JPH03129752A - Manufacture of dielectric isolation substrate - Google Patents

Manufacture of dielectric isolation substrate

Info

Publication number
JPH03129752A
JPH03129752A JP17850790A JP17850790A JPH03129752A JP H03129752 A JPH03129752 A JP H03129752A JP 17850790 A JP17850790 A JP 17850790A JP 17850790 A JP17850790 A JP 17850790A JP H03129752 A JPH03129752 A JP H03129752A
Authority
JP
Japan
Prior art keywords
substrate
crystal silicon
polycrystalline silicon
silicon layer
polished
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17850790A
Other languages
Japanese (ja)
Inventor
Masayasu Katayama
正健 片山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Handotai Co Ltd
Original Assignee
Shin Etsu Handotai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Handotai Co Ltd filed Critical Shin Etsu Handotai Co Ltd
Publication of JPH03129752A publication Critical patent/JPH03129752A/en
Pending legal-status Critical Current

Links

Landscapes

  • Element Separation (AREA)

Abstract

PURPOSE:To reduce a warp of a substrate to 50mum or lower by a method wherein a polycrystalline silicon layer having a specific film thickness is formed, by reducing and decomposing a chlorosilane, on a first single-crystal silicon substrate in which an insulating film of silicon dioxide is formed in an isolation groove. CONSTITUTION:Isolation grooves 3 are formed in one face 2 of a first single-crystal silicon substrate 1; the first single-crystal silicon substrate 1 in which the isolation grooves 3 have been formed in its one face 2 is thermally oxidized; a thermal oxide film 4 is formed on a substrate face; a polycrystalline silicon layer 5 having a film thickness of 100mum or lower is deposited, by reducing and decomposing a chlorosilane, on the side where the isolation grooves have been formed. The main surface of the deposited polycrystalline layer 5 is polished; its flatness is set to 5mum or lower and its surface roughness is set to 50nm or lower; a polished face of the polycrystalline silicon layer 5 is thermocompression-bonded and bonded to a polished face of a second single-crystal silicon substrate whose surface roughness is 50mum or lower; the first single-crystal silicon substrate 1 is polished and removed down to a position of at least the bottom of the isolation grooves from the side where the polycrystalline silicon layer 5 is not deposited.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は、誘電体骨[5板の製造方法に関し、特に、反
りの小さいかつアルカリ金属汚染のない集積回路用の誘
電体分離基板の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Industrial Application Field The present invention relates to a method for manufacturing a dielectric plate, and in particular to a method for manufacturing a dielectric isolation board for integrated circuits with small warpage and no alkali metal contamination. Regarding the manufacturing method.

(ロ)従来の技術 誘電体分離基板は、周囲が二酸化ケイ素分離層で形成さ
れ、内部に多結、ll、シリコン支持体層が充填された
分IIK溝によって、単結晶シリコン半導体島が絶縁分
離されて形成されているので、大容量で高耐圧の半導体
集積回路素子を製造するのに適している。
(b) Conventional technology The dielectric isolation substrate has a silicon dioxide isolation layer around it, and a monocrystalline silicon semiconductor island is insulated and isolated by a groove IIK filled with a polycrystalline silicon support layer. Since the semiconductor integrated circuit element is formed by using a semiconductor integrated circuit, it is suitable for manufacturing a semiconductor integrated circuit element having a large capacity and a high breakdown voltage.

しかし、誘電体分離基板は、多結晶シリコン層を支持体
層としており、例えば、直径100mm(4”φ〉の単
結晶シリ:1ン半導体基板では約550μmの厚さ迄多
結晶シリコン層を気相成長法により形成させるので、両
者の熱膨張率の相違から半導体基板が150μm以上に
大きく反って、研磨工程における加工精度が低下する等
、以後の工程における加工が難しくなり問題とされてい
る。
However, the dielectric isolation substrate uses a polycrystalline silicon layer as a support layer. For example, in a single crystal silicon semiconductor substrate with a diameter of 100 mm (4"φ), the polycrystalline silicon layer is layered to a thickness of about 550 μm. Since the semiconductor substrate is formed by a phase growth method, the difference in thermal expansion coefficient between the two causes the semiconductor substrate to warp significantly by 150 μm or more, resulting in problems such as lower processing accuracy in the polishing step and difficulty in processing in subsequent steps.

そこで、反りの小さい誘電体分離基板を形成するために
、多結晶シリコン層中に、複数層に二酸化ケイ素層を設
ける方法が提案されている。
Therefore, in order to form a dielectric isolation substrate with small warpage, a method has been proposed in which a plurality of silicon dioxide layers are provided in a polycrystalline silicon layer.

(ハ)発明が解決しようとする問題点 一般に、半導体基板についての加工精度を向上させるに
は、該基板の反りが100μm以下とされるが、多結晶
シリコン層中に二酸化ケイ素層を複数層設けて多層構造
にすると反りは150μm以下にできとしても、加工精
度が向上するように反りを100μm以下に安定して1
11inすることは困難である。
(c) Problems to be solved by the invention Generally, in order to improve the processing accuracy of semiconductor substrates, the warpage of the substrate is set to be 100 μm or less, but multiple silicon dioxide layers are provided in the polycrystalline silicon layer. Even though it is possible to reduce the warpage to 150 μm or less by creating a multilayer structure, it is necessary to stabilize the warp to 100 μm or less to improve processing accuracy.
It is difficult to make it 11 inches.

しかも、パンケーキタイプの縦型炉中で多結晶シリコン
層を形成する間に、複数の二酸化ケイ素層を形成する工
程を行わなければならず、さらに、これには複雑な操作
を必要とし、通常の多結晶シリコン層の成長サイクル時
間と比べて長時間を要し問題である。
Moreover, while forming the polycrystalline silicon layer in a pancake-type vertical furnace, a process of forming multiple silicon dioxide layers must be performed, and furthermore, this requires complicated operations and is usually This is problematic because it takes a long time compared to the growth cycle time of a polycrystalline silicon layer.

そこで、反りが小さくて生産性の良い支持体形成手法と
して、分離溝付単結晶シリコン基板に支持体層となる単
結晶シリコン基板を接合させる方法が提案されている。
Therefore, as a method for forming a support with small warpage and high productivity, a method has been proposed in which a single-crystal silicon substrate that will become a support layer is bonded to a single-crystal silicon substrate with separation grooves.

しかし、この場合分!1lil付単結晶シリコン基板の
溝゛を例えばBzO*  5iOz系のガラスを塗布し
て埋めた後、支持体となる基板に加熱圧着させ固定させ
る必要があるので、後工程でガラスに含有されているア
ルカリ金属汚染の問題が生じる1本発明はこのような支
持体層形成時に生じる反りや汚染等の誘電体分離基板の
製造上の問題点を解決することを目的としている。
But in this case minutes! After filling the grooves in the single-crystal silicon substrate with 1 lil by applying, for example, BzO* 5iOz-based glass, it is necessary to heat and press it to the support substrate to fix it. The problem of alkali metal contamination arises.The present invention aims to solve such problems in manufacturing dielectric separation substrates such as warpage and contamination that occur during the formation of the support layer.

(ニ)問題点を解決するた、めの手段 本発明は、直径100 am以上に大口径化しても反り
の小さいかつアルカリ金属汚染のない誘電体分離基板の
製造方法を提供することを目的としている。
(d) Means for Solving the Problems The present invention aims to provide a method for manufacturing a dielectric isolation substrate that exhibits small warpage and no alkali metal contamination even when the diameter is increased to 100 am or more. There is.

即ち、本発明は、第1の単結晶シリコン基板の片面に分
Ili溝を形成させ、この片面に分離溝が形成されてい
る第1の単結晶シリコン基板を熱酸化して該基板面に熱
酸化膜を形成させ、次いで分離溝が形成されているl!
i11に、クロルシランの還元分解により、100μm
以下の膜厚を有する多結晶シリコン層を堆積させ、この
堆積した多結晶シリコン層の主たる表面を研磨して、平
坦度を5μm以下かつ表面粗さを50nm 以下にさせ
、この多結晶シリコン層の研磨面を第2の単結晶シリコ
ン基板の表面の粗さが50nm 以下の研磨面に加熱圧
着させて接合し、多結晶シリコン層が堆積されていない
側から、第1の単結晶シリコン基板を少なくとも分離溝
の底部の位置まで研磨除去することを特徴とする誘電体
分離基板の製造方法にある。
That is, the present invention forms an Ili groove on one side of a first single crystal silicon substrate, thermally oxidizes the first single crystal silicon substrate with an isolation groove formed on one side, and heats the substrate surface. An oxide film is formed, and then isolation trenches are formed!
i11, by reductive decomposition of chlorosilane, 100 μm
A polycrystalline silicon layer having the following thickness is deposited, and the main surface of the deposited polycrystalline silicon layer is polished to a flatness of 5 μm or less and a surface roughness of 50 nm or less. The polished surface is bonded to the polished surface of the second single-crystal silicon substrate with a surface roughness of 50 nm or less by heat-pressing, and the first single-crystal silicon substrate is attached at least from the side on which the polycrystalline silicon layer is not deposited. A method of manufacturing a dielectric isolation substrate is characterized in that the isolation groove is removed by polishing down to the bottom of the isolation groove.

本発明においても、従来の誘電体分離基板の製造方法と
同様に、第1の単結晶シリコン基板の片面に分離溝を形
成させ、この片面に分離溝が形成されている単結晶シリ
コン基板を熱酸化して該基板面に絶縁用の熱酸化膜を形
成させる。
In the present invention, similarly to the conventional method for manufacturing a dielectric isolation substrate, an isolation groove is formed on one side of a first single crystal silicon substrate, and the single crystal silicon substrate with the isolation groove formed on one side is heated. The substrate is oxidized to form an insulating thermal oxide film on the surface of the substrate.

本発明においては、熱酸化膜後に、クロルシランを水素
と共に加熱して、多結晶シリコン層を気相成長法により
形成する。多結晶シリコン層の厚さを100μm以下と
すると、基板の反りを50μm以下に保つことができる
ので、本発明においては、気相成長法により形成される
多結晶シリコン層の厚さは、基板の反りとの関係から1
00μ耐以下とされる。
In the present invention, after the thermal oxidation film is formed, chlorosilane is heated together with hydrogen to form a polycrystalline silicon layer by vapor phase growth. When the thickness of the polycrystalline silicon layer is set to 100 μm or less, the warpage of the substrate can be kept to 50 μm or less. Therefore, in the present invention, the thickness of the polycrystalline silicon layer formed by vapor phase growth is From the relationship with warpage 1
00μ resistance or less.

本発明においては、この形成された多結晶シリコン層を
支持体となる第2の単結晶シリコン基板と接合させるた
めに、多結晶シリコン層と、支持体となる第2の単結晶
シリコン基板との接合面は、表面粗さが共に50nm 
以下となるように研磨される。支持体の第2の単結晶シ
リコン基板接合面及び多結晶シリコン層の接合面を50
nm 以下の表面粗さに研磨すると、バインダーを要す
ることなく支持体の単結晶シリコン基板と多結晶シリコ
ン層を接合することができる。
In the present invention, in order to bond the formed polycrystalline silicon layer to the second single-crystal silicon substrate that serves as a support, it is necessary to bond the polycrystalline silicon layer and the second single-crystal silicon substrate that serves as a support. Both bonding surfaces have a surface roughness of 50 nm.
Polished as shown below. The bonding surface of the second single crystal silicon substrate of the support and the bonding surface of the polycrystalline silicon layer is
By polishing to a surface roughness of nm or less, the single crystal silicon substrate of the support and the polycrystalline silicon layer can be bonded without requiring a binder.

本発明において、多結晶シリコンは、従来の誘電体分離
基板の製造方法と同様に、分離溝に二酸化ケイ素の絶縁
膜が形成されている第1の単結晶シリコン基板上に、ク
ロルシランの還元分解により堆積されるが、その厚さは
、溝の深さに40μm を加えた厚さで、通常100μ
m以下でよい。この多結晶シリコン堆積後の表面には、
分離溝の深さと同しベル即ち数十ミクロンの凹凸が形成
されるため、最大40μmの平面研削及び研磨加工によ
り、その表面層は平坦化される。この研磨に際しては、
多結晶堆積直後において、つ工−ハの反りが50μm以
下に制御されるため、前記加工は高精度で実施可能とな
る。
In the present invention, polycrystalline silicon is produced by reductive decomposition of chlorosilane on a first single-crystal silicon substrate on which an insulating film of silicon dioxide is formed in the isolation grooves, similar to the conventional manufacturing method of dielectric isolation substrates. The thickness is the depth of the groove plus 40 μm, typically 100 μm.
It may be less than m. After this polycrystalline silicon is deposited, the surface is
Since unevenness is formed with the same depth as the separation groove, that is, several tens of microns, the surface layer is flattened by surface grinding and polishing to a maximum depth of 40 μm. During this polishing,
Immediately after polycrystalline deposition, the warpage of the tool is controlled to 50 μm or less, so the processing can be performed with high precision.

次に、この研磨加工面の粗さを、支持体となる第2の単
結晶基板と同様に、50nm 以下にして、これら研磨
加工面を密着させ、加熱圧着すると、界面にボイドがな
く、接合強度の強い良好な接合が得られるので好ましい
。この場合、例えば、圧着圧力は、単位平方センチメー
トル当たりIKgとし、温度は1000℃とすることが
できる。
Next, the roughness of the polished surfaces is set to 50 nm or less, similar to the second single crystal substrate serving as a support, and when these polished surfaces are brought into close contact and heat-pressed, there are no voids at the interface and the bond is bonded. This is preferable because a strong and good bond can be obtained. In this case, for example, the compression pressure may be IKg per square centimeter, and the temperature may be 1000°C.

かかる加熱圧着において、接合面の平坦度が、5μm以
下であると、良好な接合面が得られるので好ましい。ま
た、その表面粗さが50nm以下であると、加熱圧着で
、実に500Kg/cm’以上のボイドのない良好な接
合が得られるので好ましい。
In such thermocompression bonding, it is preferable that the flatness of the bonded surface is 5 μm or less because a good bonded surface can be obtained. Further, it is preferable that the surface roughness is 50 nm or less, since a good bond without voids of 500 Kg/cm' or more can be obtained by thermocompression bonding.

(ホ)作用 本発明は、接合による誘電体分離基板を製造するに、分
離溝に二酸化ケイ素の絶縁膜が形成されている第1の単
結晶シリコン基板上に、クロロシランの還元分解により
 100μm以下の膜厚を有する多結晶シリコンJMを
堆積させるので、基板の反りを50μm以下と小さくす
ることができ、加工を容易にさせて、支持体となる第2
の単結晶シリコン基板との接合による誘電体分離基板の
収率のよい製造を可能にするものであり、特に、バイン
ダーを使用しないで、完全な接合を可能にするものであ
る。
(E) Function The present invention provides a method for manufacturing a dielectric isolation substrate by bonding, by applying a layer of 100 μm or less by reductive decomposition of chlorosilane onto a first single crystal silicon substrate on which an insulating film of silicon dioxide is formed in the isolation groove. Since the polycrystalline silicon JM having a film thickness is deposited, the warpage of the substrate can be reduced to 50 μm or less, making processing easier, and making it possible to
This enables high-yield production of a dielectric isolation substrate by bonding with a single-crystal silicon substrate, and in particular, enables complete bonding without using a binder.

本発明において、第1の単結晶シリコン基板に形成され
た多結晶シリコン層は反りが小さいので、その表面を、
平坦度が5μrn 以下でしかも表面粗さが50nm 
以下に研磨することができることになり、支持体となる
第2の単結晶シリコン基板の表面の粗さを50nm 以
下に研磨して、両所磨面を加熱圧着して接合することに
よって、割れなどによる歩留まりの低下を防いで誘電体
分離基板を容易に製造することができる。
In the present invention, since the polycrystalline silicon layer formed on the first single-crystal silicon substrate has small warpage, its surface can be
Flatness is less than 5μrn and surface roughness is 50nm
By polishing the surface roughness of the second single-crystal silicon substrate serving as a support to 50 nm or less, and joining the polished surfaces on both sides by heating and pressing, it is possible to eliminate cracks. It is possible to easily manufacture a dielectric isolation substrate while preventing a decrease in yield due to the above.

(へ)実施例 本発明の実施の1.4.1について、以下実施例を参照
して説明するが、本発明は、以下の例示及び説明によっ
て、何等限定されるものではない。
(F) Examples 1.4.1 of the implementation of the present invention will be explained below with reference to Examples, but the present invention is not limited in any way by the following examples and explanations.

例1 直径100mm の n 型<100>単結晶シリコン
ウェハ1の主表面2を熱酸化し、次いで、ホトエツチン
グ法によりM4目状の分N?il 3を形成して、全面
に二酸化ケイ素膜4を形成し、分離酸化膜付きの■講を
有する91結晶シリコン半専体基板を作製する。
Example 1 The main surface 2 of an n-type <100> single-crystal silicon wafer 1 with a diameter of 100 mm is thermally oxidized, and then an M4-shaped portion N? il 3 is formed, a silicon dioxide film 4 is formed on the entire surface, and a 91 crystal silicon semi-dedicated substrate having a section (2) with an isolation oxide film is produced.

次いで、この二酸化ケイ素膜が形成された単結晶シリコ
ンウェハをパンゲーキタイプ縦型炉内に配置させて、こ
のウェハ上の二酸化ケイ素膜4上に、多結晶シリコン5
を気相成長法により堆積させる。この成長は、水素で希
釈した5%のトリクロロシランを1200℃の縦型炉内
で還元分解させて、3.5μm/分の成長速度で行われ
、多結晶シリコン層5の厚さが100μm となったと
ころで終了させた。この多結晶シリコン層5の形成によ
る単結晶シリコンウェハ1の反りは多結晶シリコン5側
に四に40μmであった。
Next, the single-crystal silicon wafer on which the silicon dioxide film has been formed is placed in a Pangeki-type vertical furnace, and polycrystalline silicon 5 is deposited on the silicon dioxide film 4 on the wafer.
is deposited by vapor phase epitaxy. This growth was performed by reductively decomposing 5% trichlorosilane diluted with hydrogen in a vertical furnace at 1200°C at a growth rate of 3.5 μm/min, and the thickness of the polycrystalline silicon layer 5 was 100 μm. I ended it when I got there. The warpage of the single crystal silicon wafer 1 due to the formation of the polycrystalline silicon layer 5 was approximately 40 μm on the polycrystalline silicon 5 side.

ごの多結晶シリコン層が形成された単結晶シリコンウェ
ーハは、多結晶シリコン層5の表面6を20μm平面研
削し、次いで15μm研磨して、平坦度が3μmで表面
粗さが10nm に鏡面加工された。(第11よ) この多結晶シリコン層5の接合面6に接合される支持体
用の単結晶シリ:7ンウエハ7を接合するために、支持
体用の−fil結晶シ結晶シリコンウェハ台面8を表面
粗さか5nm 以下の鏡面に研磨した。
The single-crystal silicon wafer on which the polycrystalline silicon layer 5 is formed is mirror-finished by plane-grounding the surface 6 of the polycrystalline silicon layer 5 by 20 μm and then polishing by 15 μm to have a flatness of 3 μm and a surface roughness of 10 nm. Ta. (No. 11) In order to bond the monocrystalline silicon wafer 7 for the support to be bonded to the bonding surface 6 of the polycrystalline silicon layer 5, the base surface 8 of the -fil crystal silicon wafer for the support is bonded. Polished to a mirror surface with a surface roughness of 5 nm or less.

このようにして研磨した夫々のウェハ1及び7を、アン
モニアと過酸化水素からなる洗浄液で洗浄しくRCA洗
浄)、次いで支持体用の単結晶シリコンウェハ7の接合
面8を単結晶シリコンウェハ1の多結晶シリコン層5の
接合面6に合わせて、600〜1200″Cの温度勾配
が形成されている加熱炉9内に送り、温度勾配に沿って
加熱し、最終的には1200℃において加圧接合した(
第2図〉。
Each of the wafers 1 and 7 polished in this way is cleaned with a cleaning solution consisting of ammonia and hydrogen peroxide (RCA cleaning), and then the bonding surface 8 of the single crystal silicon wafer 7 for the support is bonded to the single crystal silicon wafer 1. The polycrystalline silicon layer 5 is sent into a heating furnace 9 in which a temperature gradient of 600 to 1200"C is formed in accordance with the bonding surface 6, heated along the temperature gradient, and finally pressurized at 1200"C. Joined (
Figure 2.

本例に゛おいては、接合工程から?1Jls除去加工工
程迄実施しても反りは変化せず40μmのまま保たれ、
さらに研磨加工も容易で、接合面にボイドがなく且つ汚
染を発生させない好適な誘電体分離基板が得られた。
In this example, from the joining process? The warpage remained unchanged at 40μm even after the 1Jls removal process.
Furthermore, a suitable dielectric separation substrate was obtained that was easy to polish, had no voids on the bonding surface, and did not cause contamination.

第3図には、本例において使用される加熱炉9が、説明
の便宜上のために簡略して示されている。
In FIG. 3, the heating furnace 9 used in this example is shown in a simplified manner for convenience of explanation.

加熱炉9は、石英製の炉壁1oで囲われて形成された加
熱室11を備えている。加熱室11の天井部12は加圧
力を受けるために肉厚に形成されている。鏡面研磨され
た多結晶シリコン層5を有する単結晶シリコンウェハ1
と支持体用のlit結品シリコンウェハ7は、研磨面6
及び8を向かい合わせて重ねて炭化ケイ素製の突き出し
部材13の加圧用載置部14に載置される。突き出し部
材13は、加熱室11の下方の駆動部15に設けられる
制御モータを備える駆動装置(図示されていない。)に
より駆動される↓ 加熱室11内は、周囲に設けられているヒータ(図示さ
れていない。)により加熱され、下方が温度が低く、上
方が温度がt′Sいように温度勾配が形成されている。
The heating furnace 9 includes a heating chamber 11 surrounded by a furnace wall 1o made of quartz. The ceiling portion 12 of the heating chamber 11 is formed thick in order to receive pressurizing force. Single-crystal silicon wafer 1 having a mirror-polished polycrystalline silicon layer 5
and the lit silicon wafer 7 for the support has a polished surface 6
and 8 are stacked facing each other and placed on the pressure mounting portion 14 of the protruding member 13 made of silicon carbide. The protruding member 13 is driven by a drive device (not shown) provided with a control motor provided in a drive section 15 below the heating chamber 11. ), and a temperature gradient is formed such that the lower part is lower in temperature and the upper part is lower in temperature.

本例は以上のように楢成されているので、加圧用載置部
14に、支持体用の単結晶シリコンウェハ7と多結晶シ
リコン層5を有する単結晶シリコンウェハ1を重ね合わ
せた接合素材16を載置し、炭化ケイ素製の突き出し部
材13を上方に移動させる。
Since this example is constructed as described above, a bonding material in which a single-crystal silicon wafer 7 for a support and a single-crystal silicon wafer 1 having a polycrystalline silicon layer 5 are stacked on a pressurizing mounting part 14 16 is placed, and the silicon carbide protrusion member 13 is moved upward.

本例においては、加熱炉の温度勾配は下方が600℃で
、上方が1200 ’Cとなっているので、接合素材1
6は、加圧用の天井部12に接触するまでに、所定の温
度にまで加熱される。接合素材16は、所定の温度、例
えば1200℃に加熱されて、その上面が天井部12に
接することになる。
In this example, the temperature gradient of the heating furnace is 600'C at the bottom and 1200'C at the top, so the joining material 1
6 is heated to a predetermined temperature before contacting the pressurizing ceiling part 12. The joining material 16 is heated to a predetermined temperature, for example, 1200° C., and its upper surface comes into contact with the ceiling portion 12.

接合素材16が天井部に接したところで、突き出し部材
13は更に押し上げられ、接合素材16には、100g
/cm2乃至1000g/cm”の圧力が加えられ、多
結晶シリコン層5と支持体用の単結晶シリコンウェハ7
が接合される。
When the joining material 16 touches the ceiling, the protruding member 13 is further pushed up, and the joining material 16 is loaded with 100 g.
/cm2 to 1000 g/cm'' is applied to the polycrystalline silicon layer 5 and the single crystal silicon wafer 7 for support.
are joined.

本例において、洗洋工程から接合工程までは、清浄度は
クラス10に保たれた。
In this example, the cleanliness level was maintained at class 10 from the washing process to the bonding process.

(ト)発明の効果 本発明は、誘電体分離基板を製造するに、分離溝に二酸
化ケイ素の絶縁膜が形成されている多結晶シリコン基板
に、クロルシランの還元分解により 100μm以下の
膜厚を有する多結晶シリコン網を堆積させるので、従来
の基板に比して反りが小さく、接合や研磨除去等の加工
が容易であり、良品チップ率の向上をはかることができ
る。
(G) Effects of the Invention In manufacturing a dielectric isolation substrate, the present invention provides a polycrystalline silicon substrate on which an insulating film of silicon dioxide is formed in the isolation groove, and which has a film thickness of 100 μm or less by reductive decomposition of chlorosilane. Since a polycrystalline silicon network is deposited, the warpage is smaller than that of conventional substrates, and processing such as bonding and polishing removal is easy, and the rate of non-defective chips can be improved.

しかも、本発明の誘電体分離基板は、多結晶シリコン層
と単結晶シリコン支持体を直接加圧接合するので、従来
の誘電体分離基板と比較して、剥離やアルカリ金属汚染
等が生じない。
Moreover, in the dielectric separation substrate of the present invention, since the polycrystalline silicon layer and the single crystal silicon support are directly pressure-bonded, peeling and alkali metal contamination do not occur as compared to conventional dielectric separation substrates.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、多結晶シリコン層を気相成長法により形成さ
せた、分離酸化膜付きのV溝を有する多結晶シリコン半
導体基板についての概略の断面図であり、第2図は、多
結晶シリコン層を気相成長法により形成させた分離酸化
膜付きの■渦を有する単結晶シリコン半導体基板と支持
体用の単結晶シリコンウェハの接合構造の概略を示す断
面図である。第3図は、本発明の多結晶シリコン層を気
相成長法により形成させた分離酸化膜付きの■講を有す
る単結晶シリコン半樽体基板と支持体用の単結晶シリコ
ンウェハの加熱圧着に使用する加熱炉の概略の説明図で
ある。 図中の符号については、1はn型単結晶シリコンウェハ
、2は主表面、3は網目状の分M if4.4は二酸化
ケイ素膜、5は多結晶シリコン層、6は多結晶シリコン
層の接合面、7は支持体用の律結品シリコンウェハ、8
は支持体用の単結晶シリコンウェハの接合面、9は加熱
炉、10は石英製の炉壁、11は加熱室、12は天井部
、13は炭化ケイ素製の突き出し部材、14は加圧用載
置部、15は駆動部、16は接合素材である。 第3図 q
FIG. 1 is a schematic cross-sectional view of a polycrystalline silicon semiconductor substrate having a V-groove with an isolation oxide film on which a polycrystalline silicon layer is formed by vapor phase growth, and FIG. FIG. 2 is a cross-sectional view schematically showing a bonding structure between a single crystal silicon semiconductor substrate having a vortex and a single crystal silicon wafer for a support with an isolation oxide film formed by a vapor phase epitaxy method. Figure 3 shows the heat-press bonding of a single-crystal silicon half-barrel substrate with a separation oxide film on which a polycrystalline silicon layer of the present invention is formed by vapor phase growth and a single-crystal silicon wafer for a support. FIG. 2 is a schematic explanatory diagram of a heating furnace used. Regarding the symbols in the figure, 1 is the n-type single crystal silicon wafer, 2 is the main surface, 3 is the mesh portion M if4.4 is the silicon dioxide film, 5 is the polycrystalline silicon layer, and 6 is the polycrystalline silicon layer. Bonding surface, 7 is a bonded silicon wafer for support, 8
1 is a bonding surface of a single crystal silicon wafer for a support, 9 is a heating furnace, 10 is a quartz furnace wall, 11 is a heating chamber, 12 is a ceiling, 13 is a protruding member made of silicon carbide, and 14 is a pressurizing mounting. 15 is a drive section, and 16 is a joining material. Figure 3q

Claims (1)

【特許請求の範囲】[Claims] (1)第1の単結晶シリコン基板の片面に分離溝を形成
させ、この片面に分離溝が形成されている第1の単結晶
シリコン基板を熱酸化して該基板面に熱酸化膜を形成さ
せ、次いで分離溝が形成されている側に、クロルシラン
の還元分解により、100μm以下の膜厚を有する多結
晶シリコン層を堆積させ、この堆積した多結晶シリコン
層の主たる表面を研磨して、平坦度を5μm以下かつ表
面粗さを50nm以下にさせ、この多結晶シリコン層の
研磨面を第2の単結晶シリコン基板の表面の粗さが50
nm以下の研磨面に加熱圧着させて接合し、多結晶シリ
コン層が堆積されていない側から、第1の単結晶シリコ
ン基板を少なくとも分離溝の底部の位置まで研磨除去す
ることを特徴とする誘電体分離基板の製造方法。
(1) A separation groove is formed on one side of a first single crystal silicon substrate, and a thermal oxide film is formed on the substrate surface by thermally oxidizing the first single crystal silicon substrate on which the separation groove is formed on one side. Then, on the side where the separation groove is formed, a polycrystalline silicon layer having a thickness of 100 μm or less is deposited by reductive decomposition of chlorosilane, and the main surface of the deposited polycrystalline silicon layer is polished to make it flat. The polishing surface of this polycrystalline silicon layer is polished to a surface roughness of 5 μm or less and a surface roughness of 50 nm or less.
A dielectric characterized in that the first single-crystal silicon substrate is bonded to a polished surface of nm or less by heating and pressure bonding, and the first single-crystal silicon substrate is polished away from the side on which the polycrystalline silicon layer is not deposited to at least the position of the bottom of the separation groove. A method for manufacturing a body separation substrate.
JP17850790A 1989-07-07 1990-07-07 Manufacture of dielectric isolation substrate Pending JPH03129752A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP1-176419 1989-07-07
JP17641989 1989-07-07

Publications (1)

Publication Number Publication Date
JPH03129752A true JPH03129752A (en) 1991-06-03

Family

ID=16013368

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17850790A Pending JPH03129752A (en) 1989-07-07 1990-07-07 Manufacture of dielectric isolation substrate

Country Status (1)

Country Link
JP (1) JPH03129752A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004047741A (en) * 2002-07-11 2004-02-12 Sumitomo Mitsubishi Silicon Corp Laminated dielectric isolation wafer and its manufacturing method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61292934A (en) * 1985-06-21 1986-12-23 Toshiba Corp Manufacture of semiconductor element
JPS6224641A (en) * 1985-07-25 1987-02-02 Toshiba Corp Manufacture of semiconductor substrate
JPS6314449A (en) * 1986-07-04 1988-01-21 Nec Corp Manufacture of dielectric isolation substrate

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61292934A (en) * 1985-06-21 1986-12-23 Toshiba Corp Manufacture of semiconductor element
JPS6224641A (en) * 1985-07-25 1987-02-02 Toshiba Corp Manufacture of semiconductor substrate
JPS6314449A (en) * 1986-07-04 1988-01-21 Nec Corp Manufacture of dielectric isolation substrate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004047741A (en) * 2002-07-11 2004-02-12 Sumitomo Mitsubishi Silicon Corp Laminated dielectric isolation wafer and its manufacturing method

Similar Documents

Publication Publication Date Title
JP2685819B2 (en) Dielectric isolated semiconductor substrate and manufacturing method thereof
JPH0636414B2 (en) Manufacturing method of semiconductor element forming substrate
US8754505B2 (en) Method of producing a heterostructure with local adaptation of the thermal expansion coefficient
JPS61296709A (en) Manufacture of semiconductor
JPH07263541A (en) Dielectric separation substrate and manufacture thereof
JPH0312775B2 (en)
JPH0888272A (en) Manufacture of substrate for semiconductor integrated circuit
JP2961522B2 (en) Substrate for semiconductor electronic device and method of manufacturing the same
JPH03129752A (en) Manufacture of dielectric isolation substrate
JPS6354740A (en) Manufacture of integrated circuit substrate
JP2534673B2 (en) Method for manufacturing dielectric isolation substrate
JP2855639B2 (en) Method for manufacturing semiconductor device
JPH01302740A (en) Dielectric isolation semiconductor substrate
JPH0437020A (en) Preparation of thermocompression bonding wafer
JPH056883A (en) Manufacture of semiconductor substrate
JPH01305534A (en) Manufacture of semiconductor substrate
JPH08236615A (en) Dielectrically isolated substrate and fabrication thereof
JP2002057309A (en) Method of forming soi substrate
JPS6362252A (en) Manufacture of dielectric isolation substrate
JP3614927B2 (en) Method for manufacturing bonded semiconductor substrate
JPH06151572A (en) Dielectric-isolation substrate and its manufacture
JP3518083B2 (en) Substrate manufacturing method
JPH029148A (en) Manufacture of substrates for integrated circuits
JPH03142854A (en) Dielectric isolated substrate and manufacture thereof
JPS60106165A (en) Manufacture of semiconductor device