JPH02221912A - Optical isolator - Google Patents

Optical isolator

Info

Publication number
JPH02221912A
JPH02221912A JP4374489A JP4374489A JPH02221912A JP H02221912 A JPH02221912 A JP H02221912A JP 4374489 A JP4374489 A JP 4374489A JP 4374489 A JP4374489 A JP 4374489A JP H02221912 A JPH02221912 A JP H02221912A
Authority
JP
Japan
Prior art keywords
optical
magneto
optical element
light
displaced
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4374489A
Other languages
Japanese (ja)
Inventor
Yuichi Yamada
裕一 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP4374489A priority Critical patent/JPH02221912A/en
Publication of JPH02221912A publication Critical patent/JPH02221912A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To cut off return light completely even if the ambient temperature varies by providing two wedgelike magnetooptic elements in parallel to each other and fixing one end of one optical element to a member which is displaced with the temperature. CONSTITUTION:The two wedgelike magnetooptic elements 7 and 8 are arranged between a polarizer 4 and an analyzer 5 so that the incidence surface of the optical element 8 and the exiting surface of the optical element 7 are parallel to each other. The end part of the magnetooptic element 7 is fixed to the member 9 with is displaced with the ambient temperature. In this constitution, the angle of the polarization direction varies as the ambient temperature, but the optical element 7 is displaced at right angles to the optical axis as the member 9 is displaced and the thickness is so controlled that the angle of rotation of the polarization direction of light after the light passes through the magnetooptic element 7 is invariably 45 deg.. Consequently, the reflected return light is cut off completely even if the ambient temperature varies.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、光通信、光計測及び光記録等に用いる光アイ
ルレータに関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to an optical isolator used for optical communication, optical measurement, optical recording, and the like.

従来の技術 半導体レーザを光通信等の光信号伝送系の光源として用
いる場合、半導体レーザからの出射光の一部が伝送路あ
るいは伝送用光学部品の各接続部で反射して、半導体レ
ーザの発振特性の不安定化や雑音増加を引き起こす原因
となる。この反射戻り光が半導体レーザに帰還するのを
防止する為に、−役向に光アイソレータが使用されてい
る。
Conventional technology When a semiconductor laser is used as a light source for an optical signal transmission system such as optical communication, a portion of the light emitted from the semiconductor laser is reflected at the transmission line or at each connection of the transmission optical components, causing oscillation of the semiconductor laser. This causes instability of characteristics and increase in noise. In order to prevent this reflected return light from returning to the semiconductor laser, an optical isolator is used in the negative role.

光アイソレータは、例えば第2図に示すように、偏光子
4.磁気光学素子3.検光子5及び磁石6を備えている
。半導体レーザからの出射光1は偏光子4を通過して直
線偏光となり、磁気光学素子3通過時にその偏光方向は
45°回転され、偏光子4と46°の角度で配置した検
光子6を通過する。
For example, as shown in FIG. 2, the optical isolator includes a polarizer 4. Magneto-optical element 3. It is equipped with an analyzer 5 and a magnet 6. The emitted light 1 from the semiconductor laser passes through a polarizer 4 and becomes linearly polarized light, and when it passes through the magneto-optical element 3, its polarization direction is rotated by 45 degrees, and passes through an analyzer 6 arranged at an angle of 46 degrees with the polarizer 4. do.

逆に、反射戻り光2は検光子6を通過して[f線傷光と
なり、磁気光学素子3通過時に、ファラデー効果の持つ
非相反性により、偏光方向はさらに46°回転され、偏
光子4と直交するために直線偏光は通過できない。以上
のような原理で、反射戻り光2が半導体レーザに帰還す
るのを防止することができる。
On the contrary, the reflected return light 2 passes through the analyzer 6 and becomes [f-ray scratched light, and when passing through the magneto-optical element 3, the polarization direction is further rotated by 46° due to the non-reciprocity of the Faraday effect, Linearly polarized light cannot pass through because it is orthogonal to the Based on the principle described above, it is possible to prevent the reflected return light 2 from returning to the semiconductor laser.

発明が解決しようとする課題 しかしながら、−役向に磁気光学素子は周囲温度の変化
により偏光方向の回転角が変化する性質を有している。
Problems to be Solved by the Invention However, magneto-optical elements have the property that the rotation angle of the polarization direction changes with changes in ambient temperature.

このため、ある温度で偏光方向の回転角が46°となる
ように磁気光学素子3の厚さを決定しても、温度変化に
よシ偏光方向の回転角が45°よりずれてしまい反射戻
り光2の一部が偏光子4を通過し、半導体レーザへ帰還
してしまうことになる。
For this reason, even if the thickness of the magneto-optical element 3 is determined so that the rotation angle of the polarization direction is 46 degrees at a certain temperature, the rotation angle of the polarization direction will deviate from 45 degrees due to temperature changes and the reflection will return. A portion of the light 2 passes through the polarizer 4 and returns to the semiconductor laser.

課題を解決するための手段 本発明ハ的記問題を解決するために、偏光子と検光子の
間に複数の磁気光学素子を設け、これらの複数の磁気光
学素子は厚さが光軸に対して垂直方向に徐4に変化する
くさび状とするとともに、一方のくさび状磁気光学素子
の一方の光の入射面と能力の出射面とが互いに平行とな
るように配置し、さらにこれらのくさび状磁気光学素子
の少なくともひとつの端部を温度により変位する部材に
固定したものである。
Means for Solving the Problems In order to solve the problem, a plurality of magneto-optical elements are provided between the polarizer and the analyzer, and the thickness of the plurality of magneto-optical elements is relative to the optical axis. The wedge-shaped magneto-optical element is arranged so that one light incident surface and the light output surface of one of the wedge-shaped magneto-optical elements are parallel to each other. At least one end of the magneto-optical element is fixed to a member that is displaced by temperature.

作用 本発明の光アイソレータによれば、周囲温度の変化に伴
ない、前記くさび状磁気光学素子が光軸に対して垂直方
向に変位するため、周囲温度の変化に対応して、磁気光
学素子を通過後の光の偏光方向の回転角が常に46°と
なるように前記磁気光学素子の厚さを制御することがで
き、周囲温度が変化しても反射戻り光を完全に遮断する
ことが可能となる。また、2つ以上の磁気光学素子を光
の入射面と出射面とが互いに平行となるように配置する
ことによって、光軸のずれを防ぐことができる。
Function According to the optical isolator of the present invention, the wedge-shaped magneto-optical element is displaced in the direction perpendicular to the optical axis as the ambient temperature changes. The thickness of the magneto-optical element can be controlled so that the rotation angle of the polarization direction of the light after passing through is always 46 degrees, and reflected return light can be completely blocked even if the ambient temperature changes. becomes. Further, by arranging two or more magneto-optical elements so that the light incident surface and the light exit surface are parallel to each other, it is possible to prevent the optical axis from shifting.

実施例 M1図に本発明の光アイソレータの構成を示す。Example Figure M1 shows the configuration of the optical isolator of the present invention.

なお第2図と同一部品には同一番号を付している。Note that the same parts as in FIG. 2 are given the same numbers.

くさび状磁気光学素子7及び8全体に飽和磁場が印加さ
れるように、外方に設けた磁石6の中に配置する。偏光
子4を通過した光は、直繰圓光となり、くさび状磁気光
学素子8及び7通過時にその偏光方向は46°回転され
、偏光子4と45°の角度で配置された検光子6を通過
する。逆に、反射戻り光は検光子6を通過して直線偏光
となシ、くさび状磁気光学素子7及び8通過時に、ファ
ラデー効果の持つ非相反性により、偏光方向はさらに4
6°回転され、偏光子4と直交するために直線偏光社通
過できない。
The wedge-shaped magneto-optical elements 7 and 8 are placed inside a magnet 6 provided outside so that a saturation magnetic field is applied to the entire wedge-shaped magneto-optical elements 7 and 8. The light that has passed through the polarizer 4 becomes a circular circular beam, and when it passes through the wedge-shaped magneto-optical elements 8 and 7, its polarization direction is rotated by 46 degrees, and then passes through the analyzer 6, which is arranged at an angle of 45 degrees with the polarizer 4. do. On the contrary, the reflected return light passes through the analyzer 6 and becomes linearly polarized light, and when it passes through the wedge-shaped magneto-optical elements 7 and 8, the polarization direction is further changed to 4 due to the non-reciprocity of the Faraday effect.
It is rotated by 6 degrees and is perpendicular to the polarizer 4, so it cannot pass through the linear polarizer.

ところが、周囲温度が変化した場合、くさび状磁気光学
素子8及び7を通過した光の偏光方向の回転は46°か
らずれてしまうため、検光子6を通過する透過光量が減
少し、反射戻シ光が偏光子4を通過する光量も増加する
ことになり、アインレーシ冒ン比が劣化してしまうこと
になる。
However, if the ambient temperature changes, the rotation of the polarization direction of the light that has passed through the wedge-shaped magneto-optical elements 8 and 7 will deviate from 46°, so the amount of transmitted light that passes through the analyzer 6 will decrease, and the reflected back light will be reduced. The amount of light passing through the polarizer 4 also increases, and the infraction ratio deteriorates.

一方、磁気光学素子の回転角θは θ=VHL V二ヴエルデ定数 H=磁界の強さ L:磁気光学素子の厚さ で表わされるため、磁気光学素子の厚さを変えることに
よって偏光方向の回転角を制御することができる。従っ
て、周囲温度が変化した場合、くさび状磁気光学素子8
及び7を通過した光の偏光方向の回転は46°からずれ
てしまうが、・一端が固定部1oに固定され、a端が温
度により変位する部材9が変位し、くさび状磁気光学素
子7が光軸に対して垂直方向に変位し、光路部分の磁気
光学素子の厚さが変わり、偏光方向の回転のずれを46
゜に補正することができる。このようにして、本発明の
光アイソレータによれば従来の光アイソレータに比べて
高アイソレージジン比が得られる。
On the other hand, the rotation angle θ of the magneto-optical element is expressed as θ = VHL V Niverde's constant H = magnetic field strength L: thickness of the magneto-optical element, so by changing the thickness of the magneto-optical element, the polarization direction can be rotated. The angle can be controlled. Therefore, when the ambient temperature changes, the wedge-shaped magneto-optical element 8
The rotation of the polarization direction of the light that has passed through and 7 deviates from 46 degrees, but - the member 9 whose one end is fixed to the fixed part 1o and whose a end is displaced by temperature is displaced, and the wedge-shaped magneto-optical element 7 is Displaced in the direction perpendicular to the optical axis, the thickness of the magneto-optical element in the optical path portion changes, and the deviation in rotation of the polarization direction is reduced by 46
It can be corrected to ゜. In this way, the optical isolator of the present invention provides a higher isolation ratio than conventional optical isolators.

また、本発明の光アイソレータの前記の実施例に、レン
ズ、及び光ファイバを加え、光アインレータ付半導体レ
ーザモジュールとしてもよい。
Furthermore, a lens and an optical fiber may be added to the above-described embodiments of the optical isolator of the present invention to form a semiconductor laser module with an optical isolator.

発明の効果 以上のように本発明によれば、周囲温度の変化に伴ない
、くさび状磁気光学素子を光軸に対して垂直方向に変位
させるため、周囲温度の変化に対応して磁気光学素子通
過後の調光方向の回転角が常に46°となるように磁気
光学素子の厚さを制御することができ、周囲温度が変化
しても反射戻シ光を完全に遮断することができることと
なる。また、複数のくさび状磁気光学素子が光の入射面
と出射面とが互いに平行となるように配置されてぃるた
め、光軸のずれを防止し、光軸調整を容易にすることと
なる。
Effects of the Invention As described above, according to the present invention, the wedge-shaped magneto-optical element is displaced in the direction perpendicular to the optical axis as the ambient temperature changes. The thickness of the magneto-optical element can be controlled so that the rotation angle in the dimming direction after passing is always 46 degrees, and the reflected return light can be completely blocked even if the ambient temperature changes. Become. In addition, multiple wedge-shaped magneto-optical elements are arranged so that the light entrance and exit surfaces are parallel to each other, which prevents misalignment of the optical axis and facilitates optical axis adjustment. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による光アイソレータの構成を示す断面
図、第2図は従来の光アイソレータの構成を示す断面図
である。 1・・・・・・出射光、2・・・・・・反射戻シ光、3
・・・・・・磁気光学素子、4・・・・・・偏光子、6
・・・・・検光子、6・・・・・磁石、7・・・−・・
温度により変位する部材に設置されたくさび状磁気光学
素子、8・・・・・・くさび状磁気光学素子、9・・・
・・温度により変位する部材、1o・・・・・固定部。
FIG. 1 is a sectional view showing the structure of an optical isolator according to the present invention, and FIG. 2 is a sectional view showing the structure of a conventional optical isolator. 1... Outgoing light, 2... Reflected return light, 3
...Magneto-optical element, 4...Polarizer, 6
...Analyzer, 6...Magnet, 7...--
Wedge-shaped magneto-optical element installed on a member that is displaced by temperature, 8... Wedge-shaped magneto-optical element, 9...
・・Members that are displaced by temperature, 1o・・・Fixed parts.

Claims (1)

【特許請求の範囲】[Claims] 偏光子と検光子の間に複数の磁気光学素子を設けるとと
もに、これらの磁気光学素子の外方には磁石を設け、前
記複数の磁気光学素子は、厚さが光軸に対して垂直方向
に徐々に変化するくさび状とし、一方のくさび状磁気光
学素子の光の入射面と他方のくさび状磁気光学素子の出
射面とが互いに平行となるように配置し、これらのうち
少なくともひとつのくさび状磁気光学素子の一方の端部
を温度により変位する部材に固定した光アイソレータ。
A plurality of magneto-optical elements are provided between the polarizer and the analyzer, and magnets are provided outside of these magneto-optical elements, and the plurality of magneto-optical elements have a thickness that is perpendicular to the optical axis. The wedge-shaped element gradually changes, and the light incident surface of one wedge-shaped magneto-optical element is arranged so that the light exit surface of the other wedge-shaped magneto-optical element is parallel to each other, and at least one of these wedge-shaped An optical isolator in which one end of a magneto-optical element is fixed to a member that is displaced by temperature.
JP4374489A 1989-02-23 1989-02-23 Optical isolator Pending JPH02221912A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4374489A JPH02221912A (en) 1989-02-23 1989-02-23 Optical isolator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4374489A JPH02221912A (en) 1989-02-23 1989-02-23 Optical isolator

Publications (1)

Publication Number Publication Date
JPH02221912A true JPH02221912A (en) 1990-09-04

Family

ID=12672275

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4374489A Pending JPH02221912A (en) 1989-02-23 1989-02-23 Optical isolator

Country Status (1)

Country Link
JP (1) JPH02221912A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016024357A (en) * 2014-07-22 2016-02-08 株式会社フジクラ Optical isolator

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61185718A (en) * 1985-02-13 1986-08-19 Fujitsu Ltd Optical isolator device
JPS6263914A (en) * 1985-09-17 1987-03-20 Matsushita Electric Ind Co Ltd Optical isolator

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61185718A (en) * 1985-02-13 1986-08-19 Fujitsu Ltd Optical isolator device
JPS6263914A (en) * 1985-09-17 1987-03-20 Matsushita Electric Ind Co Ltd Optical isolator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016024357A (en) * 2014-07-22 2016-02-08 株式会社フジクラ Optical isolator

Similar Documents

Publication Publication Date Title
US5631771A (en) Optical isolator with polarization dispersion and differential transverse deflection correction
US5381261A (en) Optical isolator
EP0661579B1 (en) Optical isolator without polarization mode dispersion
JPH05297321A (en) Unpolarized wave dispersion type optical isolator
US5428477A (en) Optical isolator operating independent of polarization of an incident beam
JPH02126219A (en) Optical isolator
EP0533398A1 (en) Optical isolator with polarization dispersion correction
US7024073B2 (en) Reflective variable light attenuator
JP2542532B2 (en) Method for manufacturing polarization-independent optical isolator
JPH02221912A (en) Optical isolator
JPS5828561B2 (en) optical isolator
JPS597312A (en) Optical isolator
US11990936B2 (en) Reduced thickness optical isolator and method of use thereof in a laser optic system
GB2143337A (en) Optical isolator
JPS6257012B2 (en)
JPH04221922A (en) Polarization independent type optical isolator
JPH02221911A (en) Optical isolator
EP0653660A1 (en) Optical isolator with reduced walk-off
JPH04102821A (en) Polarization nondependent type optical isolator
JPH0274917A (en) Optical isolator
JPH06138410A (en) Optical isolator
JP2840711B2 (en) Optical isolator
JPH06186502A (en) Optical isolator
JPH0454929B2 (en)
JPH04264515A (en) Optical isolator