JP4364717B2 - Foundry sand composition - Google Patents

Foundry sand composition Download PDF

Info

Publication number
JP4364717B2
JP4364717B2 JP2004152511A JP2004152511A JP4364717B2 JP 4364717 B2 JP4364717 B2 JP 4364717B2 JP 2004152511 A JP2004152511 A JP 2004152511A JP 2004152511 A JP2004152511 A JP 2004152511A JP 4364717 B2 JP4364717 B2 JP 4364717B2
Authority
JP
Japan
Prior art keywords
sand
foundry sand
weight
spherical
mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004152511A
Other languages
Japanese (ja)
Other versions
JP2005329454A (en
Inventor
由光 伊奈
雅之 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP2004152511A priority Critical patent/JP4364717B2/en
Publication of JP2005329454A publication Critical patent/JP2005329454A/en
Application granted granted Critical
Publication of JP4364717B2 publication Critical patent/JP4364717B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、鋳型等に用いられる鋳物砂組成物に関する。 The present invention relates to a foundry sand composition used for a mold or the like.

従来の技術Conventional technology

従来、鋳造用鋳型の鋳型材料の1つである鋳物砂としては、珪砂、ジルコン砂、クロマイト砂、オリビン砂などがあり、とくに平均粒径が0.4〜0.5mmの珪砂が広く用いられてきた。また、Al23とSiO2が主体のアルミノケイ酸塩の組成となるように配合された原料をスラリー調整して、造粒した後、造粒相互の融着阻止用の微粒粉末を混合して1400〜1750℃で焼成し、解砕と同時に融着阻止用の微粒粉末を除去して製造された焼成法による人造セラミック粒子が、造型工数が低減する、耐破砕性に優れ廃棄物が減少する、耐火度に優れることから、徐々に使用されてきている。また、異なる製造方法により得られた人造セラミック粒子を併用することも提案されている(特許文献1)。
特開2003−136187号公報
Conventionally, as casting sand which is one of casting mold materials, there are silica sand, zircon sand, chromite sand, olivine sand, etc., especially silica sand having an average particle diameter of 0.4 to 0.5 mm is widely used. I came. In addition, the raw materials blended so as to have an aluminosilicate composition mainly composed of Al 2 O 3 and SiO 2 are adjusted in slurry and granulated, and then mixed with fine powder for preventing fusion between the granulated particles. Baked at 1400-1750 ° C., and the pulverized artificial ceramic particles manufactured by removing the fine powder for preventing fusion are reduced in molding man-hours, excellent in crush resistance, and reduced in waste. It has been used gradually because of its excellent fire resistance. It has also been proposed to use artificial ceramic particles obtained by different production methods (Patent Document 1).
JP 2003-136187 A

上述した珪砂等の砂は不定形であるため、鋳型のフィン形状部など薄い部分へ砂を充填することが難しかった。また、前述した焼成法で製造された人造セラミック粒子(以下、焼成人造セラミック粒子という)は、製造条件によっては粒子表面に凹凸が多いため、全体の形状としては球形であるものの砂の充填性は充分なものではなかった。   Since the sand such as silica sand described above is indefinite, it has been difficult to fill the thin portion such as the fin-shaped portion of the mold with sand. In addition, the artificial ceramic particles produced by the firing method described above (hereinafter referred to as fired artificial ceramic particles) have many irregularities on the surface of the particles depending on the production conditions. It was not enough.

鋳物砂の鋳型への充填性は砂粒子の表面が平滑であるほど向上する考えられるが、その一方、砂粒子の表面が平滑な球状骨材を粘結剤で被覆した砂は、液体に類似した性状を示すため、適正でない液架橋によるべとつきがある。これにより造型作業具に付着し、造型時の砂歩留まりを下げたり、ミキサー内の清掃を頻繁に行う必要がある。また、鋳型を成型するための木型・樹脂型等へのしみつきが発生しやすくなる。   The moldability of foundry sand is thought to improve as the surface of the sand particles becomes smoother. On the other hand, sand coated with a spherical aggregate with a smooth surface of sand particles with a binder is similar to liquid. In order to show the properties obtained, there is stickiness due to improper liquid crosslinking. As a result, it adheres to the molding work tool, and it is necessary to reduce the sand yield during molding or to frequently clean the inside of the mixer. In addition, sticking to a wood mold or a resin mold for molding a mold is likely to occur.

本発明の課題は、充填性に優れ、被覆砂のべとつき、しみつきがなく、複雑な形状の鋳型や強度の高い鋳型を容易に製造できる鋳物砂を提供することである。   An object of the present invention is to provide foundry sand that is excellent in filling property, has no stickiness and no stickiness of coated sand, and can easily produce a mold having a complicated shape or a mold having high strength.

本発明者は、従来の鋳物砂に、特定の球状鋳物砂を所定の割合で混合することにより、作業性に優れ、複雑な形状の鋳型を充填することが可能で、かつ被覆砂のべとつき、しみつきのない鋳物砂組成物が得られることを見出し本発明を完成するに至った。   The present inventor is able to fill a mold having a complex shape with excellent workability by mixing a specific spherical casting sand in a predetermined ratio with the conventional casting sand, and the coated sand is sticky. The present inventors have found that a molding sand composition having no sticking can be obtained and completed the present invention.

本発明は、火炎溶融法で製造された平均粒径が0.05〜1.5mmの球状鋳物砂(A)と該(A)以外の鋳物砂(B)とを、(A)/(B)=5/95〜50/50の体積比で含有する鋳物砂組成物に関する。また、本発明は、該本発明の鋳物砂組成物を、粘結剤組成物で被覆した鋳物砂組成物に関する。更に、本発明は、これら本発明の鋳物砂組成物を用いた鋳型、及び該鋳型を用いて製造された鋳物に関する。   In the present invention, spherical casting sand (A) having an average particle diameter of 0.05 to 1.5 mm produced by a flame melting method and casting sand (B) other than (A) are obtained by (A) / (B ) = Foundry sand composition contained at a volume ratio of 5/95 to 50/50. The present invention also relates to a foundry sand composition in which the foundry sand composition of the present invention is coated with a binder composition. Furthermore, the present invention relates to a mold using the foundry sand composition of the present invention, and a casting manufactured using the mold.

本発明の鋳物砂組成物は、特定の球状鋳物砂(A)を含むため、それ自体の充填性が高く、更に粘結剤で被覆した被覆砂のべとつきも少なく、そのため鋳型の充填性も高まり複雑な形状の鋳型の製造が容易になるとともに鋳型の強度も高くなる。すなわち、本発明の鋳物砂組成物によれば、鋳型の造型性を高めるとともに鋳型強度を高めることができる。   Since the foundry sand composition of the present invention contains the specific spherical foundry sand (A), the filling property of the casting sand itself is high, and the coated sand coated with the binder is also less sticky, so that the filling property of the mold is also enhanced. Manufacture of a mold having a complicated shape is facilitated and the strength of the mold is increased. That is, according to the foundry sand composition of the present invention, the moldability of the mold can be improved and the mold strength can be increased.

<球状鋳物砂(A)>
本発明の球状鋳物砂(A)は火炎溶融法により得られたものであり、表面が平滑で、球形度が高く、緻密であるという構造的特徴を有する。当該構造的特徴は、鋳型強度、鋳造された鋳物の表面平滑性の向上に大きく寄与する。
<Spherical casting sand (A)>
The spherical foundry sand (A) of the present invention is obtained by a flame melting method, and has the structural features that the surface is smooth, the sphericity is high, and it is dense. The structural feature greatly contributes to improvement of mold strength and surface smoothness of a cast casting.

本発明の球状鋳物砂(A)としては、その球形度が、0.98以上であるものが好ましく、0.99以上であるものがさらに好ましい。球形度は、鋳物砂を光学顕微鏡やデジタルスコープ(たとえば、キーエンス社製、VH−8000型)等で観察し、判定することができる。   The spherical casting sand (A) of the present invention preferably has a sphericity of 0.98 or more, more preferably 0.99 or more. The sphericity can be determined by observing the foundry sand with an optical microscope or a digital scope (for example, VH-8000, manufactured by Keyence Corporation).

また、本発明の球状鋳物砂(A)の平均粒径(mm)は、バインダー量の低減、再生の容易さ、鋳型強度等の点から、0.05〜1.5mmの範囲である。鋳物砂の再生効率を高める観点から、0.075〜1.5mmが好ましく、一方、鋳型強度を高める観点から、0.05〜1mmが好ましい。再生効率と鋳型強度の両者を高める観点から、0.05〜0.5mmがより好ましく、0.05〜0.35mmがさらに好ましい。   Moreover, the average particle diameter (mm) of the spherical foundry sand (A) of the present invention is in the range of 0.05 to 1.5 mm from the viewpoint of reduction of the binder amount, ease of regeneration, mold strength, and the like. From the viewpoint of improving the recycle efficiency of the foundry sand, 0.075 to 1.5 mm is preferable, and from the viewpoint of increasing the mold strength, 0.05 to 1 mm is preferable. From the viewpoint of increasing both the regeneration efficiency and the mold strength, 0.05 to 0.5 mm is more preferable, and 0.05 to 0.35 mm is more preferable.

前記平均粒径は以下のようにして求めることができる。すなわち、鋳物砂粒子の粒子投影断面からの球形度=1の場合は直径(mm)を測定し、一方、球形度<1の場合はランダムに配向させた鋳物砂粒子の長軸径(mm)と短軸径(mm)を測定して(長軸径+短軸径)/2を求め、任意の100個の鋳物砂粒子につき、それぞれ得られた値を平均して平均粒径(mm)とする。長軸径と短軸径は、以下のように定義される。粒子を平面上に安定させ、その粒子の平面上への投影像を2本の平行線ではさんだとき、その平行線の間隔が最小となる粒子の幅を短軸径といい、一方、この平行線に直角な方向の2本の平行線で粒子をはさむときの距離を長軸径という。   The average particle diameter can be determined as follows. That is, the diameter (mm) is measured when the sphericity from the projected particle cross section of the foundry sand particle is 1, while the major axis diameter (mm) of the randomly oriented foundry sand particle when the sphericity <1. The major axis diameter (mm) is measured to obtain (major axis diameter + minor axis diameter) / 2, and the average particle diameter (mm) is obtained by averaging the values obtained for any 100 casting sand particles. And The major axis diameter and the minor axis diameter are defined as follows. When the particle is stabilized on a plane and the projected image of the particle on the plane is sandwiched between two parallel lines, the width of the particle that minimizes the distance between the parallel lines is called the minor axis diameter. The distance when a particle is sandwiched between two parallel lines in a direction perpendicular to the line is called the major axis diameter.

なお、鋳物砂粒子の長軸径と短軸径は、光学顕微鏡またはデジタルスコープ(例えば、キーエンス社製、VH−8000型)により該粒子の像(写真)を得、得られた像を画像解析することにより求めることができる。また、球形度は、得られた像を画像解析することにより、該粒子の粒子投影断面の面積および該断面の周囲長を求め、次いで、〔粒子投影断面の面積(mm2)と同じ面積の真円の円周長(mm)〕/〔粒子投影断面の周囲長(mm)〕を計算し、任意の50個の鋳物砂粒子につき、それぞれ得られた値を平均して求める。 The major axis diameter and the minor axis diameter of the foundry sand particles are obtained by obtaining an image (photograph) of the particles with an optical microscope or a digital scope (for example, VH-8000, manufactured by Keyence Corporation), and image analysis of the obtained image is performed. Can be obtained. The sphericity is obtained by image analysis of the obtained image to determine the area of the particle projection cross section of the particle and the perimeter of the cross section, and then [the area of the same area as the area of the particle projection cross section (mm 2 )] The circumference of the perfect circle (mm)] / [perimeter of the particle projection cross section (mm)] is calculated, and the obtained values are averaged for any 50 foundry sand particles.

また、本発明の球状鋳物砂(A)の吸水率(重量%)としては、鋳型の製造の際に使用するバインダーの鋳物砂内部への吸収によるバインダー使用量の増加の抑制や、鋳型強度の向上等の観点から、3重量%以下が好ましく、0.6重量%以下がより好ましく、0.3重量%以下がさらに好ましい。吸水率はJIS A1109細骨材の吸水率測定方法に従って測定することができる。また、粘結剤で被覆された場合や、鋳込み後の粘結剤残分が残留している場合は、熱処理(例えば1000℃以上)等、適切な方法によって、それら成分を取り除いた後に吸水率を測定する。   Further, the water absorption rate (% by weight) of the spherical casting sand (A) of the present invention is such that the increase in the amount of binder used due to absorption of the binder used in the production of the mold into the casting sand is suppressed, and the mold strength is reduced. From the viewpoint of improvement and the like, it is preferably 3% by weight or less, more preferably 0.6% by weight or less, and further preferably 0.3% by weight or less. The water absorption can be measured according to the method for measuring the water absorption of JIS A1109 fine aggregate. In addition, when it is coated with a binder or when the binder remains after casting, the water absorption rate after removing these components by an appropriate method such as heat treatment (for example, 1000 ° C. or higher). Measure.

なお、球状鋳物砂(A)の吸水率は、火炎溶融法により該砂を調製した場合、該方法以外の焼成方法により調製した砂と比べて、同じ球形度であれば、通常、吸水率は低くなる。   The water absorption rate of the spherical casting sand (A) is usually the same as the water absorption rate when the sand is prepared by a flame melting method, as long as it has the same sphericity as compared with the sand prepared by a firing method other than the method. Lower.

本発明の球状鋳物砂(A)は、特に成分は限定されないが、Al23またはSiO2若しくはその混合物を主成分として含有してなり、Al23/SiO2重量比率が1〜15であるもの〔以下、球状鋳物砂(A−1)という〕が好ましい。 The components of the spherical casting sand (A) of the present invention are not particularly limited, but contain Al 2 O 3 or SiO 2 or a mixture thereof as a main component, and the Al 2 O 3 / SiO 2 weight ratio is 1 to 15. (Hereinafter referred to as spherical casting sand (A-1)) is preferred.

本発明の球状鋳物砂(A−1)はAl23およびSiO2を主成分とするが、ここで「主成分」とは、Al23およびSiO2が合計量で鋳物砂全体の全成分中に80重量%以上含有されていることをいう。 The spheroidal molding sand (A-1) of the present invention is mainly composed of Al 2 O 3 and SiO 2 , where “main component” is the total amount of Al 2 O 3 and SiO 2 in the total amount of the casting sand. It means that 80% by weight or more is contained in all components.

本発明の球状鋳物砂(A−1)の主成分であるAl23およびSiO2の含有量としては、耐火性の向上という観点から、それらの合計量として、球状鋳物砂(A−1)の全成分中、好ましくは85〜100重量%、より好ましくは90〜100重量%である。 The content of Al 2 O 3 and SiO 2 which are the main components of the spherical molding sand (A-1) of the present invention is, as a total amount thereof, spherical molding sand (A-1) from the viewpoint of improving fire resistance. ) Is preferably 85 to 100% by weight, more preferably 90 to 100% by weight.

また、球状鋳物砂(A−1)のAl23/SiO2重量比率は1〜15である。耐火性および鋳物砂の再生効率の向上の観点から、1.2〜12が好ましく、1.5〜9がより好ましい。 Further, the Al 2 O 3 / SiO 2 weight ratio of the spherical casting sand (A-1) is 1 to 15. From the viewpoint of improvement in fire resistance and casting sand regeneration efficiency, 1.2 to 12 is preferable, and 1.5 to 9 is more preferable.

なお、本発明の球状鋳物砂(A−1)に主成分以外の成分として含まれ得るものとしては、たとえば、CaO、MgO、Fe23、TiO2、K2O、Na2O等の金属酸化物が挙げられる。これらは、出発原料として使用する、たとえば、後述の原料に由来するものである。CaOとMgOが含まれる場合、球状鋳物砂(A)の耐火性の向上の観点から、それらの含有量としては合計量として5重量%以下が好ましい。Fe23とTiO2が含まれる場合、それらの含有量としてはそれぞれ5重量%以下が好ましい。また、Fe23の含有量は2.5重量%以下がより好ましく、2重量%以下がさらに好ましい。K2OとNa2Oが含まれる場合、それらの含有量としては合計量として3重量%以下が好ましく、より好ましくは1重量%以下である。 Incidentally, the present invention as the spherical molding sand (A-1) may be included as a component other than the main component is, for example, CaO, MgO, Fe 2 O 3, TiO 2, K 2 O, Na 2 O-such as A metal oxide is mentioned. These are used as starting materials, for example, derived from the materials described below. When CaO and MgO are contained, from the viewpoint of improving the fire resistance of the spherical casting sand (A), the total content thereof is preferably 5% by weight or less. When Fe 2 O 3 and TiO 2 are contained, their content is preferably 5% by weight or less. Further, the content of Fe 2 O 3 is more preferably 2.5% by weight or less, and further preferably 2% by weight or less. When K 2 O and Na 2 O are contained, the total content is preferably 3% by weight or less, more preferably 1% by weight or less.

以下においては、火炎溶融法による、本発明の球状鋳物砂(A−1)の製造方法の一例を説明する。   Below, an example of the manufacturing method of the spherical foundry sand (A-1) of this invention by a flame melting method is demonstrated.

本発明の球状鋳物砂(A−1)の製造方法は、Al23およびSiO2を主成分とする、Al23/SiO2重量比率が0.9〜17、平均粒径が0.05〜2mmの粉末粒子を出発原料とし、当該粉末粒子を火炎中で溶融して球状化する工程を含むものである。 The production method of the spherical casting sand (A-1) according to the present invention comprises Al 2 O 3 and SiO 2 as main components, an Al 2 O 3 / SiO 2 weight ratio of 0.9 to 17, and an average particle size of 0. The method includes a step of using 0.05 to 2 mm powder particles as a starting material and melting the powder particles in a flame to spheroidize.

なお、ここで「Al23およびSiO2を主成分とする」とは、出発原料としての粉末粒子全体における全成分中にAl23およびSiO2が合計量で80重量%以上含有されていることをいう。よって、「Al23およびSiO2を主成分とする」限り、当該粉末粒子としては、後述するようなAl23源としての原料とSiO2源としての原料の混合物からなるものであっても、(Al23+SiO2)源としての原料単独からなるものであっても、また、Al23源としての原料および/またはSiO2源としての原料と(Al23+SiO2)源としての原料との混合物であってもよい。 Here, “having Al 2 O 3 and SiO 2 as main components” means that Al 2 O 3 and SiO 2 are contained in a total amount of 80% by weight or more in all components in the powder particles as a starting material. It means that Therefore, as long as “mainly composed of Al 2 O 3 and SiO 2 ”, the powder particle is composed of a mixture of a raw material as an Al 2 O 3 source and a raw material as a SiO 2 source as described later. Even if it consists of the raw material alone as the (Al 2 O 3 + SiO 2 ) source, the raw material as the Al 2 O 3 source and / or the raw material as the SiO 2 source and (Al 2 O 3 + SiO 2) 2 ) It may be a mixture with raw materials as a source.

出発原料としての前記粉末粒子においては、主成分であるAl23およびSiO2の合計量としての含有量は、得られる鋳物砂中のAl23およびSiO2の合計量が全成分中80重量%以上になるようにする観点から、好ましくは75重量%以上であり、より好ましくは80重量%以上であり、さらに好ましくは85〜100重量%、特に好ましくは90〜100重量%である。Al23/SiO2重量比率としては、得られる鋳物砂中のAl23/SiO2重量比率が1〜15になるようにする観点から、0.9〜17であり、好ましくは1〜15である。平均粒径としては、単分散の鋳物砂を得る観点から0.05mm以上であり、所望の球形度を有する鋳物砂を得る観点から2mm以下であり、それらの両観点を満たすため0.05〜2mmである。また、得られる鋳物砂の球形度の向上という観点からは、0.05〜1.5mmが好ましい。 In the powder particles as the starting material, the content of the total amount of Al 2 O 3 and SiO 2 as the main component, the total amount of Al 2 O 3 and SiO 2 in the resulting molding sand is all components in From the viewpoint of achieving 80% by weight or more, it is preferably 75% by weight or more, more preferably 80% by weight or more, still more preferably 85 to 100% by weight, particularly preferably 90 to 100% by weight. . Al The 2 O 3 / SiO 2 weight ratio, from the viewpoint of Al 2 O 3 / SiO 2 weight ratio in the resulting molding sand is made to be 1 to 15, is 0.9 to 17, preferably 1 ~ 15. The average particle size is 0.05 mm or more from the viewpoint of obtaining monodispersed foundry sand, 2 mm or less from the viewpoint of obtaining foundry sand having a desired sphericity, and 0.05 to 2 mm. Moreover, from a viewpoint of the improvement of the sphericity of the obtained foundry sand, 0.05-1.5 mm is preferable.

Al23/SiO2重量比率が、原料粉末粒子と得られる鋳物砂とで異なるのは、原料によってAl23の逸失量とSiO2の逸失量とが異なるためである。また、原料粉末粒子の平均粒径については、不定型の粉末は球状になることで粒径が減少するが、もともと球状の粉末は粒径が変化しないので、上記範囲であればよい。 The reason why the Al 2 O 3 / SiO 2 weight ratio differs between the raw material powder particles and the obtained foundry sand is that the lost amount of Al 2 O 3 and the lost amount of SiO 2 differ depending on the raw material. The average particle size of the raw material powder particles may be in the above-mentioned range because the amorphous powder has a spherical shape and the particle size is reduced.

本発明の球状鋳物砂(A−1)を得るためには、出発原料としての粉末粒子は、溶融時の成分蒸発を考慮し、Al23/SiO2重量比率および平均粒径が上記範囲内になるよう調製して使用する。 In order to obtain the spherical molding sand (A-1) of the present invention, the powder particles as the starting material take into account the component evaporation at the time of melting, and the Al 2 O 3 / SiO 2 weight ratio and average particle size are in the above range. Prepare and use inside.

出発原料である粉末粒子を溶融する際、当該粒子に水分が含まれると、該水分が蒸発するため、得られる鋳物砂には当該水分の蒸発に伴って多数の開孔が形成されることになる。当該開孔の形成は、鋳物砂の吸水率の増加や、球形度の低下をもたらす。従って、出発原料の含水率(重量%)としては、得られる鋳物砂の吸水率および球形度を適切な範囲に調節する観点から、10重量%以下が好ましく、3重量%以下がより好ましく、1重量%以下がさらに好ましい。含水率は粉末粒子10gを800℃で1時間加熱した時の減量により測定する。   When melting the powder particles that are the starting material, if the particles contain moisture, the moisture evaporates, so that a large number of holes are formed in the resulting casting sand as the moisture evaporates. Become. The formation of the apertures results in an increase in water absorption rate of casting sand and a decrease in sphericity. Accordingly, the water content (% by weight) of the starting material is preferably 10% by weight or less, more preferably 3% by weight or less, from the viewpoint of adjusting the water absorption and sphericity of the resulting casting sand to an appropriate range. More preferably, it is not more than% by weight. The water content is measured by weight loss when 10 g of powder particles are heated at 800 ° C. for 1 hour.

出発原料は、たとえば、耐火性を有する鉱産原料および合成原料から選ぶことができる。Al23源としての原料として、ボーキサイト、バン土頁岩、酸化アルミニウム、水酸化アルミニウム等を挙げることができる。また、SiO2 源としての原料として、珪石、珪砂、石英、クリストバライト、非晶質シリカ、長石、パイロフィライト等を挙げることができる。また、(Al23+SiO2)源としての原料として、カオリン、バン土頁岩、ボーキサイト、雲母、シリマナイト、アンダルサイト、ムライト、ゼオライト、モンモリロナイト、ハイロサイト等を挙げることができる。これらの原料はそれぞれ単独で、もしくは2種以上を混合して使用することができる。選択された出発原料は、その含水率を低下させるため、あるいはその溶融を容易にするために仮焼して使用するのが好ましい。仮焼された原料粉末粒子としては、仮焼バン頁、仮焼ムライト、仮焼ボーキサイト、仮焼した水酸化アルミニウムとカオリンとの混合物等が例示される。 The starting material can be selected from, for example, mineral raw materials and synthetic raw materials having fire resistance. Examples of the raw material as the Al 2 O 3 source include bauxite, van earth shale, aluminum oxide, aluminum hydroxide and the like. Examples of the raw material as the SiO 2 source include silica, silica sand, quartz, cristobalite, amorphous silica, feldspar, and pyrophyllite. Moreover, examples of the raw material as the (Al 2 O 3 + SiO 2 ) source include kaolin, bangshale shale, bauxite, mica, sillimanite, andalusite, mullite, zeolite, montmorillonite, and hyrosite. These raw materials can be used alone or in admixture of two or more. The selected starting material is preferably used after calcining in order to reduce its moisture content or to facilitate its melting. Examples of the calcined raw material powder particles include calcined van pages, calcined mullite, calcined bauxite, a mixture of calcined aluminum hydroxide and kaolin, and the like.

出発原料としての粉末粒子を火炎中で溶融して球状化する工程では、上記のような出発原料を酸素等のキャリアガスに分散させ、火炎中に投入することによって溶融し、球状化を行う(火炎溶融法)。好適な態様においては、下記火炎中に、投入する。   In the step of melting and spheroidizing powder particles as a starting material in a flame, the starting material as described above is dispersed in a carrier gas such as oxygen and melted by being introduced into a flame, and spheroidized ( Flame melting method). In a preferred embodiment, it is introduced into the following flame.

用いる火炎はプロパン、ブタン、メタン、天然液化ガス、LPG、重油、灯油、軽油、微粉炭等の燃料を酸素と燃焼させることによって発生させる。燃料の対酸素比は完全燃焼の観点から容量比で1.01〜1.3が好ましい。高温の火炎を発生させる観点から、酸素・ガスバーナーが好適である。特にバーナーの構造は限定するものではないが、特開平7−48118号公報、特開平11−132421号公報、特開2000−205523号公報または特開2000−346318号公報で開示されているバーナーが例示される。   The flame to be used is generated by burning fuel such as propane, butane, methane, natural liquefied gas, LPG, heavy oil, kerosene, light oil, pulverized coal and the like with oxygen. The fuel to oxygen ratio is preferably 1.01 to 1.3 in terms of volume ratio from the viewpoint of complete combustion. From the viewpoint of generating a high-temperature flame, an oxygen / gas burner is preferable. Although the structure of the burner is not particularly limited, the burners disclosed in JP-A-7-48118, JP-A-11-132421, JP-A-2000-205523, or JP-A-2000-346318 are disclosed. Illustrated.

本発明の製造方法で用いる0.05〜2mmの範囲にある大きな平均粒径をもつ上記耐火性の原料粉末を球状化するには以下の手法が好適である。   The following method is suitable for spheroidizing the above refractory raw material powder having a large average particle diameter in the range of 0.05 to 2 mm used in the production method of the present invention.

火炎中への粉末粒子の投入は、キャリアガス中に分散して行なう。キャリアガスとしては、酸素が好適に用いられる。この場合、キャリアガスの酸素は燃料燃焼用として消費できる利点がある。ガス中の粉体濃度は、粉末粒子の充分な分散性を確保する観点から、0.1〜20kg/Nm3が好ましく、0.2〜10kg/Nm3がより好ましい。 The powder particles are introduced into the flame by being dispersed in a carrier gas. As the carrier gas, oxygen is preferably used. In this case, there is an advantage that oxygen of the carrier gas can be consumed for fuel combustion. The powder concentration in the gas is preferably from 0.1 to 20 kg / Nm 3 , and more preferably from 0.2 to 10 kg / Nm 3 from the viewpoint of ensuring sufficient dispersibility of the powder particles.

さらに、火炎中に投入する際には、メッシュ、スタティックミキサー等を通過させて分散性を高めることがより好ましい。   Furthermore, when thrown into the flame, it is more preferable to pass through a mesh, a static mixer or the like to improve dispersibility.

火炎中での球状化を速やかに行なうと共に、単分散した球状鋳物砂を得る観点から、原料粉末粒子の形状と組成を選択することが好ましい。形状としては、火炎中での滞留時間確保や溶融、球状化を速やかに行なう観点から、原料粉末粒子の長軸径/短軸径比が9以下であるのが好ましく、より好ましくは4以下、さらに好ましくは2以下である。一方、組成としては、融着していない単分散の球状粒子を得る観点から、Al23/SiO2重量比率が1.5〜10であるのが特に好適である。 From the viewpoint of promptly spheroidizing in a flame and obtaining monodispersed spherical casting sand, it is preferable to select the shape and composition of the raw material powder particles. As the shape, it is preferable that the ratio of the major axis diameter / minor axis diameter of the raw material powder particles is 9 or less, more preferably 4 or less, from the viewpoint of ensuring residence time in the flame, melting, and spheroidization quickly. More preferably, it is 2 or less. On the other hand, as the composition, from the viewpoint of obtaining monodispersed spherical particles that are not fused, it is particularly preferable that the Al 2 O 3 / SiO 2 weight ratio is 1.5 to 10.

また、粉末粒子は、N2不活性ガス等を電離させて生じるプラズマジェット火炎中でも好適に溶融し、球状化できる。 Further, the powder particles can be suitably melted and spheroidized even in a plasma jet flame generated by ionizing N 2 inert gas or the like.

以上の方法により、本発明の所望の球状鋳物砂(A−1)を得ることができる。当該球状鋳物砂(A−1)は、充填性に非常に優れ、本発明の球状鋳物砂(A)として好適である。   By the above method, the desired spheroidal sand (A-1) of the present invention can be obtained. The spherical casting sand (A-1) is very excellent in filling properties and is suitable as the spherical casting sand (A) of the present invention.

<鋳物砂(B)>
本発明では、球状鋳物砂(A)が所定の割合で含まれるように、該球状鋳物砂(A)以外の他の鋳物砂(B)を適宜混合して充填性とべとつき低減性に優れた本発明の鋳物砂組成物を得る。
<Casting sand (B)>
In the present invention, the casting sand (B) other than the spherical casting sand (A) is appropriately mixed so that the spherical casting sand (A) is contained at a predetermined ratio, and the filling property and the reduction in stickiness are excellent. The foundry sand composition of the present invention is obtained.

鋳物砂(B)としては、従来鋳造用鋳型の製造に用いられていたものが使用でき、珪砂、ジルコン砂、クロマイト砂、オリビン砂などから選択できる。また、例えば焼成造粒法にて得られるアルミノケイ酸塩鋳物砂(焼成ムライト砂)や、また、特開2003−136187号公報に記載されているような焼成人造セラミック粒子を使用することもできる。また、これらの鋳物砂の混合物であっても構わない。焼成人造セラミック粒子としては、例えば、Al23とSiO2が主体のアルミノケイ酸塩の組成となるように配合された原料をスラリー調整して、造粒した後、造粒相互の融着阻止用の微粒粉末を混合して1400〜1750℃で焼成し、解砕と同時に融着阻止用の微粒粉末を除去して製造された焼成法による人造セラミック粒子が挙げられる。鋳物砂(B)としては、べとつき、しみつきを低減する観点から、珪砂及び焼成ムライトから選ばれる鋳物砂、特に、前記球形度が0.90以下の珪砂及び球形度が0.90以上の焼成ムライト砂から選ばれる鋳物砂が好適に使用される。鋳物砂(B)の吸水率としては、0.8重量%以上、更に1.0〜2.0重量%であることが好ましく、また、その場合の鋳物砂(A)の吸水率としては0.6重量%であることがより好ましい。 As casting sand (B), what was conventionally used for manufacture of a casting mold can be used, and it can choose from silica sand, zircon sand, chromite sand, olivine sand, etc. Further, for example, aluminosilicate foundry sand (baked mullite sand) obtained by a baking granulation method, or baking artificial ceramic particles as described in JP-A No. 2003-136187 can also be used. A mixture of these foundry sands may also be used. As the sintered artificial ceramic particles, for example, the raw material blended so as to have a composition of aluminosilicate mainly composed of Al 2 O 3 and SiO 2 is adjusted to a slurry, granulated, and then prevention of fusion between the granules For example, artificial ceramic particles produced by a firing method prepared by mixing fine powder for use and firing at 1400 to 1750 ° C. and removing fine powder for preventing fusion at the same time as crushing can be mentioned. As the foundry sand (B), from the viewpoint of reducing stickiness and smudge, foundry sand selected from quartz sand and calcined mullite, in particular, quartz sand having a sphericity of 0.90 or less and calcination having a sphericity of 0.90 or more. Foundry sand selected from mullite sand is preferably used. The water absorption of the foundry sand (B) is preferably 0.8% by weight or more, and more preferably 1.0 to 2.0% by weight, and the water absorption of the foundry sand (A) in that case is 0. More preferably, it is 6% by weight.

<鋳物砂組成物>
本発明の鋳物砂組成物は、充填性に優れることと、被覆砂のべとつきを低減できることの両立の観点から、球状鋳物砂(A)と鋳物砂(B)とを、(A)/(B)=5/95〜50/50、好ましくは10/90〜40/60、より好ましくは10/90〜30/70の体積比で含有する。また、本発明の鋳物砂組成物中、特に全鋳物砂中、球状鋳物砂(A)と鋳物砂(B)の合計は、80〜100重量%、更に90〜100重量%、特に95〜100重量%であることが好ましい。
<Casting sand composition>
The casting sand composition of the present invention is obtained by combining spherical casting sand (A) and foundry sand (B) with (A) / (B) from the viewpoint of both excellent filling properties and reduced stickiness of the coated sand. ) = 5/95 to 50/50, preferably 10/90 to 40/60, more preferably 10/90 to 30/70. Further, in the foundry sand composition of the present invention, particularly in the total foundry sand, the sum of the spherical foundry sand (A) and the foundry sand (B) is 80 to 100% by weight, more preferably 90 to 100% by weight, and particularly 95 to 100%. It is preferable that it is weight%.

本発明の球状鋳物砂(A)と鋳物砂(B)は、何れも、焙焼再生及び表面研磨による機械再生、水や溶剤洗浄による再生などの再生砂であっても良い。   Both the spherical foundry sand (A) and the foundry sand (B) of the present invention may be reclaimed sand such as machine regeneration by roasting regeneration and surface polishing, and regeneration by washing with water or solvent.

本発明の鋳物砂組成物は、鋳鋼、鋳鉄、アルミニウム、銅およびこれらの合金等の鋳型用途に好適に使用されうる。   The foundry sand composition of the present invention can be suitably used for casting applications such as cast steel, cast iron, aluminum, copper and alloys thereof.

本発明の鋳物砂組成物は、その表面を、注湯時に該砂の相互結着を維持し、注湯後に該砂の相互の結着を崩壊させうる樹脂で被覆してなる鋳型用鋳物砂として使用できる。   The foundry sand composition of the present invention is a molding foundry sand, the surface of which is coated with a resin capable of maintaining the mutual binding of the sand during pouring and disrupting the mutual binding of the sand after pouring. Can be used as

粘結剤組成物は、従来公知の鋳型用粘結剤が用いられ、例えば、フェノール樹脂と有機エステルがアルカリ金属により硬化するアルカリフェノールエステル硬化法、フェノール樹脂及びポリイソシアネートが第3級アミン存在下にフェノールウレタン樹脂を作製し硬化するイソキュア法、フェノール樹脂及びギ酸メチルを用いるアルカリフェノールギ酸メチルガス硬化法、フェノール樹脂及びポリイソシアネートが塩基性触媒存在下にフェノールウレタン樹脂を作製し硬化するヘプセット法、フラン樹脂及び酸性触媒を用いるフラン鋳型法等に用いる有機系粘結剤組成物や、水ガラスなどの無機系粘結剤組成物などが挙げられる。その際、本発明の鋳物砂組成物の他に、有機粘結剤および滑剤のような鋳型作製の際に慣用されている添加剤を加えてもよい。樹脂を含有する有機系の粘結剤組成物を用いる場合、樹脂の添加量は、鋳物砂相互の結着に必要な最低量であればよい。具体的には、樹脂の添加量としては、本発明の鋳物砂組成物中の球状鋳物砂(A)と鋳物砂(B)の合計100重量部当たり3から0.5重量部が好ましく、より好ましくは2.5から0.5重量部である。   For the binder composition, conventionally known binders for molds are used. For example, an alkali phenol ester curing method in which a phenol resin and an organic ester are cured with an alkali metal, a phenol resin and a polyisocyanate are present in the presence of a tertiary amine. An iso-cure method in which a phenol-urethane resin is prepared and cured, an alkali phenol methyl formate gas curing method using a phenol resin and methyl formate, a hepset method in which a phenol resin and a polyisocyanate are prepared and cured in the presence of a basic catalyst, and furan Examples thereof include an organic binder composition used in a furan mold method using a resin and an acidic catalyst, an inorganic binder composition such as water glass, and the like. At that time, in addition to the foundry sand composition of the present invention, additives commonly used in the production of molds such as organic binders and lubricants may be added. In the case of using an organic binder composition containing a resin, the amount of resin added may be the minimum amount necessary for binding between foundry sands. Specifically, the addition amount of the resin is preferably 3 to 0.5 parts by weight per 100 parts by weight in total of the spherical foundry sand (A) and the foundry sand (B) in the foundry sand composition of the present invention. The amount is preferably 2.5 to 0.5 parts by weight.

本発明の鋳物砂組成物は、鋳物を作製する際の鋳型材料として使用できる。また、べとつきが少ないので、積層造型法(例えば特表2004-508941号、特開2000-24750号)の積層の際にも好適に使用できる。得られる鋳造品としては、最も複雑な構造を有するものにも使用できる。具体的な鋳物の例としては、建設機械の油圧バルブ、モーター、金型、エンジンフレーム、工作機械、建築部材等に用いられる、部材、部品等が挙げられる。   The foundry sand composition of the present invention can be used as a mold material for producing a casting. Further, since there is little stickiness, it can be suitably used in the case of lamination by a lamination molding method (for example, JP-T-2004-508941 and JP-A-2000-24750). As the obtained casting, it can be used even for the one having the most complicated structure. Specific examples of castings include members, parts, and the like used for hydraulic valves, motors, molds, engine frames, machine tools, building members, and the like of construction machines.

実施例1〜2及び比較例1〜3
球状鋳物砂(A)として火炎溶融法にて製造したAl23とSiO2を合計量で96重量%含有し、Al23/SiO2重量比率が2.7、平均粒径が0.16mm、球形度が0.99、吸水率が0重量%である球状骨材A1を用い、鋳物砂(B)としてフラタリー珪砂(吸水率0.9重量%)を用い、表1に示した比率で混合して鋳物砂組成物とした。
Examples 1-2 and Comparative Examples 1-3
96% by weight of Al 2 O 3 and SiO 2 produced by flame melting method as spherical casting sand (A) are contained in a total amount, the Al 2 O 3 / SiO 2 weight ratio is 2.7, and the average particle size is 0 Table 1 shows a spherical aggregate A1 having a diameter of .16 mm, a sphericity of 0.99, and a water absorption rate of 0% by weight, and flattery sand (water absorption rate of 0.9% by weight) as casting sand (B). It was mixed at a ratio to obtain a foundry sand composition.

この鋳物砂組成物100重量部に、アルカリフェノール樹脂(カオーステップS−660)1.2重量部及び硬化剤(カオーステップQX−130)0.24重量部を添加混合して得た被覆砂を、50mmφ×50mmhのテストピース枠に充填し、25℃にて硬化させ、24時間経過したときのテスト鋳型の圧縮強度をを測定した。圧縮強度はJIS Z 2604−1976に記載された方法で測定した。また、混練した鋳物砂組成物のべとつき、しみつき、及び細部鋳型充填性を、図1に示すフィン形状の鋳型作製のための木型を用いて造型した際の観察により行なった。その際、べとつきは作業に用いた保護具(軍手)への付着性を造型時の感触で評価し、しみつきはこのフィン形状鋳型からの抜型抵抗を感触で評価した。なお、図1は木型の平面概略図であり、着色部分が木型であり、深さ(充填高さ)は250mmである。結果を表1に示す。   A coated sand obtained by adding and mixing 1.2 parts by weight of an alkali phenol resin (Kaoh Step S-660) and 0.24 parts by weight of a curing agent (Kaoh Step QX-130) to 100 parts by weight of the foundry sand composition. A test piece frame of 50 mmφ × 50 mmh was filled and cured at 25 ° C., and the compressive strength of the test mold was measured after 24 hours. The compressive strength was measured by the method described in JIS Z 2604-1976. The kneaded foundry sand composition was tacky, smudged and filled with fine molds by observing when it was formed using a wood mold for producing a fin-shaped mold shown in FIG. At that time, the stickiness was evaluated for the adhesion to the protective equipment (work gloves) used for the work by the feel at the time of molding, and the blotch was evaluated for the resistance to pulling from the fin-shaped mold by the feel. FIG. 1 is a schematic plan view of a wooden shape, the colored portion is a wooden shape, and the depth (filling height) is 250 mm. The results are shown in Table 1.

実施例3及び比較例4
球状鋳物砂(A)として火炎溶融法にて製造したAl23とSiO2を合計量で93重量%含有し、Al23/SiO2重量比率が1.9、平均粒径が0.15mm、球形度が0.99、吸水率が0.1重量%である球状骨材A2を用い、鋳物砂(B)として焼成造粒法にて製造した球形度が0.94、吸水率が1.4重量%であるムライト質球状骨材(表中、焼成ムライトと表記)を用い、表1に示した比率で混合して鋳物砂組成物とした。この鋳物砂組成物について実施例1と同様の方法で鋳型を製造し評価した。
Example 3 and Comparative Example 4
It contains 93% by weight of Al 2 O 3 and SiO 2 produced by flame melting method as spherical casting sand (A), the Al 2 O 3 / SiO 2 weight ratio is 1.9, and the average particle size is 0 .15 mm, sphericity is 0.99, water absorption is 0.1% by weight, and spherical aggregate A2 having a water absorption rate of 0.1% by weight is used. Using a mullite spherical aggregate having a weight of 1.4% by weight (in the table, expressed as calcined mullite), the mixture was mixed at the ratio shown in Table 1 to obtain a foundry sand composition. The casting sand composition was manufactured and evaluated in the same manner as in Example 1.

実施例4
球状鋳物砂(A)として火炎溶融法にて製造した平均粒径が0.09mm、球形度が0.99、吸水率が0.1重量%のシリカ(球状骨材A3)を用いた以外は、実施例3と同様にして鋳型を製造し評価した。
Example 4
Except for the use of silica (spherical aggregate A3) having an average particle size of 0.09 mm, a sphericity of 0.99, and a water absorption of 0.1% by weight, produced by the flame melting method as spherical casting sand (A). A mold was produced and evaluated in the same manner as in Example 3.

比較例5〜6
球状鋳物砂(B)として電融アトマイズ法で製造した実施例1と同様の組成を持った平均粒径0.24mm、球形度が0.96、吸水率が0.6重量%である電融法球形ムライト鋳物砂(表中、電融法ムライトと表記)と上記焼成ムライトとを、表1に示す比率で混合して鋳物砂組成物とした。この鋳物砂組成物について実施例1と同様の方法で鋳型を製造し評価した。
Comparative Examples 5-6
Electrolytic fusion with an average particle diameter of 0.24 mm, spherical degree of 0.96, and water absorption of 0.6% by weight, having the same composition as that of Example 1 produced by electrofusion atomization method as spherical casting sand (B) Spherical mullite foundry sand (in the table, indicated as electrofused mullite) and the above-mentioned calcined mullite were mixed at a ratio shown in Table 1 to obtain a foundry sand composition. The casting sand composition was manufactured and evaluated in the same manner as in Example 1.

Figure 0004364717
Figure 0004364717

表中の評価基準は以下の通りである。
・べとつき(作業に用いた保護具(軍手)への付着性):5=べとつかない、4=殆どべとつかない、3=ややべとつく、2=べとつく、1=非常にべとつく
・しみつき(木型から鋳型を離型する際の抵抗):○=ほとんど抵抗がない、△=抵抗が小さい、×=抵抗が大きい
・細部鋳型充填性:◎=先端まで良好に充填、○=先端部が充填が粗、△=先端部に充填していない部分が残る、×=先端部が充填しない
The evaluation criteria in the table are as follows.
-Stickiness (adhesiveness to protective equipment (work gloves) used for work): 5 = not sticky, 4 = almost sticky, 3 = slightly sticky, 2 = sticky, 1 = very sticky Resistance when mold is released): ○ = There is almost no resistance, △ = Low resistance, × = High resistance ・ Detailed mold filling property: ◎ = Good filling to tip, ○ = Rough filling at tip , △ = The part which is not filled in the tip part remains, x = The tip part is not filled

表1の結果に示すように、本発明の球状鋳物砂(A)を所定の体積比で含有する鋳物砂組成物を用いた場合、被覆砂の鋳型への充填性も高まり鋳型の圧縮強度も高くなっていた。また、被覆砂を型に充填する際のべとつきやしみつきも少なかった。   As shown in the results of Table 1, when the molding sand composition containing the spherical molding sand (A) of the present invention at a predetermined volume ratio is used, the filling property of the coated sand into the mold is increased and the compression strength of the mold is also improved. It was high. In addition, there was little stickiness or stickiness when the coated sand was filled into the mold.

実施例で用いたフィン形状の鋳型作製のための木型の平面概略図である。FIG. 3 is a schematic plan view of a wooden pattern for producing a fin-shaped mold used in an example.

Claims (8)

火炎溶融法で製造された平均粒径が0.05〜1.5mmの球状鋳物砂(A)と該(A)以外の鋳物砂(B)とを、(A)/(B)=5/95〜50/50の体積比で含有する鋳物砂組成物。 Spheroidal foundry sand (A) having an average particle size of 0.05 to 1.5 mm produced by the flame melting method and foundry sand (B) other than (A) are (A) / (B) = 5 / Foundry sand composition contained at a volume ratio of 95-50 / 50. 球状鋳物砂(A)が、Al23およびSiO2を主成分として含有してなり、Al23/SiO2重量比率が1〜15である請求項1に記載の鋳物砂組成物。 2. The foundry sand composition according to claim 1, wherein the spherical foundry sand (A) contains Al 2 O 3 and SiO 2 as main components and has an Al 2 O 3 / SiO 2 weight ratio of 1 to 15. 3 . 球状鋳物砂(A)の吸水率が0.6重量%以下であり、鋳物砂(B)の吸水率が0.8重量%以上である請求項1又は2記載の鋳物砂組成物。 The foundry sand composition according to claim 1 or 2, wherein the water absorption of the spherical sand (A) is 0.6% by weight or less, and the water absorption of the foundry sand (B) is 0.8% by weight or more. 球状鋳物砂(A)の球形度が0.98以上である請求項1〜3の何れか1項記載の鋳物砂組成物。 4. The foundry sand composition according to claim 1, wherein the spherical sand (A) has a sphericity of 0.98 or more. 鋳物砂(B)が、珪砂及び焼成ムライトから選ばれる請求項1〜4に記載の鋳物砂組成物。 The foundry sand composition according to claim 1, wherein the foundry sand (B) is selected from quartz sand and calcined mullite. 請求項1〜5の何れか1項記載の鋳物砂組成物を、粘結剤組成物で被覆した鋳物砂組成物。 A foundry sand composition obtained by coating the foundry sand composition according to any one of claims 1 to 5 with a binder composition. 請求項1〜6の何れか1項記載の鋳物砂組成物を用いた鋳型。 The casting_mold | template using the foundry sand composition of any one of Claims 1-6. 請求項7記載の鋳型を用いて製造された鋳物。 A casting produced using the mold according to claim 7.
JP2004152511A 2004-05-21 2004-05-21 Foundry sand composition Active JP4364717B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004152511A JP4364717B2 (en) 2004-05-21 2004-05-21 Foundry sand composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004152511A JP4364717B2 (en) 2004-05-21 2004-05-21 Foundry sand composition

Publications (2)

Publication Number Publication Date
JP2005329454A JP2005329454A (en) 2005-12-02
JP4364717B2 true JP4364717B2 (en) 2009-11-18

Family

ID=35484436

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004152511A Active JP4364717B2 (en) 2004-05-21 2004-05-21 Foundry sand composition

Country Status (1)

Country Link
JP (1) JP4364717B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4425825B2 (en) * 2004-05-21 2010-03-03 花王株式会社 Resin coated sand
CN102731114B (en) * 2012-06-08 2013-11-13 繁昌县琦祥铸造厂 Molding sand using mullite sand as main body and manufacture method thereof
JP5944751B2 (en) * 2012-06-08 2016-07-05 本田技研工業株式会社 Core core, sand core formed from the core core, and die casting method using the core core
JP5867939B1 (en) * 2014-12-18 2016-02-24 株式会社鷹取製作所 Material for additive manufacturing, method for producing mold by powder fixed lamination method, and mold

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003191043A (en) * 2001-12-25 2003-07-08 Keiji Miyauchi Sand for mold
JP4326916B2 (en) * 2002-12-09 2009-09-09 花王株式会社 Spherical casting sand
JP2004237288A (en) * 2003-02-03 2004-08-26 Toyota Motor Corp Artificial sintered sand and its producing method

Also Published As

Publication number Publication date
JP2005329454A (en) 2005-12-02

Similar Documents

Publication Publication Date Title
JP4326916B2 (en) Spherical casting sand
KR100998461B1 (en) Spherical casting sand
KR101131363B1 (en) Resin coated sand
JP4603463B2 (en) Spherical casting sand
JP4425825B2 (en) Resin coated sand
JP4448945B2 (en) Mold sand and its manufacturing method
US10864574B2 (en) Core-shell particles for use as a filler for feeder compositions
JP5400625B2 (en) Abrasive composition and articles formed from the composition
EP1652828B1 (en) Ceramic particles
JP5075902B2 (en) Mold sand and its manufacturing method
JP2008162825A (en) Spherical ceramic particles
JP4364717B2 (en) Foundry sand composition
JP2013043180A (en) Molding sand and method for producing the same
JP6462347B2 (en) Mold sand and its manufacturing method
JP5567353B2 (en) Spherical refractory particles, foundry sand comprising the same, and molds obtained using the same
JP4615370B2 (en) Foundry sand
JP4776953B2 (en) Casting manufacturing method
JP4754309B2 (en) Die casting core
JP4421463B2 (en) Spheroidal casting sand, mold obtained by using the same and method for producing casting
JP4679937B2 (en) Manufacturing method of foundry sand
JP2001293537A (en) Method for manufacturing molding sand
JP2019030910A (en) Mold sand and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090818

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090819

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120828

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4364717

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120828

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130828

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250