JPH0313194B2 - - Google Patents

Info

Publication number
JPH0313194B2
JPH0313194B2 JP60038295A JP3829585A JPH0313194B2 JP H0313194 B2 JPH0313194 B2 JP H0313194B2 JP 60038295 A JP60038295 A JP 60038295A JP 3829585 A JP3829585 A JP 3829585A JP H0313194 B2 JPH0313194 B2 JP H0313194B2
Authority
JP
Japan
Prior art keywords
silicon carbide
composite
carbon
silicon
impregnated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60038295A
Other languages
Japanese (ja)
Other versions
JPS61197472A (en
Inventor
Kikuo Nakano
Hiroshi Hayashi
Nobumichi Oonishi
Shigeo Nagasaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP60038295A priority Critical patent/JPS61197472A/en
Publication of JPS61197472A publication Critical patent/JPS61197472A/en
Publication of JPH0313194B2 publication Critical patent/JPH0313194B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 産業上の利用分野 この発明は、セラミツクスガスタービンエンジ
ン用タービンブレードのような高温下で使用され
る高強度、高靭性のセラミツクス材料として好適
な炭化ケイ素繊維強化炭化ケイ素複合体の製造方
法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application This invention relates to a silicon carbide fiber-reinforced silicon carbide composite suitable as a high-strength, high-toughness ceramic material used under high temperatures such as turbine blades for ceramic gas turbine engines. This relates to a method of manufacturing a body.

従来の技術 炭化ケイ素は高温強度がすぐれているため、高
温構造材料として注目されている。しかしなが
ら、このものは構造材料として用いる場合、脆い
という致命的な欠点を有している。すなわちこの
ものの焼結体は、いつたん亀裂を生じると、それ
が全体に伝播して破壊を起し、使用不能になる。
これは、炭化ケイ素焼結体の表面エネルギーが小
さいことに起因するため、複合化して表面エネル
ギーを大きくすることにより改善しうる。ところ
で、一般に複合化に際しては、強化用として導入
される物質としては、マトリツクスを形成する物
質と良好な親和性を示し、また、熱による内部歪
の発生を抑制するため熱膨張係数もほぼ等しいも
のを選ぶことが必要である。このような条件を最
も簡単に満たすには、強化相を形成するために導
入する物質とマトリツクスを形成する物質と同じ
にすることである。
Prior Art Silicon carbide is attracting attention as a high-temperature structural material because of its excellent high-temperature strength. However, when used as a structural material, this material has the fatal drawback of being brittle. That is, once a crack occurs in this sintered body, the crack propagates throughout the body and causes destruction, making it unusable.
This is due to the low surface energy of the silicon carbide sintered body, so it can be improved by increasing the surface energy by making it composite. By the way, in general, when compounding, the materials introduced for reinforcement are those that have good affinity with the material forming the matrix and also have approximately the same coefficient of thermal expansion in order to suppress the generation of internal strain due to heat. It is necessary to choose. The easiest way to satisfy these conditions is to introduce the same substance to form the reinforcing phase and the matrix.

そして、炭化ケイ素については、このようなも
のとして炭化ケイ素ウイスカーで強化した炭化ケ
イ素焼結体(昭和60年1月発行「窯業基礎討論会
予稿集」、炭化ケイ素繊維で強化した炭化ケイ素
複合体(特開昭57−135776号公報)などが提案さ
れているが、強度の向上、亀裂の伝播阻止という
点では後者の方が有利である。
Regarding silicon carbide, there are two types of silicon carbide sintered bodies reinforced with silicon carbide whiskers (Preliminary Papers of the Basic Ceramics Forum, published in January 1985), and silicon carbide composites reinforced with silicon carbide fibers ( JP-A-57-135776) has been proposed, but the latter is more advantageous in terms of improving strength and preventing crack propagation.

ところで、これまで、炭化ケイ素繊維強化炭化
ケイ素複合体は、あらかじめ形成された炭化ケイ
素繊維に炭素含有結合剤を加えて形成し、非酸化
雰囲気中で結合剤を熱分解したのち、溶融ケイ素
を滲透させて加熱反応させる方法によつて製造さ
れている(特開昭57−135776号公報)。
By the way, until now, silicon carbide fiber-reinforced silicon carbide composites have been formed by adding a carbon-containing binder to pre-formed silicon carbide fibers, thermally decomposing the binder in a non-oxidizing atmosphere, and then impregnating molten silicon. It is manufactured by a method of heating and reacting (Japanese Patent Application Laid-open No. 135776/1983).

しかしながら、この方法では、まず炭化ケイ素
繊維を製造し、これを原料として用いる必要があ
るが、炭化ケイ素は成形性に難があり、その繊維
を大量生産規模で得ることが困難である。
However, in this method, it is necessary to first produce silicon carbide fibers and use them as a raw material, but silicon carbide has difficulty in moldability and it is difficult to obtain the fibers on a mass production scale.

発明が解決しようとする問題点 この発明は、原料の入手の点で、大量生産に付
することが困難であつた炭化ケイ素繊維強化炭化
ケイ素複合体を、容易に入手しうる原料を用いて
製造するための新規な方法を提供することを目的
としてなされたものである。
Problems to be Solved by the Invention The present invention aims to manufacture silicon carbide fiber-reinforced silicon carbide composites using easily available raw materials, which has been difficult to mass produce due to the availability of raw materials. This was done with the aim of providing a new method for doing so.

問題点を解決するための手段 この発明者らは、入手容易な原料を用いて強化
炭化ケイ素複合体を製造する方法を開発するため
に鋭意研究を重ねた結果、原料として炭素繊維を
用い、成形加工後にこれにケイ素を反応させるこ
とにより、その目的を達成しうることを見出し、
この知見に基づいて、この発明をなすに至つた。
Means for Solving the Problems As a result of intensive research to develop a method for manufacturing reinforced silicon carbide composites using easily available raw materials, the inventors discovered that they could mold carbon fibers using carbon fibers as raw materials. We discovered that this purpose could be achieved by reacting silicon with silicon after processing.
Based on this knowledge, the present invention was made.

すなわち、この発明は、炭素繊維成形体に、炭
化ケイ素配合の熱硬化性樹脂を含浸させ、硬化処
理後不活性雰囲気中、約1000℃に加熱して上記樹
脂を炭化して炭素繊維と炭素と炭化ケイ素との複
合体を形成させ、次いでこれに溶融ケイ素を浸透
させたのち、不活性雰囲気中、1450℃以上に加熱
することを特徴とする炭化ケイ素繊維強化炭化ケ
イ素複合体の製造方法を提供するものである。
That is, in this invention, a carbon fiber molded body is impregnated with a thermosetting resin containing silicon carbide, and after curing treatment, the resin is heated to about 1000°C in an inert atmosphere to carbonize the resin and form carbon fibers and carbon. Provided is a method for producing a silicon carbide fiber-reinforced silicon carbide composite, which comprises forming a composite with silicon carbide, infiltrating the composite with molten silicon, and then heating the composite to 1450°C or higher in an inert atmosphere. It is something to do.

本発明方法で用いる炭素繊維成形体は、通常入
手しうる炭素繊維を編成又は織成した布や立体織
物、これらの積層物がある。また、これらの成形
体に含浸させる熱硬化性樹脂としては、フエノー
ル樹脂、エポキシ樹脂、フラン樹脂などの慣用さ
れている熱硬化性樹脂の中から任意に選ぶことが
できる。
The carbon fiber molded article used in the method of the present invention includes cloth, three-dimensional fabric, and laminates of commonly available carbon fibers knitted or woven. The thermosetting resin to be impregnated into these molded bodies can be arbitrarily selected from commonly used thermosetting resins such as phenolic resins, epoxy resins, and furan resins.

本発明方法においては、この熱硬化性樹脂に炭
化ケイ素を配合して用いるが、この配合量として
は10〜30重量%の範囲が適当である。この熱硬化
性樹脂を含浸させた炭素繊維成形体は、次に硬化
処理に付されるが、この硬化処理は、使用される
熱硬化性樹脂に慣用されている硬化剤を用い、常
温ないし200℃の範囲の温度で行われる。硬化処
理が完了したのち、この硬化成形体を不活性雰囲
気中で、約1000℃まで加熱することにより硬化さ
れた樹脂を炭化する。この際の不活性雰囲気とし
ては、硬化成形体を構成する各成分と反応しない
ガス、例えばアルゴンガス、ネオンガスなどが用
いられる。また、この際の昇温速度としては2〜
10℃/分の範囲が適当である。この炭化処理によ
り、炭素繊維の繊維間隙に炭素と炭化ケイ素の混
合物が充てんされた形の複合体が形成される。
In the method of the present invention, silicon carbide is blended with the thermosetting resin, and the appropriate amount is in the range of 10 to 30% by weight. The carbon fiber molded body impregnated with this thermosetting resin is then subjected to a curing treatment, and this curing treatment is performed using a curing agent commonly used for the thermosetting resin used at room temperature or It is carried out at temperatures in the range of °C. After the curing process is completed, the cured molded body is heated to about 1000° C. in an inert atmosphere to carbonize the cured resin. As the inert atmosphere at this time, a gas that does not react with each component constituting the cured molded product, such as argon gas or neon gas, is used. In addition, the temperature increase rate at this time is 2~
A range of 10°C/min is suitable. This carbonization process forms a composite in which the interstices of the carbon fibers are filled with a mixture of carbon and silicon carbide.

次に、この複合体に溶融して液状にしたケイ素
を含浸させる。このケイ素の含浸量は、前記複合
体中の炭素を炭化ケイ素に変えるのに十分な量に
する必要がある。そして、このようにしてケイ素
を含浸させた複合体を、さらに不活性雰囲気中、
例えばアルゴンガス中で、1450℃以上に加熱し、
複合体中の炭素とケイ素とを反応させて炭化ケイ
素を変える。
Next, this composite is impregnated with molten and liquid silicon. The amount of silicon impregnated must be sufficient to convert the carbon in the composite to silicon carbide. Then, the composite impregnated with silicon in this way is further heated in an inert atmosphere.
For example, heating to 1450℃ or higher in argon gas,
Carbon and silicon in the complex react to change silicon carbide.

このようにして得られる複合体は、炭化ケイ素
と少量のケイ素単体から成つている。
The composite thus obtained consists of silicon carbide and a small amount of elemental silicon.

発明の効果 この発明によると、入手容易な炭素繊維を原料
として炭化ケイ素繊維強化炭化ケイ素複合体を製
造することができる。そして、このようにして得
られる複合体は、繊維部分とマトリツクス部分と
が同じ炭化ケイ素で構成されているため高靭性で
あり、しかも高温においても高強度が保たれる
上、炭化ケイ素マトリツクス中で炭化ケイ素繊維
の形成がなされているので、従来のこの種の複合
体よりもよりすぐれた物性が得られる。
Effects of the Invention According to the present invention, a silicon carbide fiber-reinforced silicon carbide composite can be manufactured using easily available carbon fiber as a raw material. The composite obtained in this way has high toughness because both the fiber part and the matrix part are made of the same silicon carbide, and also maintains high strength even at high temperatures. The formation of silicon carbide fibers provides better physical properties than conventional composites of this type.

したがつて、この発明により得られる複合体は
構造材料として、セラミツクスガスタービンエン
ジン用タービンブレードなどに好適に用いられ
る。
Therefore, the composite obtained by the present invention is suitably used as a structural material for ceramic gas turbine engine turbine blades and the like.

実施例 次に、実施例によりこの発明をさらに詳細に説
明する。
Examples Next, the present invention will be explained in more detail with reference to examples.

実施例 フラン樹脂に、硬化剤約1.6重量%、β−SiC粉
末約20重量%を加え、よく混合する。次にこの中
に炭素繊維を浸し、その表面に十分に樹脂を付着
させ、これを糸巻枠に巻き取り、約70℃に加熱し
てフラン樹脂を硬化させる。次いで、この硬化物
を取りはずし、アルゴンガス中、約5℃/分の速
度で1000℃まで昇温させ、フラン樹脂を炭化す
る。
Example About 1.6% by weight of a curing agent and about 20% by weight of β-SiC powder are added to furan resin and mixed well. Next, carbon fibers are immersed in this, the resin is sufficiently adhered to the surface of the carbon fibers, the fibers are wound onto a bobbin frame, and the furan resin is cured by heating to approximately 70°C. Next, this cured product is removed, and the temperature is raised to 1000°C at a rate of about 5°C/min in argon gas to carbonize the furan resin.

このようにして、一方向に配列した炭素繊維間
に、炭素とβ−SiCとの混合物で充てんされた複
合体が得られる。
In this way, a composite is obtained in which the carbon fibers arranged in one direction are filled with a mixture of carbon and β-SiC.

次に、この複合体に溶融ケイ素を浸透させ、ア
ルゴンガス中、1550℃において3時間加熱する。
このようにして、β−SiCを主成分とし、少量の
ケイ素単体を含む、炭化ケイ素繊維強化炭化ケイ
素複合体が得られる。
The composite is then infiltrated with molten silicon and heated at 1550° C. for 3 hours in argon gas.
In this way, a silicon carbide fiber-reinforced silicon carbide composite containing β-SiC as a main component and a small amount of elemental silicon is obtained.

Claims (1)

【特許請求の範囲】[Claims] 1 炭素繊維成形体に、炭化ケイ素配合の熱硬化
性樹脂を含浸させ、硬化処理後不活性雰囲気中、
約1000℃に加熱して上記樹脂を炭化して炭素繊維
と炭素と炭化ケイ素との複合体を形成させ、次い
でこれに溶融ケイ素を浸透させたのち、不活性雰
囲気中、1450℃以上に加熱することを特徴とする
炭化ケイ素繊維強化炭化ケイ素複合体の製造方
法。
1 A carbon fiber molded body is impregnated with a thermosetting resin containing silicon carbide, and after curing treatment, in an inert atmosphere,
The resin is carbonized by heating to approximately 1000°C to form a composite of carbon fibers, carbon, and silicon carbide, which is then impregnated with molten silicon, and then heated to 1450°C or higher in an inert atmosphere. A method for producing a silicon carbide fiber-reinforced silicon carbide composite, characterized in that:
JP60038295A 1985-02-27 1985-02-27 Manufacture of sic continuous fiber reinforced sic compositebody Granted JPS61197472A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60038295A JPS61197472A (en) 1985-02-27 1985-02-27 Manufacture of sic continuous fiber reinforced sic compositebody

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60038295A JPS61197472A (en) 1985-02-27 1985-02-27 Manufacture of sic continuous fiber reinforced sic compositebody

Publications (2)

Publication Number Publication Date
JPS61197472A JPS61197472A (en) 1986-09-01
JPH0313194B2 true JPH0313194B2 (en) 1991-02-21

Family

ID=12521316

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60038295A Granted JPS61197472A (en) 1985-02-27 1985-02-27 Manufacture of sic continuous fiber reinforced sic compositebody

Country Status (1)

Country Link
JP (1) JPS61197472A (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0822782B2 (en) * 1987-05-22 1996-03-06 石川島播磨重工業株式会社 Method for producing fiber-reinforced ceramics
JPH01131059A (en) * 1987-11-17 1989-05-23 Toshiba Ceramics Co Ltd Production of furnace core tube of silicon carbide
JP2721678B2 (en) * 1988-03-25 1998-03-04 東洋炭素株式会社 β-silicon carbide molded body and method for producing the same
GB2230259B (en) * 1989-04-14 1993-11-17 Gen Electric Fibre reinforced ceramic matrix composite member and method for making
US5840221A (en) * 1996-12-02 1998-11-24 Saint-Gobain/Norton Industrial Ceramics Corporation Process for making silicon carbide reinforced silicon carbide composite
JP6484024B2 (en) * 2014-12-22 2019-03-13 イビデン株式会社 Reactor structure manufacturing method
JP6862281B2 (en) * 2017-05-25 2021-04-21 イビデン株式会社 Method for manufacturing SiC fiber / SiC composite material
CN109095936A (en) * 2018-08-21 2018-12-28 聂志强 A kind of toughening treatment process of silicon nitride ceramic material

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57135776A (en) * 1981-02-12 1982-08-21 Ngk Spark Plug Co Manufacture of sic sintered body

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57135776A (en) * 1981-02-12 1982-08-21 Ngk Spark Plug Co Manufacture of sic sintered body

Also Published As

Publication number Publication date
JPS61197472A (en) 1986-09-01

Similar Documents

Publication Publication Date Title
US6576076B1 (en) Process for producing fiber-reinforced silicon carbide composites
JPH0317787B2 (en)
JP3483035B2 (en) Silicon carbide reinforced silicon carbide composite material
JP4536950B2 (en) Hot press manufacturing method for SiC fiber reinforced SiC composite material
CN108409347A (en) A kind of in-situ preparation Ti3SiC2The preparation method of phase ceramics of silicon carbide toughened based composites
JPS60226462A (en) Inorganic fiber reinforced heat-resistant ceramic composite material
JPH05186266A (en) Production of carbon fiber-reinforced silicon carbide composite ceramic
JPH0313194B2 (en)
Boisvert et al. Polymeric precursor SiC matrix composites
JP5068218B2 (en) Carbon fiber reinforced silicon carbide composite material and method for producing the same
KR100838825B1 (en) Sic fiber reinforced reaction bonded sic porous body and its fabrication process
JP2879675B1 (en) Method for producing two-dimensional fiber reinforced silicon carbide / carbon composite ceramics
WO2002068362A1 (en) Method for producing sic fiber-reinforced sic composite material having excellent fracture toughness
JPH0157075B2 (en)
JPH0355430B2 (en)
JPS62876B2 (en)
JPH0585513B2 (en)
JP4527300B2 (en) Method for producing high-density SiC fiber reinforced SiC composite material
JPH07187787A (en) Production of composite material reinforced with carbon fiber
JPH1112038A (en) Production of silicon carbide fiber-reinforced silicon carbide composite material
JPS61197473A (en) Manufacture of sic continuous fiber reinforced carbon composite body
KR101540306B1 (en) Method for manufacturing SiCf/SiC composites
JPH03109269A (en) Sialon-based ceramics composite material reinforced with carbon fiber
JPH01257167A (en) Composite material and its production
JPH08169761A (en) Production of silicon carbide-based fiber composite material

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term