JPH03132619A - Semiconductor laser device and its manufacture - Google Patents

Semiconductor laser device and its manufacture

Info

Publication number
JPH03132619A
JPH03132619A JP1270627A JP27062789A JPH03132619A JP H03132619 A JPH03132619 A JP H03132619A JP 1270627 A JP1270627 A JP 1270627A JP 27062789 A JP27062789 A JP 27062789A JP H03132619 A JPH03132619 A JP H03132619A
Authority
JP
Japan
Prior art keywords
light
semiconductor laser
optical
coupling lens
emitted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1270627A
Other languages
Japanese (ja)
Other versions
JP2789721B2 (en
Inventor
Hiraaki Tsujii
辻井 平明
Satoshi Ishizuka
石塚 訓
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP1270627A priority Critical patent/JP2789721B2/en
Publication of JPH03132619A publication Critical patent/JPH03132619A/en
Application granted granted Critical
Publication of JP2789721B2 publication Critical patent/JP2789721B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To eliminate return light and to prevent a noise occurring by mounting a light absorber on a surface irradiated with light except for a coupling lens. CONSTITUTION:Most of the light emitted from a semiconductor laser 1 is converged on the coupling lens 2, however, the light emitted at an angle larger than the diameter of the lens 2 is reflected on a lens supporting tool 20 which fixes the lens 2, and goes to the return light of the semiconductor laser 1. To prevent such light occurring, light absorbing resin 9 which absorbs unrequired light is applied in the periphery of the coupling lens 2 of the lens supporting tool 20. Thereby, it is possible to disturb the light out of emitting light from the semiconductor laser 1 reflected on a part that is not a regular path and going to the return light to the samiconductor laser, and to prevent the noise occurring, and also, to reduce a distortion component.

Description

【発明の詳細な説明】 産業上の利用分野 本発明(上 光通信あるいは光計測等の光信号伝送用の
光源として用いられる半導体レーザ装置に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a semiconductor laser device used as a light source for optical signal transmission in optical communication or optical measurement.

従来の技術 従来の半導体レーザ装置は 例えは 昭和62年電子情
報通信学会半導体・材料部門全国大免No、 319に
示されているように 第4図のような構成となっている
。すなわ板 半導体レーザ3゜からの出射光を第ルンズ
31により、はぼ平行光に近い拡散光とし 第2レンズ
32で光ファイバ37へ集光させる結合系を有し さら
に第ルンズ31と第2レンズ32との間へ 偏光子33
、検光子34、磁気光学結晶35、磁石36から構成さ
れる光アイソレータを配置し 光アイソレータ以降の光
学的境界面からの反射戻り光(よ 光アイソレータの磁
気光学効果の作用により阻止され半導体レーザ30に戻
らないというものである。
BACKGROUND OF THE INVENTION A conventional semiconductor laser device has a configuration as shown in FIG. 4, for example, as shown in IEICE Semiconductor and Materials Division National Encyclopedia No. 319, 1986. In other words, the plate has a coupling system in which the light emitted from the semiconductor laser 3° is converted into diffused light close to parallel light by the second lens 31, and is condensed to the optical fiber 37 by the second lens 32. Furthermore, the second lens 31 and the second Between the lens 32 and the polarizer 33
, an optical isolator composed of an analyzer 34, a magneto-optic crystal 35, and a magnet 36 is arranged. This means that it will not return to .

各光学部品の半導体レーザ光が透過する各面はすベテ無
反射コーティングが施され 反射光が生じなくしである
。また光学系全体ζよ 熱電冷却素子38の上に構成さ
れ外気温により影響されることなく一定の温度に保たれ
ている。
Each surface of each optical component through which the semiconductor laser light passes is coated with a non-reflective coating to prevent reflected light from occurring. Furthermore, the entire optical system ζ is constructed on a thermoelectric cooling element 38 and is kept at a constant temperature without being affected by the outside temperature.

発明か解決しようとした課題 しかしこのような構成では 第ルンズ31からの出射光
は はぼ平行光に近い拡散光であり、第ルンズ 31と
第2レンズ32との間隔を長くした場合第2レンズ32
で全ての光を光ファイバ37に集光することが困難とな
り、結合効率の劣化の原因となる。このことはレンズ間
に複数個の光アイソレータを設置しようとした場合特に
顕著である。また 第ルンズ314友 一般に直径の小
さなレンズを用いるため広がり角が大きな半導体レーザ
の場合、出射光の一部が第5図に示すように支持具内部
の微視的な凹凸60により乱反射され光線経路51a及
び光線経路52bのような経路を経て半導体レーザ30
に戻ってしまうことになる。また光アイソレータを構成
する偏光子33ζ飄 直交する偏光方向の光の進行方向
を90度曲げて磁石36側に放出するため偏光子33の
側面からの反射耘 前述のように第ルンズ31からの出
射光はほぼ平行光に近いたム 光線経路53cのように
効率よく半導体レーザ30に戻ってしまうことになる。
However, in such a configuration, the light emitted from the second lens 31 is a diffused light close to parallel light, and if the distance between the second lens 31 and the second lens 32 is increased, the second lens 32
This makes it difficult to condense all the light onto the optical fiber 37, causing deterioration in coupling efficiency. This is particularly noticeable when attempting to install a plurality of optical isolators between lenses. In addition, in the case of a semiconductor laser that generally uses a lens with a small diameter and has a large divergence angle, a portion of the emitted light is diffusely reflected by the microscopic irregularities 60 inside the support, as shown in Figure 5, and the light beam path is 51a and the semiconductor laser 30 through a path such as ray path 52b.
You will end up going back to . In addition, since the polarizer 33ζ which constitutes the optical isolator bends the traveling direction of the light in orthogonal polarization directions by 90 degrees and emits it to the magnet 36 side, the light is reflected from the side of the polarizer 33. The emitted light efficiently returns to the semiconductor laser 30 along a nearly parallel beam path 53c.

このように半導体レーザに戻り光が入射すると半導体レ
ーザ自身からノイズが発生するばかりでなく歪成分も増
加よ 特に光の強弱にて信号、を伝送するアナログ伝送
系では問題となる。
When the returning light enters the semiconductor laser in this way, not only does the semiconductor laser itself generate noise, but also distortion components increase. This is especially a problem in analog transmission systems that transmit signals depending on the strength of the light.

また 半導体レーザ装置を組み立てるた八 従来では光
アイソレータとして、偏光子33、検光子34、磁気光
学結晶35、磁石36を逐次角度、位置調整しながら組
み立てていたが組み立て工数が多く製造費用増加の一因
となってい九課題を解決するための手段 本発明(友 上記課題を解決するために 第1の手段と
して半導体レーザからの出射光が入射するレンズの周囲
の支持具及び光アイソレータを構成する偏光子の側面を
遮蔽効果のある材料にて覆(\半導体レーザに戻らなく
するものである。又本発明は 第2の手段として、あら
かじめ透過損失が最小かつ戻り光が最小になるように偏
光子、検光子、磁気光学結晶 磁石を光アイソレータと
して組み立てておき、光アイソレータ自身の磁石の吸引
力にて光アイソレータの仮固定をおこなう方法を提供す
るものである。
In addition, when assembling a semiconductor laser device, conventionally, an optical isolator was assembled by sequentially adjusting the angle and position of the polarizer 33, analyzer 34, magneto-optic crystal 35, and magnet 36, but this required a large number of assembly steps and resulted in an increase in manufacturing costs. Means for Solving Nine Problems Contributing to the Invention The present invention (friends) In order to solve the above problems, the first means is to provide polarized light constituting a support around a lens into which light emitted from a semiconductor laser enters and an optical isolator. The side surfaces of the laser beam are covered with a material that has a shielding effect (to prevent light from returning to the semiconductor laser).As a second means, the present invention also uses a polarizer to minimize transmission loss and return light. , Analyzer, Magneto-Optical Crystal A method is provided in which magnets are assembled as an optical isolator and the optical isolator is temporarily fixed using the attractive force of the optical isolator's own magnet.

作用 本発明の上述の第1の手段によれば 半導体レーザから
の出射光のうち本来の経路でないところにより反射され
半導体レーザに戻り光となることを防げる。レンズに入
射できなかった光(よ たとえは レンズ固定用の支持
具ににより反射されないように光を吸収する材料で覆っ
ておくことにより、戻り光を防ぐことが可能となる。さ
らに光アイソレータか理想的に構成されていないために
偏光子により90度方向を曲げられた光の成分(i偏光
子自身の側面に施された遮光用の吸収層により吸収され
半導体レーザに戻らないようにすることが可能となる。
Effects According to the above-described first means of the present invention, it is possible to prevent the emitted light from the semiconductor laser from being reflected by a portion other than the original path and returning to the semiconductor laser. By covering the lens with a material that absorbs the light that cannot enter the lens (for example, by covering it with a material that absorbs the light so that it is not reflected by the support for fixing the lens), it is possible to prevent the light from returning.In addition, an optical isolator is ideal. Components of light whose direction is bent by 90 degrees by the polarizer due to the structure of the polarizer (i. It becomes possible.

また 上述の第2の手段によれば光アイソレータをあら
かじめアイソレーション比最大でか2反射光が最小にな
るように組み立てておく。こうすることにより半導体レ
ーザと光ファイバとの間に設置しあらましの位置と、角
度を調整するだけでよい。さらに光アイソレータを取り
付ける支持具に鉄等を含む材料を用いることにより、光
アイソレータは光アイソレータを構成する磁石による磁
力により仮固定できる。
Further, according to the second method described above, the optical isolator is assembled in advance so that the isolation ratio is at the maximum and the reflected light is at the minimum. By doing this, it is only necessary to adjust the approximate position and angle of the installation between the semiconductor laser and the optical fiber. Furthermore, by using a material containing iron or the like for the support for attaching the optical isolator, the optical isolator can be temporarily fixed by the magnetic force of the magnets that constitute the optical isolator.

実施例 本発明の実施例は第1図に示すよう(二 半導体レーザ
1と光ファイバ7との間に複数個の光学部品を設置され
た半導体レーザ装置に関してであり、半導体レーザ1の
出射光(よ 光ファイバに結合する結合用レンズ2によ
り集光されなか技偏光子3、検光子4、磁気光学結晶5
、磁石6とから成る光アイソレータを通り、反射光が半
導体レーザ1に戻らないように斜めに研磨された光ファ
イバ7に効率よく入射される。半導体レーザ1は温度制
御できるように熱電冷却素子8上にマウントされている
。半導体レーザlから出射された光ζ表結合用レンズに
てその大部分は集光される力(レンズの直径より大きな
角度に出射された光はレンズを固定するレンズ支持具2
0により反射され半導体レーザ1の戻り光となる。これ
を防止するためレンズ支持具20の結合用レンズ2の周
りに不要な光を吸収する光吸収樹脂9を塗布しておく。
Embodiment An embodiment of the present invention, as shown in FIG. A polarizer 3, an analyzer 4, a magneto-optic crystal 5
, and a magnet 6, and efficiently enters the optical fiber 7, which is obliquely polished so that the reflected light does not return to the semiconductor laser 1. The semiconductor laser 1 is mounted on a thermoelectric cooling element 8 so that its temperature can be controlled. Most of the light emitted from the semiconductor laser l is focused by the ζ-table coupling lens (the light emitted at an angle larger than the diameter of the lens is focused by the lens support 2 that fixes the lens).
0 and becomes the return light of the semiconductor laser 1. To prevent this, a light-absorbing resin 9 that absorbs unnecessary light is applied around the coupling lens 2 of the lens support 20.

さらに光アイソレータに入射した光は半導体レーザ1の
活性層と平行なTEモードの光は偏光子3を透過する力
丈 偏波面が90度異なったTMモードの光および光ア
イソレータが角度ずれのため生じるTEモードの光の一
部(表 偏光子にて光の進行方向を90度曲げられ 偏
光子3の側面に進む。ここで、通常偏光子3の側面(よ
 光が乱反射されるようにスリガラス上に加工されてい
る力(偏光子3を固定するために用いた接着剤等により
スリガラス加工がした効果がなくなり光を反射する。反
射された光は再び偏光子3により進行方向を曲げられ半
導体レーザ1に戻る(第5図光線経路53c)。そこで
第1図及び第2図のように偏光子3側面に光吸収樹脂1
0を用い光アイソレータを固定することにより、偏光子
3の側面での反射が抑制され半導体レーザ1への戻り光
を軽減できる。これ(飄 特にアナログRF多重光伝送
系のように反射光の影響による2次及び3次高調波歪が
伝送信号の特性劣化に顕著に現れるようなアナログAM
変調を採用する光伝送系において効果がある。
Furthermore, the light incident on the optical isolator is such that the TE mode light, which is parallel to the active layer of the semiconductor laser 1, is transmitted through the polarizer 3.The TM mode light whose polarization plane differs by 90 degrees and the optical isolator are generated due to angular misalignment. A part of the light in the TE mode (Table) The direction of light is bent by 90 degrees by the polarizer and travels to the side of the polarizer 3. The applied force (adhesive etc. used to fix the polarizer 3) eliminates the effect of the frosted glass processing and reflects the light.The reflected light is again bent in its traveling direction by the polarizer 3 and is emitted by the semiconductor laser. 1 (ray path 53c in Figure 5).Therefore, as shown in Figures 1 and 2, a light absorbing resin 1 is placed on the side of the polarizer 3.
By fixing the optical isolator using 0, reflection on the side surface of the polarizer 3 can be suppressed, and the amount of light returning to the semiconductor laser 1 can be reduced. This is particularly true for analog AM systems, such as analog RF multiplexed optical transmission systems, where second and third harmonic distortion due to the influence of reflected light appears conspicuously in the deterioration of the characteristics of the transmitted signal.
This is effective in optical transmission systems that employ modulation.

次へ 光アイソレータは あらかじめ所定の方法でアイ
ソレーション比最大かつ反射光最小に作製しておく。
Next The optical isolator is manufactured in advance using a predetermined method to maximize the isolation ratio and minimize the reflected light.

組立手順(よ 第3図(a、d)に示すように偏光子3
を偏光子ホルダー51内に光吸収層10を介して固定す
る。さらに円筒型のサマリュームコバルト製の磁石6の
筒内に固定された磁気光学結晶5を偏光子ホルダー51
と接着させ固定する(b)。その後、検光子4を検光子
ホルダー52内に固定して回転調整しながら逆光55が
最小になるように固定する(c、e)。このとき順光5
6を測定すれば光アイソレータの透過損失が測定でき、
順光56と逆光55との比がアイソレーション比となる
。こうすることでアイソレーション比等の特性の明確な
光アイソレータを、順方向の損失が最小となるように半
導体レーザの出射光の鳩波面に合わせて角度調整するの
みで固定すれ(f。
Assembling procedure (as shown in Figure 3 (a, d), the polarizer 3
is fixed in a polarizer holder 51 via a light absorption layer 10. Further, a magneto-optical crystal 5 fixed in the cylinder of a cylindrical samarium cobalt magnet 6 is attached to a polarizer holder 51.
(b). Thereafter, the analyzer 4 is fixed in the analyzer holder 52 and fixed while adjusting its rotation so that the backlight 55 is minimized (c, e). At this time, front light 5
By measuring 6, you can measure the transmission loss of the optical isolator.
The ratio between the forward light 56 and the backlight 55 is the isolation ratio. In this way, an optical isolator with clear characteristics such as isolation ratio can be fixed by simply adjusting the angle to match the dove wave front of the emitted light from the semiconductor laser so that the loss in the forward direction is minimized (f).

使用できるたム 作製容易で且つ品質の高い光アイソレ
ータが内蔵された半導体レーザ装置が実現できる。
A semiconductor laser device with a built-in optical isolator that is easy to manufacture and of high quality can be realized.

さらにこのようにしてあらかじめ作製しておいた光アイ
ソレータ(よ 全体として円筒形の形状としておくこと
により第2図に示すように磁性体材料製のケース21に
凹部22を形成しておくと、光アイソレータの磁石6の
磁力により凹部22に位置合わせされた状態で光アイソ
レータ自身の磁石の磁力で光アイソレータが仮固定でき
この状態で角度調整するだけでよ(〜 さらに磁性体材
料によるケース21により磁石6の磁束が閉磁路を形成
するためケース外側からの外乱による磁場により光アイ
ソレータの効果が影響されなくなり安定した特性の半導
体レーザ装置が製造できる。
Furthermore, if the optical isolator (prepared in this way) has an overall cylindrical shape and a recess 22 is formed in the case 21 made of magnetic material as shown in FIG. The optical isolator can be temporarily fixed by the magnetic force of the optical isolator's own magnet while aligned with the recess 22 by the magnetic force of the magnet 6 of the isolator, and the angle can be adjusted in this state. Since the magnetic flux No. 6 forms a closed magnetic path, the effect of the optical isolator is not affected by the magnetic field caused by disturbance from outside the case, and a semiconductor laser device with stable characteristics can be manufactured.

発明の効果 本発明によれは 上述のようへ 半導体レーザからの出
射光のうち本来の経路でないところにより反射され半導
体レーザに戻り光となることを防げる。偏光子により9
0度方向を曲げられた光の成分(友 偏光子自身の側面
に施された遮光用の吸収層により吸収され半導体レーザ
に戻らなl、%  出射光の一部がレンズ支持具により
反射され半導体レーザに戻ってしまうことがなくなり、
ノイズが発生が防止できばかりでなく歪成分も低減でき
る。
Effects of the Invention According to the present invention, as described above, it is possible to prevent the emitted light from the semiconductor laser from being reflected by a part other than the original path and returning to the semiconductor laser as light. 9 by polarizer
The component of light bent in the 0 degree direction (l, %) is absorbed by the light-shielding absorption layer applied to the side surface of the polarizer itself and does not return to the semiconductor laser. A portion of the emitted light is reflected by the lens support and passes through the semiconductor laser. No more going back to lasers,
Not only can the generation of noise be prevented, but also distortion components can be reduced.

特に光の強弱にて信号を伝送するアナログRF多重光伝
送において有効である。また 光アイソレータをあらか
じめアイソレーション比最大でかつ、反射光が最小にな
るように組み立てておく。こうすることにより半導体レ
ーザと光ファイバとの間に設置しあらましの位置と、角
度を調整するだけでよく、組み立て工数が削減でき製造
費用を大きく低減できる。このよう置 本発明(i 高
性能半導体レーザ装置の容易な実現に大きく寄与するも
のである。
This is particularly effective in analog RF multiplexed optical transmission in which signals are transmitted depending on the strength of light. Also, assemble the optical isolator in advance so that the isolation ratio is maximized and reflected light is minimized. By doing so, it is only necessary to adjust the approximate position and angle of the installation between the semiconductor laser and the optical fiber, reducing assembly man-hours and greatly reducing manufacturing costs. This arrangement greatly contributes to the easy realization of a high-performance semiconductor laser device according to the present invention (i).

【図面の簡単な説明】[Brief explanation of the drawing]

第1因 第2図(友 本発明の一実施例のレーザ装置の
断面構成図であり第1図は第2図を90度横から見た医
 第3図は本発明の光アイソレータの組立手順を示すも
ので(a)、  (b)、  (c)は断面@  (d
)、  (e)は同(a)、  (b)。 (c)の側面皿 第4因 第5図の従来の光アイソレー
タ内蔵半導体レーザ装置の構成図である。 l・・・半導体レーサミ 2・・・結合用レンズ、3・
・・偏光子、4・・・検光子、5・・・磁気光学結昆 
6・ ・磁石 7・・・光ファイベ9、10・・・光吸
収相方1
First factor Figure 2 (friend) is a cross-sectional configuration diagram of a laser device according to an embodiment of the present invention. Figure 1 is a 90-degree side view of Figure 2. (a), (b), and (c) are cross sections @ (d
), (e) are the same as (a), (b). (c) Side dish Fourth factor FIG. 6 is a configuration diagram of the conventional semiconductor laser device with a built-in optical isolator shown in FIG. 5. l...Semiconductor laser beam 2...Coupling lens, 3.
...Polarizer, 4...Analyzer, 5...Magneto-optical detector
6. ・Magnet 7... Optical fiber 9, 10... Light absorption partner 1

Claims (5)

【特許請求の範囲】[Claims] (1)半導体レーザと光ファイバとの間に結合用レンズ
を配置し、前記半導体レーザからの出射光を前記結合用
レンズに入射し、前記結合用レンズからの出射光を集束
光とし、前記集束光を前期光ファイバに導く光学系にお
いて、前記結合用レンズ外の光に晒される面に光吸収材
を取り付けてなることを特徴とした半導体レーザ装置
(1) A coupling lens is disposed between a semiconductor laser and an optical fiber, the light emitted from the semiconductor laser is incident on the coupling lens, the light emitted from the coupling lens is made into a focused light, and the focused light is A semiconductor laser device characterized in that, in an optical system that guides light to an optical fiber, a light absorbing material is attached to a surface exposed to light outside the coupling lens.
(2)結合用レンズを固定する支持具及び前記支持具の
周辺部分のうち半導体レーザからの出射光に晒される部
分に光吸収材を取り付け、前記出射光の一部を吸収する
ことを特徴とした特許請求の範囲第1項記載の半導体レ
ーザ装置
(2) A light absorbing material is attached to a support for fixing the coupling lens and a peripheral portion of the support that is exposed to the emitted light from the semiconductor laser, so that a part of the emitted light is absorbed. A semiconductor laser device according to claim 1
(3)結合用レンズと光ファイバ間に光アイソレータを
設置し、光アイソレータを構成する部品の内、偏光子の
周囲に、半導体レーザの出射光に晒される部分に光吸収
材を取り付け、前記出射光の一部を吸収してなることを
特徴とした特許請求の範囲第1項記載の半導体レーザ装
(3) An optical isolator is installed between the coupling lens and the optical fiber, and a light absorbing material is attached to the parts of the optical isolator that are exposed to the output light of the semiconductor laser around the polarizer. A semiconductor laser device according to claim 1, which is formed by absorbing a part of emitted light.
(4)半導体レーザと光ファイバとの間に結合用レンズ
及び光アイソレータをケース内に配置し、前記半導体レ
ーザからの出射光を前記結合用レンズに入射し、前記結
合用レンズからの出射光を集束光とし、前記集束光を前
期光ファイバに導く光学系の、光軸上に偏光子、検光子
、磁気光学結晶、磁石により構成される前記光アイソレ
ータを有する半導体レーザ装置の製造に際し、前記偏光
子、前記検光子、前記磁気光学結晶、前記磁石でアイソ
レーション比が最大でかつ戻り光が最小に前記光アイソ
レータ部分を予め組み立ておき、かつ前記ケースを磁性
体の材料により構成し、前記ケースに前記光アイソレー
タを前記光アイソレータ自身の磁石により前記ケース内
に吸引させ光軸上に仮固定し、回転により前記半導体レ
ーザの出射光の編波面方向に角度調整を行った後、前記
光アイソレータを前記ケースに固定することを特徴とし
た特許請求の範囲第3項記載の半導体レーザ装置の製造
方法。
(4) A coupling lens and an optical isolator are disposed in a case between the semiconductor laser and the optical fiber, and the light emitted from the semiconductor laser is incident on the coupling lens, and the light emitted from the coupling lens is When manufacturing a semiconductor laser device having the optical isolator configured with a polarizer, an analyzer, a magneto-optic crystal, and a magnet on the optical axis of an optical system that converts the focused light into a focused light and guides the focused light to the optical fiber, the polarized light is The analyzer, the magneto-optical crystal, and the magnet are assembled in advance so that the isolation ratio is maximum and the amount of return light is minimized, and the case is made of a magnetic material, and the case is made of a magnetic material. The optical isolator is attracted into the case by its own magnet, temporarily fixed on the optical axis, and rotated to adjust the angle in the wave plane direction of the emitted light of the semiconductor laser. 4. A method of manufacturing a semiconductor laser device according to claim 3, wherein the semiconductor laser device is fixed to a case.
(5)強磁性体のケースにより光アイソレータを構成す
る磁石の磁束が閉磁路を構成することをを特徴とした特
許請求の範囲第4項記載の半導体レーザ装置。
(5) The semiconductor laser device according to claim 4, wherein the magnetic flux of the magnet forming the optical isolator forms a closed magnetic path using a ferromagnetic case.
JP1270627A 1989-10-18 1989-10-18 Method of manufacturing semiconductor laser device Expired - Fee Related JP2789721B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1270627A JP2789721B2 (en) 1989-10-18 1989-10-18 Method of manufacturing semiconductor laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1270627A JP2789721B2 (en) 1989-10-18 1989-10-18 Method of manufacturing semiconductor laser device

Publications (2)

Publication Number Publication Date
JPH03132619A true JPH03132619A (en) 1991-06-06
JP2789721B2 JP2789721B2 (en) 1998-08-20

Family

ID=17488724

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1270627A Expired - Fee Related JP2789721B2 (en) 1989-10-18 1989-10-18 Method of manufacturing semiconductor laser device

Country Status (1)

Country Link
JP (1) JP2789721B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5974065A (en) * 1996-03-15 1999-10-26 Nec Corporation Semiconductor laser module
JP2007027471A (en) * 2005-07-19 2007-02-01 Fuji Xerox Co Ltd Semiconductor laser device and light transmitting device using the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63124483A (en) * 1986-11-13 1988-05-27 Shinko Electric Ind Co Ltd Cap for light transmission and manufacture thereof
JPH01248112A (en) * 1988-03-30 1989-10-03 Toshiba Corp Light emitting element module

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63124483A (en) * 1986-11-13 1988-05-27 Shinko Electric Ind Co Ltd Cap for light transmission and manufacture thereof
JPH01248112A (en) * 1988-03-30 1989-10-03 Toshiba Corp Light emitting element module

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5974065A (en) * 1996-03-15 1999-10-26 Nec Corporation Semiconductor laser module
JP2007027471A (en) * 2005-07-19 2007-02-01 Fuji Xerox Co Ltd Semiconductor laser device and light transmitting device using the same

Also Published As

Publication number Publication date
JP2789721B2 (en) 1998-08-20

Similar Documents

Publication Publication Date Title
US4375910A (en) Optical isolator
JPH06258598A (en) Optical isolator
JPH04355417A (en) Optoelectric device
EP0900405B1 (en) Optical isolator
KR100287596B1 (en) Photo Isolator
JPH03132619A (en) Semiconductor laser device and its manufacture
JP2000028865A (en) Semiconductor laser module
US4966444A (en) Feedback-free optical arrangement for converting polarized laser emissions into a convergent beam
US6813400B1 (en) Optical isolator
JPH0488308A (en) Light receiving device
JPH03135511A (en) Laser diode module
CN109613724B (en) Magneto-optical adjustable optical attenuator
WO2023072003A1 (en) Light-emitting assembly and optical communication apparatus
JP2001013379A (en) Optical module
JP2794132B2 (en) Optical isolator
JPS6157745B2 (en)
JPH0596830U (en) Optical isolator
JPH09145929A (en) Optical fiber element with optical isolator
JPH0268738A (en) Optical head
JPH1020253A (en) Optical isolator
JPS61193118A (en) Laser module with optical isolator
CA1147998A (en) Optical isolator
JP2751475B2 (en) Optical isolator
JPH0635216Y2 (en) Optical circulator
JPH02221912A (en) Optical isolator

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees