重量部に対して固形分換算では0.15重量部添加して混練し、更に冷風を吹き込みながら混練した。更に、流動性を高めるためにステアリン酸カルシウム(滑剤)を鋳物砂100重量部に対して0.05重量部添加して混練することによりRCSを得た。   RCS was manufactured using the foundry sand of Table 1. Specifically, after casting sand was heated at 150 ° C., 1 part by weight of phenol resin was added to 100 parts by weight of foundry sand and kneaded. Next, the temperature is lowered to 105 ° C., and at this temperature, 0.15 parts by weight of a hexamethylenetetramine aqueous solution (curing agent) (concentration of 18% by weight) in terms of solid content is added to 100 parts by weight of the resin and kneaded. Kneading while blowing cold air. Further, RCS was obtained by adding 0.05 parts by weight of calcium stearate (lubricant) to 100 parts by weight of foundry sand and kneading to improve fluidity.

なお、実施例4は、実施例1のRCSをシェル法にて成型し鋳型を得たのち、1000℃にて30分間焙焼処理を行った砂を焙焼再生砂として用い実施例1と同様の方法によりRCSとしたものを用いた。   Example 4 was the same as Example 1 except that the RCS of Example 1 was molded by the shell method to obtain a mold, and then subjected to roasting treatment at 1000 ° C. for 30 minutes as roasted recycled sand. What was made into RCS by the method of was used.

Figure 2007083284
Figure 2007083284

(2)評価
1.熱間強度測定
上記で製造したRCSを用い250℃、90秒で焼成し直径11mm×高さ21mmの試験片を成型し測定に用いた。測定は、窒素雰囲気下、ジョージフィッシャー社製高温圧縮強度試験機(PHT型)を用いて行った。結果を表2に示す。
(2) Evaluation 1. Hot strength measurement Using the RCS produced above, a test piece having a diameter of 11 mm and a height of 21 mm was molded by firing at 250 ° C. for 90 seconds and used for measurement. The measurement was performed using a high-temperature compressive strength tester (PHT type) manufactured by George Fisher in a nitrogen atmosphere. The results are shown in Table 2.

2.熱膨張率試験
上記で製造したRCSを用い250℃、90秒で焼成し直径30mm×高さ50mmの試験片を成型し測定に用いた。測定は試験片を1000℃の炉に入れ600秒後までの寸法変化を測定し、その最大値を用い初期寸法(25℃)と比較して熱膨張率とした。結果を表2に示す。
2. Thermal expansion coefficient test Using the RCS produced above, a test piece having a diameter of 30 mm and a height of 50 mm was molded by firing at 250 ° C. for 90 seconds and used for measurement. The measurement was performed by placing the test piece in a 1000 ° C. furnace and measuring the dimensional change until 600 seconds later, and using the maximum value as a coefficient of thermal expansion compared to the initial dimension (25 ° C.). The results are shown in Table 2.

Figure 2007083284
Figure 2007083284

表2に示すように、本発明品1〜3の鋳物砂を用いた実施例1〜4は少量のバインダーにて高い常温鋳型強度を得ることができるのみならず、高圧の溶湯流にさらされる温度においても、高い鋳型強度を維持でき、溶湯圧力に耐えることができる。砂の粒径が小さい方が高圧の溶湯の砂粒間への差し込みを防止できるが、従来公知の砂は粒径が小さくなると鋳型強度や熱間強度が低下する。本発明の鋳物砂では、平均粒径の小さな場合においても、より高い鋳型強度と熱間強度を得ることができる。この本発明の効果は従来公知の砂と比べて特異な効果であり、このことから、ダイカスト法での高い溶湯圧力において中子が折れたり変形したりすることを防げるのみならず、溶湯の差し込みを防ぐことができる。   As shown in Table 2, Examples 1 to 4 using the foundry sands 1 to 3 of the present invention can not only obtain high room temperature mold strength with a small amount of binder, but also are exposed to a high-pressure molten metal flow. Even at a temperature, a high mold strength can be maintained and the molten metal pressure can be withstood. A smaller sand particle size can prevent the high-pressure molten metal from being inserted between sand particles, but conventionally known sand has a lower mold strength and hot strength when the particle size is smaller. With the foundry sand of the present invention, higher mold strength and hot strength can be obtained even when the average particle size is small. This effect of the present invention is a unique effect as compared with conventionally known sand, and from this, not only can the core be prevented from breaking or deforming at a high melt pressure in the die casting method, Can be prevented.

Claims (6)

火炎熔融法で製造された球状鋳物砂を用いて得られるダイカスト用中子。 A core for die casting obtained by using spherical casting sand produced by a flame melting method. 吸水率0.5重量%以下の球状鋳物砂を用いて得られるダイカスト用中子。 A core for die casting obtained by using spherical casting sand having a water absorption of 0.5% by weight or less. 前記球状鋳物砂が、Al23及びSiO2を主成分として含有してなり、Al23/SiO2重量比率が1〜15である請求項1又は2記載のダイカスト用中子。 The spherical molding sand, and also contains Al 2 O 3 and SiO 2 as the main component, Al 2 O 3 / SiO 2 weight ratio of 1 to 15 claim 1 or 2 for die-casting core according. 前記球状鋳物砂の平均粒径が0.02〜1mmである請求項1〜3何れか記載のダイカスト用中子。 The core for die casting according to any one of claims 1 to 3, wherein an average particle diameter of the spherical casting sand is 0.02 to 1 mm. 前記球状鋳物砂のAFS粒度指数がAFS60〜200である請求項1〜4何れか記載のダイカスト用中子。 The core for die casting according to any one of claims 1 to 4, wherein the spherical casting sand has an AFS particle size index of AFS 60 to 200. ダイカスト法で行う鋳物の製造法であって、請求項1〜5何れか記載のダイカスト用中子を用いる鋳物の製造方法。 It is a manufacturing method of the casting performed by the die-casting method, Comprising: The manufacturing method of the casting using the core for die-casting in any one of Claims 1-5.
JP2005275136A 2005-09-22 2005-09-22 Die casting core Expired - Fee Related JP4754309B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005275136A JP4754309B2 (en) 2005-09-22 2005-09-22 Die casting core

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005275136A JP4754309B2 (en) 2005-09-22 2005-09-22 Die casting core

Publications (2)

Publication Number Publication Date
JP2007083284A true JP2007083284A (en) 2007-04-05
JP4754309B2 JP4754309B2 (en) 2011-08-24

Family

ID=37970796

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005275136A Expired - Fee Related JP4754309B2 (en) 2005-09-22 2005-09-22 Die casting core

Country Status (1)

Country Link
JP (1) JP4754309B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015075691A (en) * 2013-10-10 2015-04-20 日立化成株式会社 Low refractive index film and production method of the same, antireflection film and production method of the same, and coating liquid set for low refractive index film
US11179767B2 (en) 2017-01-11 2021-11-23 Ha-International Llc Compositions and methods for foundry cores in high pressure die casting

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07178506A (en) * 1993-12-24 1995-07-18 Aichi Mach Ind Co Ltd Core for casting
JP2003251434A (en) * 2002-02-28 2003-09-09 Yamakawa Sangyo Kk Sand for mold and production method thereof
JP2004202577A (en) * 2002-12-09 2004-07-22 Kao Corp Spherical molding sand

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07178506A (en) * 1993-12-24 1995-07-18 Aichi Mach Ind Co Ltd Core for casting
JP2003251434A (en) * 2002-02-28 2003-09-09 Yamakawa Sangyo Kk Sand for mold and production method thereof
JP2004202577A (en) * 2002-12-09 2004-07-22 Kao Corp Spherical molding sand

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015075691A (en) * 2013-10-10 2015-04-20 日立化成株式会社 Low refractive index film and production method of the same, antireflection film and production method of the same, and coating liquid set for low refractive index film
US11179767B2 (en) 2017-01-11 2021-11-23 Ha-International Llc Compositions and methods for foundry cores in high pressure die casting

Also Published As

Publication number Publication date
JP4754309B2 (en) 2011-08-24

Similar Documents

Publication Publication Date Title
JP4326916B2 (en) Spherical casting sand
US7951454B2 (en) Resin-coated sand
JP4425825B2 (en) Resin coated sand
JP4603463B2 (en) Spherical casting sand
WO2004052572A1 (en) Spherical casting sand
JP7004681B2 (en) Core-shell particles for use as a filler for feeder compositions
JP2000176604A (en) Exothermic assembly for casting
CN100560535C (en) Spherical molding sand and manufacture method thereof, casting casting mold and uses thereof
JP2005193267A (en) Molding sand, and production method therefor
JP5600472B2 (en) Foundry sand, foundry sand composition, and casting mold obtained using the same
JP4776953B2 (en) Casting manufacturing method
JP4754309B2 (en) Die casting core
JP6462347B2 (en) Mold sand and its manufacturing method
JP5567353B2 (en) Spherical refractory particles, foundry sand comprising the same, and molds obtained using the same
JP4615370B2 (en) Foundry sand
WO2009062070A1 (en) Material used to combat thermal expansion related defects in high temperature casting processes
WO2009062074A1 (en) Material used to combat thermal expansion related defects in high temperature casting processes
US5368086A (en) Method for making a ceramic mold
JP2008207238A (en) Casting mold
JP4364717B2 (en) Foundry sand composition
JP4421463B2 (en) Spheroidal casting sand, mold obtained by using the same and method for producing casting
JPH0663683A (en) Production of casting mold
JP2006212650A (en) Method for manufacturing mold
JP2001293537A (en) Method for manufacturing molding sand
JP5355805B1 (en) Method for modifying refractory particles for mold, refractory particles for mold obtained thereby, and method for producing mold

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110420

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110524

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110525

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140603

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4754309

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140603

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees