JPH03132328A - Molding method for resin pipe - Google Patents

Molding method for resin pipe

Info

Publication number
JPH03132328A
JPH03132328A JP1270908A JP27090889A JPH03132328A JP H03132328 A JPH03132328 A JP H03132328A JP 1270908 A JP1270908 A JP 1270908A JP 27090889 A JP27090889 A JP 27090889A JP H03132328 A JPH03132328 A JP H03132328A
Authority
JP
Japan
Prior art keywords
molding
ethylene polymer
pipe
resin
outer diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1270908A
Other languages
Japanese (ja)
Inventor
Kazumasa Fujimura
和昌 藤村
Hitoaki Kurumi
仁朗 久留美
Sadao Nagase
長瀬 貞雄
Kiyomaro Sudo
清麿 須藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Petrochemical Co Ltd
Original Assignee
Mitsubishi Petrochemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Petrochemical Co Ltd filed Critical Mitsubishi Petrochemical Co Ltd
Priority to JP1270908A priority Critical patent/JPH03132328A/en
Publication of JPH03132328A publication Critical patent/JPH03132328A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve smoothness of the inner surface of a pipe of wall thickness of 3 mm or more by blending a specified quantity of a metal soap having specified melting point, and subjecting to an outer diameter sizing molding a straight- chain ethylene polymer having the MFR value and melting tension value within a specified range. CONSTITUTION:0.01 - 1wt. % of metal soap having the 100 - 130 deg.C melting point is blended with a straight-chain ethylene polymer having 0.05 - 2 g/10 minutes MFR value measured at JIS-6760 and 2.16 g load and melting tension of 3 g or more at 190 deg.C, and the blending is kneaded with a kneader, a Henschel mixer or the like to mold pellets of a resin composition. The outer diameter sizing molding method is applied to said pellets for molding pipe having wall thickness of 3 mm or more. As for said ethylene polymer, a straight-chain ethylene polymer or an ethylene and alpha-olefin copolymer obtained by using a chrome oxide based Phillips type catalyst is suitable.

Description

【発明の詳細な説明】 〔発明の背景〕 〈産業上の利用分野〉 本発明は、厚肉パイプ内面の平滑性に優れた外径サイジ
ング成形法により成形するパイプの成形法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Background of the Invention] <Industrial Field of Application> The present invention relates to a method for forming a pipe by an outer diameter sizing method that provides excellent smoothness of the inner surface of a thick-walled pipe.

〈従来の技術〉 従来、ポリエチレン製パイプの成形法は、ジヨイント接
続の施工上、パイプ寸法管理において内径よりも外径の
方が重要視されることから外径サイジング成形法を用い
、また材料として、押出成形性の観点より比較的分子量
分布の広い汎用の押出成形用高密度ポリエチレンおよび
低密度ポリエチレンを使用するのが一般的であった。
<Conventional technology> Traditionally, polyethylene pipes have been formed by using the outer diameter sizing method, as the outer diameter is more important than the inner diameter when constructing joint connections, and the outer diameter is more important than the inner diameter. From the viewpoint of extrusion moldability, it has been common to use general-purpose high-density polyethylene and low-density polyethylene for extrusion molding, which have a relatively wide molecular weight distribution.

ポリエチレン製パイプは長期性能、耐薬品性に優れ、し
かも安価で加工が容易であるため、その特性を活かして
古くから給排水管に主として用いられてきた。特に低密
度のエチレン・α−オレフィン共重合体(直鎖状低密度
ポリエチレン)は柔軟性、耐塩素水性等の優れた特徴を
有していることから、J Is−に6762の一種管(
軟質管)にも近年使用されだしている。
Polyethylene pipes have excellent long-term performance and chemical resistance, are inexpensive, and are easy to process, so they have been used primarily for water supply and drainage pipes since ancient times, taking advantage of these characteristics. In particular, low-density ethylene/α-olefin copolymer (linear low-density polyethylene) has excellent characteristics such as flexibility and chlorine water resistance, so it was designated as a class 6762 pipe (
In recent years, it has also begun to be used for soft pipes.

また、外径サイジング成形法により成形されたペイプの
場合、押出機ダイスから樹脂がいったん溶融状態で押し
出された後、外部冷却サイジング装置に導びかれること
から、溶融状態での形状保持性、すなわちドローダウン
性に優れたものであることが必要とされ、比較的分子量
分布の広いエチレン単独重合体もしくは、エチレン−α
−オレフィン共重合体が使用されてきた。
In addition, in the case of a tape molded by the outer diameter sizing method, the resin is once extruded from the extruder die in a molten state and then guided to an external cooling sizing device, so the shape retention in the molten state, i.e. Ethylene homopolymer or ethylene-α with a relatively wide molecular weight distribution is required to have excellent drawdown properties.
-Olefin copolymers have been used.

〈発明が解決しようとする課題〉 しかしながら、前述のような比較的分子量分布が広く押
出加工性のよい直鎖状エチレン系重合体を用いて厚肉の
パイプを外径サイジング成形法により成形しようとする
と、パイプ内面(内壁)にランダムな筋状の皺が発生し
、外観上の商品価値を損なうと同時に管内流量抵抗の増
加等が生じて実用上大きな問題となることが判明した。
<Problems to be Solved by the Invention> However, it has not been attempted to form a thick-walled pipe using the above-mentioned linear ethylene polymer with a relatively wide molecular weight distribution and good extrusion processability by the outer diameter sizing method. As a result, it has been found that random streak-like wrinkles occur on the inner surface (inner wall) of the pipe, impairing its commercial value in terms of appearance, and at the same time causing an increase in flow resistance within the pipe, which poses a serious problem in practice.

このような皺の発生の詳細なメカニズムは不明であるが
、溶融樹脂の流動状態が不安定(一種の脈動)になるこ
と、サイジングダイスで溶融樹脂の外径よりも絞られて
いること、パイプ製品の肉厚が厚くなると外表面から先
に冷却されるため、その結果として内表面が外表面側へ
収縮されること等が原因ではないかと考えられる。
The detailed mechanism for the occurrence of such wrinkles is unknown, but it is due to the unstable flow state of the molten resin (a kind of pulsation), the fact that the molten resin is squeezed by a sizing die smaller than its outer diameter, and the fact that the pipe This is thought to be due to the fact that when the wall thickness of the product increases, the outer surface is cooled first, and as a result, the inner surface shrinks toward the outer surface.

一方、比較的分子量分布の狭い樹脂を用いて成形すれば
皺は発生しないが、樹脂の溶融張力不足によってドロー
ダウン性が低下し、その結果として溶融樹脂が垂れて成
形が困難になるばかりでなく、特に低温、高速押出成形
の条件下ではパイプの内外面に肌荒れ現象(通称シャー
クスキン)が発生し、これも大きな問題となることが知
られている。
On the other hand, if molding is performed using a resin with a relatively narrow molecular weight distribution, wrinkles will not occur, but the drawdown properties will be reduced due to insufficient melt tension of the resin, and as a result, the molten resin will not only sag, making molding difficult. It is known that, especially under conditions of low temperature and high speed extrusion molding, rough skin phenomenon (commonly known as sharkskin) occurs on the inner and outer surfaces of the pipe, which is also a major problem.

〔発明の概要〕[Summary of the invention]

く要旨〉 本発明者らは、前述の問題点を解決するために、外径サ
イジング成形法による厚肉パイプ内面の皺の発生を防止
すべく鋭意研究を重ねた結果、特定のエチレン系樹脂に
特定の添加剤を配合することにより、ドローダウン性に
優れ、かつ皺の発生しないパイプ用樹脂組成物となるこ
とを見い出して本発明を完成した。
Summary> In order to solve the above-mentioned problems, the present inventors have conducted intensive research to prevent the occurrence of wrinkles on the inner surface of thick-walled pipes due to the outer diameter sizing molding method, and as a result, they have found that a specific ethylene resin The present invention was completed by discovering that by blending specific additives, a resin composition for pipes that has excellent drawdown properties and does not generate wrinkles can be obtained.

すなわち、本発明の樹脂パイプの成形法は、樹脂を外径
サイジング成形法に付して肉厚が3■■以上のパイプを
成形する方法において、樹脂としてMFRが0.05〜
2 K/10分かつ190℃における溶融張力が3g以
上である直鎖状エチレン重合体に、融点が100〜13
0℃の金属石けんを0.01〜1重量%配合した組成物
を用いること、を特徴とするものである。
That is, the resin pipe molding method of the present invention is a method of molding a pipe with a wall thickness of 3■■ or more by subjecting the resin to an outer diameter sizing molding method, and the MFR of the resin is 0.05 to 0.05.
A linear ethylene polymer having a melt tension of 3 g or more at 2 K/10 minutes and 190°C has a melting point of 100 to 13
It is characterized by using a composition containing 0.01 to 1% by weight of metal soap at 0°C.

〈発明の効果〉 本発明の樹脂パイプの成形法によれば、特定のエチレン
系重合体に特定の添加剤を配合すると、前記した従来技
術でのパイプの内面に皺が発生するといった問題が解決
される。
<Effects of the Invention> According to the resin pipe molding method of the present invention, the problem of wrinkles occurring on the inner surface of the pipe in the prior art described above when a specific additive is blended with a specific ethylene polymer is solved. be done.

さらに、従来中和剤、もしくは分散剤として主に用いら
れた金属石けんの中でも特定融点のものだけが実用上の
弊害がなく、ドローダウン性に優れ、皺発生防止効果を
発揮することができるとは、全く思いがけなかったこと
である。
Furthermore, among the metal soaps that have traditionally been mainly used as neutralizing agents or dispersants, only those with a specific melting point have no practical problems, have excellent drawdown properties, and are effective in preventing wrinkles. That was completely unexpected.

従って、本発明の樹脂パイプの成形法は、厚肉サイズの
パイプが必要とされる分野へ実用性の高い成形法として
活用することができる。
Therefore, the resin pipe molding method of the present invention can be utilized as a highly practical molding method in fields where thick-walled pipes are required.

〔発明の詳細な説明〕[Detailed description of the invention]

(1)組成物 (1)構成成分 (a)エチレン重合体 本発明の樹脂パイプの成形法で用いるエチレン重合体は
、イオン重合触媒を用いて製造した直鎖状重合体であり
、気相法、溶液法、スラリー法、高圧法等いずれの製造
法によるものでも適用でき、エチレンの単独重合体もし
くは、主成分のエチレンとエチレン以外のコモノマーの
一種または、二種以上を共重合させて得られた共重合体
である。
(1) Composition (1) Constituent component (a) Ethylene polymer The ethylene polymer used in the resin pipe molding method of the present invention is a linear polymer produced using an ionic polymerization catalyst, and is produced by a gas phase method. It can be applied to any manufacturing method such as solution method, slurry method, high pressure method, etc., and is obtained by copolymerizing ethylene homopolymer or the main component ethylene and one or more comonomers other than ethylene. It is a copolymer.

このエチレン重合体は、分子量の目安となるMFR(J
 Is−に6760、荷重2.16kg)が0.05〜
2g/10分のものが適用でき、特に0.1〜1[/1
0分のものが好ましい。これらの中でもMFHの低い方
の重合体はドローダウン性、強度等に優れるが、過度に
低くて、例えばMFRが0.05未満のものは成形時の
流動性等の成形性が悪くなる。またMFRが2超過のも
のはドローダウン性、強度等が劣る。
This ethylene polymer has MFR (J
Is-6760, load 2.16kg) is 0.05~
2g/10 minutes can be applied, especially 0.1 to 1 [/1
0 minutes is preferable. Among these, polymers with lower MFH have excellent drawdown properties, strength, etc., but those with excessively low MFH, for example, less than 0.05, have poor moldability such as fluidity during molding. Also, those with an MFR of more than 2 are inferior in drawdown properties, strength, etc.

また、このエチレン重合体の溶融張力は、これをJIS
−に6760のMFR測定法にて使用する炉及びノズル
から190℃の温度でシリンダー押出棒を10mm/分
の速度で押出し、4m/分の速度で引っ張ったときの溶
融張力が3g以上のものが適用でき、特にドローダウン
性の観点より4g以上のものが好ましい。
In addition, the melt tension of this ethylene polymer is determined by JIS
- A cylinder extrusion rod is extruded at a speed of 10 mm/min at a temperature of 190°C from the furnace and nozzle used in the MFR measurement method of 6760, and the melt tension is 3 g or more when pulled at a speed of 4 m/min. It is applicable, and in particular, from the viewpoint of drawdown property, 4 g or more is preferable.

エチレン重合体として、酸化クロムをシリカ・アルミナ
等無機担体等に担持させたもの、すなわち酸化クロム系
フィリップス型触媒を用いて気相法、溶液法、スラリー
法、あるいは圧力500kg/cd以上および温度10
0〜350℃の条件下での鳥圧イオン重合法等の製造プ
ロセスを適用して、エチレンを単独で重合もしくは主成
分のエチレンとa−オレフィンを共重合することで得ら
れるものは、特に本発明の効果が大きく奏される。
As an ethylene polymer, chromium oxide supported on an inorganic carrier such as silica or alumina, that is, a chromium oxide Phillips type catalyst, is used by a gas phase method, a solution method, a slurry method, or a pressure of 500 kg/cd or more and a temperature of 10
Products obtained by polymerizing ethylene alone or copolymerizing the main component ethylene and a-olefin by applying a production process such as bird pressure ion polymerization under conditions of 0 to 350°C are particularly suitable for this invention. The effects of the invention are greatly achieved.

エチレンと共重合させる場合のα−オレフィンとしては
、炭素数3〜12程度のα−オレフィンたとえばプロピ
レン、ブテン−1、ペンテン−11、ヘキセン−1,4
メチルペンテン−1、オクテン−1等が挙げられる。特
に好ましいα−オレフィンは、炭素数4〜8のもの、特
にブテン−1、ヘキセン−1,4メチルペンテン−1お
よびオクテン−1、である。これらα−オレフィンは二
種以上併用することができる。共重合体中のα−オレフ
ィン含量は、0. 5〜20重−%、好ましくは1〜1
5重量%である。
The α-olefin to be copolymerized with ethylene includes α-olefins having about 3 to 12 carbon atoms, such as propylene, butene-1, pentene-11, hexene-1,4
Examples include methylpentene-1 and octene-1. Particularly preferred α-olefins are those having 4 to 8 carbon atoms, especially 1-butene, 1,4 hexene-1, methylpentene-1 and 1-octene. Two or more of these α-olefins can be used in combination. The α-olefin content in the copolymer is 0. 5-20% by weight, preferably 1-1
It is 5% by weight.

中でも、エチレン・α−オレフィン共重合体の密度(J
 Is−に6760の試験法による)が0.915〜0
.930g/C!1、特に0.920〜0.925+r
/cdのものが耐圧強度、長尺開巻の点で好ましい。こ
れら共重合体の密度は共重合させたα−オレフィンの種
類および(または)含量によって変化する。
Among them, the density of ethylene/α-olefin copolymer (J
Is-6760 test method) is 0.915 to 0
.. 930g/C! 1, especially 0.920-0.925+r
/cd is preferable in terms of compressive strength and long unrollability. The density of these copolymers varies depending on the type and/or content of the copolymerized α-olefin.

この重合体は、また分子量分布の目安となるFR(荷重
10kg時のMFRと上記荷重2.16kg時のMFR
との比)が13〜25のもの、特に14〜20のもの、
が好ましい。FRの低い方の重合体は衝撃強度等に優れ
るが、成形時の流動性等の成形性が低下する傾向がある
。また、FRが高いほど衝撃強度等が劣る傾向にある。
This polymer also has FR (MFR at a load of 10 kg and MFR at a load of 2.16 kg mentioned above), which is a guideline for molecular weight distribution.
Those with a ratio of 13 to 25, especially those with a ratio of 14 to 20,
is preferred. A polymer with a lower FR has excellent impact strength, etc., but tends to have lower moldability such as fluidity during molding. Furthermore, the higher the FR, the lower the impact strength and the like tend to be.

このようなエチレン重合体は市販のものの中から適宜選
んで用いることができる。
Such ethylene polymers can be appropriately selected from commercially available products.

(b)金属石けん 本発明の樹脂パイプの成形法で用いる金属石けんは、融
点が100〜130℃、好ましくは110〜125℃の
高級脂肪酸の金属塩であり、樹脂への分散性を考慮して
比較的小粒径の粉体状のものを使用するのが好ましい。
(b) Metallic soap The metal soap used in the resin pipe molding method of the present invention is a metal salt of a higher fatty acid with a melting point of 100 to 130°C, preferably 110 to 125°C, and is designed in consideration of dispersibility in the resin. It is preferable to use a powder having a relatively small particle size.

このような金属石けんとしては、脂肪酸、樹脂酸、ナフ
テン酸などの有機酸と亜鉛、マグネシウム、カルシウム
、カドミウム、バリウム、鉛などの金属塩があるが、こ
れらの中で亜鉛、マグネシウム、カルシウムの金属塩が
好ましい。具体的にはステアリン酸亜鉛(融点117〜
125℃)、ラウリン酸亜鉛(融点110〜120℃)
、ステアリン酸マグネシウム(融点108〜115℃)
などがあり、中でもステアリン酸亜鉛が最も好ましい。
Such metal soaps include organic acids such as fatty acids, resin acids, and naphthenic acids, and metal salts such as zinc, magnesium, calcium, cadmium, barium, and lead. Salt is preferred. Specifically, zinc stearate (melting point 117~
125℃), zinc laurate (melting point 110-120℃)
, magnesium stearate (melting point 108-115°C)
Among them, zinc stearate is the most preferred.

ステアリン酸カルシウム等のような高融点タイプのもの
は使用状態により異なるが皺発生防止効果が小さいか、
あるいは逆に悪化する場合もある。
High melting point types such as calcium stearate may have a small wrinkle prevention effect, depending on the usage conditions.
Or it may even get worse.

また低融点タイプのものはパイプ成形後、パイプ製品の
表面にべた付き(ブリードアウト現象)を起こすので水
道管として使用する場合に水道水の汚染、耐塩素水性が
低い等の観点から好ましくない。
In addition, low-melting point types cause stickiness (bleed-out phenomenon) on the surface of the pipe product after pipe forming, so when used as water pipes, they are undesirable from the viewpoints of contaminating tap water and low resistance to chlorine water.

この金属石けんの配合量は、エチレン重合体に対して0
.01〜1重量%である。好ましくは0゜02〜0.5
重2%、特に好ましくは0.03〜0.3重量%の範囲
内である。この配合量未満では皺発生防止効果が小さく
、一方、この配合量より多くなっても効果は飽和してく
ると同時に製品のコスト高になり、また水道管として使
用する場合、ブリードによる水道水への流出、耐塩素水
性等の問題を発生する傾向があるので好ましくない。
The blending amount of this metal soap is 0 relative to the ethylene polymer.
.. 01-1% by weight. Preferably 0°02-0.5
2% by weight, particularly preferably in the range from 0.03 to 0.3% by weight. If the amount is less than this amount, the effect of preventing wrinkles will be small, but if it is more than this amount, the effect will reach saturation and the cost of the product will increase.Also, when used as a water pipe, tap water may bleed due to bleed. This is undesirable because it tends to cause problems such as outflow of water and chlorine water resistance.

(2)組成物の調製 上記構成成分を配合して組成物を製造する方法としては
、直接ロール、バンバリー、ニーダ−押出機等の混練機
で溶融混練する方法、配合剤の分散を良くするためヘン
シェル型ミキサー等で予めエチレン重合体の粉体と混合
させた後、前述の混線機で溶融混練する方法、あるいは
−旦高濃度のマスターバッチを作った後に未配合のエチ
レン重合体で希釈する方法等の種々の公知の方法を適用
することができる。
(2) Preparation of composition Methods for producing a composition by blending the above components include melt-kneading with a kneader such as a direct roll, Banbury, or kneader extruder; A method in which the mixture is mixed in advance with ethylene polymer powder using a Henschel type mixer, etc., and then melt-kneaded in the mixer described above, or a method in which a highly concentrated masterbatch is first made and then diluted with unblended ethylene polymer. Various known methods such as can be applied.

また、必要に応じて本発明の効果を著しく損なわない範
囲でポリプロピレン、分岐状ポリエチレン(高圧法ラジ
カル重合ポリエチレン)、エチレン・酢酸ビニル共重合
体等の混和可能な他の樹脂、あるいは他の酸化防止剤、
中和剤、滑剤、アンチブロッキング剤、帯電防止剤、紫
外線吸収剤、光安定剤、けい光増白剤等の添加剤、ある
いは有機系顔料、無機系顔料等の着色剤や充填剤等、を
直接または樹脂等のマスターバッチの形で添加すること
もできる。但し、これらを添加することによって皺発生
防止効果が低下する場合もあるので、種類および添加量
は注意しなければならない。
In addition, if necessary, other miscible resins such as polypropylene, branched polyethylene (high-pressure radical polymerization polyethylene), ethylene/vinyl acetate copolymer, or other oxidation inhibitors may be used within a range that does not significantly impair the effects of the present invention. agent,
Additives such as neutralizing agents, lubricants, anti-blocking agents, antistatic agents, ultraviolet absorbers, light stabilizers, fluorescent whitening agents, or colorants and fillers such as organic pigments and inorganic pigments. It can also be added directly or in the form of a masterbatch such as a resin. However, the addition of these substances may reduce the wrinkle prevention effect, so care must be taken when selecting the types and amounts added.

(0)パイプ成形 本発明のパイプ成形法は汎用性があり、かつ外径寸法制
御に特徴を有する外径サイジング成形法であれば、成形
装置の大小、構造等特に制限しない。
(0) Pipe Forming The pipe forming method of the present invention is versatile, and there are no particular restrictions on the size or structure of the forming apparatus, as long as it is an outer diameter sizing forming method that is characterized by outer diameter size control.

但し、本発明の目的は肉厚が厚くてもパイプ内面の平滑
性を損なわない点にあり、これを達成するように改良さ
れた樹脂組成物を用いるため、パイプ肉厚は3mm以上
、好ましくは41以上、特に好ましくは6mm以上であ
るものが大きな効果を奏する。
However, the purpose of the present invention is to not impair the smoothness of the inner surface of the pipe even if the wall thickness is large, and in order to use a resin composition that has been improved to achieve this, the pipe wall thickness is preferably 3 mm or more. 41 or more, particularly preferably 6 mm or more, produces a great effect.

また、このパイプは必ずしも円形でなくてもよく、例え
ば長方形等異形押出成形に分類されるものも含む。なお
、この場合の肉厚とは最小肉厚箇所を意味する。さらに
、本発明の効果が奏される限り多層のパイプに成形する
こともできる。
Further, this pipe does not necessarily have to be circular, and includes, for example, a pipe classified as a rectangular extrusion molding. Note that the wall thickness in this case means the minimum wall thickness point. Furthermore, it is also possible to form a multilayer pipe as long as the effects of the present invention are achieved.

〔実験例〕[Experiment example]

実施例1〜3および比較例1.2 (イ)樹脂組成物の調製 気相法プロセスにて、微量の酸素の存在下二酸化けい素
に酸化クロムと酸化チタンを担持した通称フィリップス
型イオン重合触媒を用いてエチレンとブテン−1を共重
合させて、MFRo、5g/10分、密度0.922g
/7の直鎖状エチレン・ブテン−1共重合体を得た。該
共重合体に市販試薬のステアリン酸亜鉛、ステアリン酸
カルシウム、リン系安定剤を第1表に示す配合量で配合
した後、ヘンシェル型ミキサーで混合し、スクリュー直
径40mtaの単軸押出機で溶出混練して樹脂組成物の
ベレットを得た。
Examples 1 to 3 and Comparative Example 1.2 (a) Preparation of resin composition A so-called Phillips type ionic polymerization catalyst in which chromium oxide and titanium oxide were supported on silicon dioxide in the presence of a trace amount of oxygen by a gas phase process. MFRo, 5 g/10 min, density 0.922 g.
A linear ethylene/butene-1 copolymer of /7 was obtained. Commercially available reagents such as zinc stearate, calcium stearate, and a phosphorus stabilizer were added to the copolymer in the amounts shown in Table 1, mixed in a Henschel type mixer, and elution-kneaded in a single-screw extruder with a screw diameter of 40 mta. A pellet of the resin composition was obtained.

(ロ)パイプ成形 前記(イ)で得た樹脂組成物ペレ・ソトを外径30■、
内径20龍のストレートダイスを有するスクリュー径4
0nosの単軸押出機にて190°Cの樹脂温度にて、
外径27mm、内径15mm、肉厚が6關の寸法になる
ように押出し成形して、真空サイジング装置で外径を制
御しながら水槽でパイプ外面を冷却し単層パイプを得た
(b) Pipe molding The resin composition obtained in (a) above, with an outer diameter of 30 cm,
Screw diameter 4 with straight die of inner diameter 20
At a resin temperature of 190°C in a 0nos single screw extruder,
Extrusion molding was carried out to have an outer diameter of 27 mm, an inner diameter of 15 mm, and a wall thickness of 6 mm, and the outer surface of the pipe was cooled in a water tank while controlling the outer diameter with a vacuum sizing device to obtain a single-layer pipe.

このような成形方法によって得られたパイプ内面の皺発
生度合を、目視にて観察して判定した。
The degree of wrinkling on the inner surface of the pipe obtained by such a molding method was visually observed and determined.

これらの結果を第1表に示す。These results are shown in Table 1.

比較例3.4 パイプの内径を変えて肉厚を変えたこと以外は比較例2
と同様に行った。得られた結果を第2表に示す。
Comparative example 3.4 Comparative example 2 except that the inner diameter of the pipe was changed and the wall thickness was changed.
I did the same thing. The results obtained are shown in Table 2.

比較例5.6 エチレン重合体を変えたこと以外は比較例2と同様に行
った。得られた結果を第2表に示す。
Comparative Example 5.6 The same procedure as Comparative Example 2 was carried out except that the ethylene polymer was changed. The results obtained are shown in Table 2.

Claims (1)

【特許請求の範囲】 1、樹脂を外径サイジング成形法に付して肉厚が3mm
以上のパイプを成形する方法において、樹脂としてMF
Rが0.05〜2g/10分かつ190℃における溶融
張力が3g以上である直鎖状エチレン重合体に、融点が
100〜130℃の金属石けんを0.01〜1重量%配
合した組成物を用いることを特徴とする、樹脂パイプの
成形法。 2、エチレン重合体が酸化クロム系フィリップス型触媒
によって得られる直鎖状エチレン単独重合体もしくは直
鎖状エチレン・α−オレフィン共重合体である、請求項
1に記載の樹脂パイプの成形法。 3、エチレン重合体が密度0.915〜0.930g/
cm^3のエチレン・α−オレフィン共重合体である、
請求項1または2に記載の樹脂パイプの成形法。 4、金属石けんがステアリン酸亜鉛である、請求項1〜
3のいずれかに記載の樹脂パイプの成形法。
[Claims] 1. The resin is subjected to an outer diameter sizing molding method so that the wall thickness is 3 mm.
In the method for molding the above pipe, MF is used as the resin.
A composition in which 0.01 to 1% by weight of a metal soap with a melting point of 100 to 130°C is blended with a linear ethylene polymer having an R of 0.05 to 2 g/10 min and a melt tension of 3 g or more at 190°C. A resin pipe molding method characterized by the use of 2. The method for molding a resin pipe according to claim 1, wherein the ethylene polymer is a linear ethylene homopolymer or a linear ethylene/α-olefin copolymer obtained using a chromium oxide-based Phillips type catalyst. 3. Ethylene polymer has a density of 0.915 to 0.930 g/
cm^3 ethylene/α-olefin copolymer,
A method for molding a resin pipe according to claim 1 or 2. 4. Claims 1 to 4, wherein the metal soap is zinc stearate.
3. The method for molding a resin pipe according to any one of 3.
JP1270908A 1989-10-18 1989-10-18 Molding method for resin pipe Pending JPH03132328A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1270908A JPH03132328A (en) 1989-10-18 1989-10-18 Molding method for resin pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1270908A JPH03132328A (en) 1989-10-18 1989-10-18 Molding method for resin pipe

Publications (1)

Publication Number Publication Date
JPH03132328A true JPH03132328A (en) 1991-06-05

Family

ID=17492662

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1270908A Pending JPH03132328A (en) 1989-10-18 1989-10-18 Molding method for resin pipe

Country Status (1)

Country Link
JP (1) JPH03132328A (en)

Similar Documents

Publication Publication Date Title
US4378451A (en) High flow rate polyolefin extrusion coating compositions
US4359553A (en) Polyethylene extrusion coating compositions
US5853638A (en) Process for producing stretched porous film
JPS5941342A (en) Molding resin composition
JP2000026697A (en) Propylene resin composition
JPH03197541A (en) Low-gloss resin composition for blow molding
JPH03132328A (en) Molding method for resin pipe
JP2000007855A (en) Polypropylene resin composition for heterogeneous extrusion molding and heterogeneous extrusion molded material
JP3964048B2 (en) Propylene polymer composition for extrusion foaming and method for producing the same
JPH03132327A (en) Molding method for resin pipe
JPH09183871A (en) Polyolefin resin composition and film or sheet made from the same
JPS62277450A (en) Polyolefin resin composition
JPH0572417B2 (en)
JPS6367494B2 (en)
JPS58171424A (en) Ethylene-alpha-olefin copolymer composition for molding blown film by water cooling
JP3044557B2 (en) Ethylene polymer composition
JP2859346B2 (en) Porous film
JP6759657B2 (en) Low temperature easy processable resin composition
JP3494497B2 (en) Polyethylene resin composition for hollow molding
KR100194286B1 (en) Resin composition of porous film
JPS6227446A (en) Polyolefin composition
JPH11181171A (en) Polyethylene resin composition
JPS5841730B2 (en) Polyolefin stretched molding
JPH08239521A (en) Polyethylene resin composition
JPS62246947A (en) Resin composition and water-cooled blown film