JPH03129740A - Manufacture of mos-type semiconductor device - Google Patents

Manufacture of mos-type semiconductor device

Info

Publication number
JPH03129740A
JPH03129740A JP20610190A JP20610190A JPH03129740A JP H03129740 A JPH03129740 A JP H03129740A JP 20610190 A JP20610190 A JP 20610190A JP 20610190 A JP20610190 A JP 20610190A JP H03129740 A JPH03129740 A JP H03129740A
Authority
JP
Japan
Prior art keywords
gate
insulating film
drain
source
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20610190A
Other languages
Japanese (ja)
Other versions
JPH0465530B2 (en
Inventor
Takeya Ezaki
豪弥 江崎
Onori Ishikawa
石河 大典
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP11072477A external-priority patent/JPS5444482A/en
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP20610190A priority Critical patent/JPH03129740A/en
Publication of JPH03129740A publication Critical patent/JPH03129740A/en
Publication of JPH0465530B2 publication Critical patent/JPH0465530B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

PURPOSE:To prevent a drop in a breakdown strength of a gate insulating film by a method wherein an insulating film in a part with which a side face of a gate is covered is left as an insulating-film pattern, impurities are introduced into the surface of a substrate by making use of the gate and the insulating-film pattern as a mask and other parts for a source and a drain are formed. CONSTITUTION:Impurities such as As or Sb are introduced into a substrate 1 by making use of a gate 4' and a field oxide film 2 as a mask. Thereby, shallow impurity layers 7, 8 which are to be used as parts for a source and a drain are formed. A silicon oxide film 6 is deposited on them. Then, an etching gas is made incident nearly perpendicularly to the surface of the substrate 1; the oxide film 6 is removed selectively. After that, phosphorus is introduced by making use of the gate 4' and an insulating- film pattern 6' as a mask; impurity layers 17 and 18 which are to be used as other parts for the source and the drain are formed. An oxide film 9 is deposited; contact opening parts 20, 21 are formed in desired positions; a source electrode, a drain electrode and a gate electrode 10, 11, 12 are formed to complete this device. When a spread of a source layer and a drain layer into a part directly under the gate is controlled accurately, an effective channel length of high accuracy can be formed.

Description

【発明の詳細な説明】 本発明はMOS型半導体装置の製造方法に関しシリコン
・ゲートの如き自己整合プロセスのより改善された方法
提供するものであも 通常の自己整合プロセスに於てζ友 半導体基板上にゲ
ート絶縁膜を介して例えば多結晶シリコンのゲートパタ
ーンを形成し そのゲートパターンそのものを拡散マス
クとして不純物を導入してソース・ドレイン拡散層を形
成すも その瓢 ゲート絶縁膜の上面は多結晶シリコン
に覆われているがその側面は高濃度の不純物にさらされ
る。このためゲート絶縁膜の耐圧低下がもたらされるこ
とが知られている。これを避けるには拡散層の濃度を下
げればよい八 そうすると抵抗の増大の如き他の問題を
ひきおこ机 ソース・ドレイン方向のゲートパターンの
昨 すなわちゲート長をLcとしソース・ドレイン拡散
層の横方向ひろがりをIJとすると、ソース・ドレイン
間の実効チャネル長り、tfは次式で表わされる。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing MOS type semiconductor devices, and provides an improved method for self-alignment processes such as silicon gates. A gate pattern of, for example, polycrystalline silicon is formed on top of the gate insulating film via a gate insulating film, and impurities are introduced using the gate pattern itself as a diffusion mask to form source/drain diffusion layers.As a result, the upper surface of the gate insulating film is polycrystalline. Although it is covered with silicon, its sides are exposed to high concentrations of impurities. It is known that this causes a reduction in the withstand voltage of the gate insulating film. To avoid this, it is possible to lower the concentration of the diffusion layer.8 Doing so may lead to other problems such as an increase in resistance. If the spread is IJ, the effective channel length between the source and drain, tf, is expressed by the following equation.

L−tt= Lc −2・I J          
 (1)MOS型電界効果トランジスタの特性は実効チ
ャネル長L *ttにより規定されるのは云うまでもな
く、特性を揃えるためには高精度に実効チャネル長を形
成する必要があも そのためには 出来るだけ少数の因
子で実効チャネル長が決められる様な構造や製造方法が
好ましも1 式(1)I上L−++が二ヶの因子LC,
IJに依存している事を意味している力<、  IJを
小さくすることによりその寄与を少なくしてほとんどL
cのみに依存する様な一因子型にする方が良(1しかし
ソース・ドレイン拡散層を浅くすると電極配線のつき抜
けが起こり、拡散層−基板間が短絡する。そこで、ゲー
ト近傍に於ては浅く、電極配線とのコンタクト形成領域
では深くソース・ドレイン拡散層を形成する方法がとら
れていも しかしそのためにはフォトマスク(ガラス乾
板)が1枚余分に必要であり、深い拡散層とゲートとの
相対位置がマスク合せにより決まるのでマスク設計上寸
法に余裕を取っておかねばならず、高密度化に適さなく
なも これに対して従来提案されている解決法の一つに
 多結晶シリコンゲートのパターンを形成したの板 全
面に熱酸化膜を成長せし取 多結晶シリコン上の方が単
結晶基板上よりも酸化膜が厚く成長することを利用する
方法が特開昭52−22481号に示されていもこの方
法は基板上の酸化膜を弗化水素溶液でエッチし除去した
時点でエツチングを停止することにより、多結晶シリコ
ンゲート上(、このみ酸化膜を残すことが出来も かく
してゲートの側面を酸化膜で覆L\ ゲート直下のゲー
ト絶縁膜が高濃度不純物に直接さらされることから保護
することが出来も しかしこの場色 ゲート側面の酸化
膜の厚み(↓ 酸化膜の成長条件とエツチング条件の二
つの要因によって規定されるので精密に形成する事が困
難であも また 多結晶シリコンの熱酸化に於て酸化膜
は成長時に膨張するので、ゲート側面の酸化膜を余り厚
くするとゲート近傍に歪力が加わり好ましくなち〜 他
方薄くしたのではゲートとソース・ドレイン間の耐圧が
低く実用に供する事が出来な(〜 本発明は ゲート絶縁膜の耐圧低下が少ない信頼性の高
いMOS型半導体装置を得るとともに所望の実効チャン
ネル長が高精度に得られ ドレイン近傍の電界強度を緩
和するのに好適な構造を容易に製造することのできる方
法を提供することを目的とする。
L-tt=Lc-2・IJ
(1) It goes without saying that the characteristics of a MOS field effect transistor are determined by the effective channel length L*tt, and in order to make the characteristics uniform, it is necessary to form the effective channel length with high precision. It is preferable to use a structure and manufacturing method that allows the effective channel length to be determined by as few factors as possible.1 In formula (1) I, L-++ is two factors LC,
Force <, which means that it depends on IJ, By reducing IJ, its contribution is reduced and almost L
It is better to use a single factor type that depends only on c (1) However, if the source/drain diffusion layer is made shallow, the electrode wiring will pass through, causing a short circuit between the diffusion layer and the substrate. Although a method has been adopted in which the source/drain diffusion layer is shallow and deep in the contact formation region with the electrode wiring, an extra photomask (glass dry plate) is required for this purpose, and the deep diffusion layer and gate Since the relative position with respect to the mask is determined by mask alignment, a margin must be made in the mask design, making it unsuitable for high-density. A thermal oxide film is grown on the entire surface of the plate with the gate pattern formed. JP-A-52-22481 discloses a method that takes advantage of the fact that the oxide film grows thicker on polycrystalline silicon than on a single crystal substrate. Although this method is shown in Figure 3, by etching the oxide film on the substrate with a hydrogen fluoride solution and stopping the etching after removing it, it is possible to leave only the oxide film on the polycrystalline silicon gate. Covering the sides of the gate with an oxide film can protect the gate insulating film directly under the gate from being directly exposed to high-concentration impurities. Although it is difficult to form precisely because it is determined by two factors: etching conditions, the oxide film expands during thermal oxidation of polycrystalline silicon, so if the oxide film on the sides of the gate is too thick, the gate On the other hand, if the gate is made thinner, the withstand voltage between the gate and the source/drain is too low to be of practical use. It is an object of the present invention to provide a method by which a desired effective channel length can be obtained with high precision, and a structure suitable for alleviating the electric field strength near the drain can be easily manufactured.

こうした目的を達成するための本発明のMOS型半導体
装置の製造方法(上 半導体基板上のM○Sトランジス
タ形成部にゲート絶縁膜を介してゲートを設けた後、上
記ゲートをマスクとして上記形成部に不純物を導入して
ソース、ドレインの一部分を形成し 上記ゲートの側面
を覆う部分の上記基板に垂直方向の膜厚がその他の部分
の同膜厚よりも厚い絶縁膜を上記形成部全面に堆積せし
奴上記基板にほぼ垂直にエツチング材を入射せしめて上
記形成部の絶縁膜全面を垂直方向に所定量ドライエツチ
ングすることにより、上記ゲートの側面を覆う部分の絶
縁膜を絶縁膜パターンとして残存させ、上記ゲートおよ
び上記絶縁膜パターンをマスクとして上記基板表面に不
純物を導入して上記ソース、 ドレインの他の部分を形
成する方法である。
Method for manufacturing a MOS type semiconductor device of the present invention to achieve these objects (above) After providing a gate in the M○S transistor formation area on a semiconductor substrate via a gate insulating film, the formation area is formed using the gate as a mask. impurities are introduced into the substrate to form part of the source and drain, and an insulating film is deposited over the entire surface of the forming area, the thickness of which is thicker in the vertical direction of the substrate in the part that covers the side surface of the gate than the same film thickness in other parts. By injecting an etching agent almost perpendicularly into the substrate and dry-etching the entire surface of the insulating film in the forming area by a predetermined amount in the vertical direction, the insulating film covering the side surface of the gate remains as an insulating film pattern. In this method, other parts of the source and drain are formed by introducing impurities into the surface of the substrate using the gate and the insulating film pattern as a mask.

以下実施例により詳細に説明する。第1図は本発明の一
実施例によるMOS型電界効果トランジスタの作成を工
程順に示したものであん 例としてNチャネルについて
説明すも (A>p型の(100)面を有するシリコン基板の所望
の位置に 周知の選択酸化法により素子間分離用のフィ
ールド酸化膜2を形成する。その後基板1を再び酸化し
てMOSトランジスタ形底部に約1000人の厚さのゲ
ート酸化膜3を成長せしめも(B)この上から約500
0Åの厚さの多結晶シリコン膜4を周知の気相成長法に
より堆積せしぬ ゲートパターンを形成するためのフォ
トレジストパターン5を写真蝕刻法により形成する。
This will be explained in detail below using examples. FIG. 1 shows the manufacturing process of a MOS field effect transistor according to an embodiment of the present invention in the order of steps. A field oxide film 2 for isolation between elements is formed at the position by a well-known selective oxidation method.Then, the substrate 1 is oxidized again and a gate oxide film 3 with a thickness of about 1000 nm is grown on the bottom of the MOS transistor shape. (B) Approximately 500 meters from the top
A polycrystalline silicon film 4 having a thickness of 0 Å is deposited by a well-known vapor phase epitaxy method.A photoresist pattern 5 for forming a gate pattern is formed by a photolithography method.

(C)フォトレジストパターン5をマスクとして多結晶
シリコン4をエッチすも この時、フレオン系のガスに
よるドライエツチングあるいは硝酸−弗酸系の化学液の
いづれでも良い力t 多結晶シリコン膜4のエツチング
面と基板lの表面とのなす角が出来るだけ90”に近く
なる様な条件を選Q  その粘気 多結晶シリコン膜4
からゲート4′が形成されそのゲート4°の側面4’b
は基板1表面に対してほぼ直角をなす如く急峻な面とな
る。この後次の工程に移る前に ゲート4′をマスクと
してゲート酸化膜3を選択的に除去しても良い力匁 こ
こではそのまま残しておく。
(C) The polycrystalline silicon film 4 is etched using the photoresist pattern 5 as a mask. At this time, either dry etching using a Freon gas or a nitric acid-hydrofluoric acid based chemical solution may be used. Etching the polycrystalline silicon film 4 Select conditions such that the angle between the plane and the surface of the substrate l is as close to 90" as possible. Its viscosity Polycrystalline silicon film 4
A gate 4' is formed from the side surface 4'b of the gate 4°.
is a steep surface that is almost perpendicular to the surface of the substrate 1. After this, before proceeding to the next step, the gate oxide film 3 may be selectively removed using the gate 4' as a mask.Here, it is left as is.

(D)第1図Cの状態で、ゲート4°およびフィールド
酸化膜2をマスクとして基板1に 砒素A3やアンチモ
ンSbの如く拡散係数の出来るだけ小さい不純物を導入
すも これには熱拡散肱 ドープトオキサイド法又はイ
オン注入法のいづれでも良いが周知の如く、高精度が必
要な場合にはイオン注入法が望ましL〜 不純物濃度は
1019〜10”cm−”程度で、後に形成するソース
・ドレインの他部分の層よりもやや低濃度にしておく。
(D) In the state shown in FIG. 1C, an impurity with a diffusion coefficient as small as possible, such as arsenic A3 or antimony Sb, is introduced into the substrate 1 using the gate 4° and the field oxide film 2 as a mask. Either the toxide method or the ion implantation method may be used, but as is well known, when high precision is required, the ion implantation method is preferable. Keep the concentration slightly lower than that of the other parts of the drain layer.

かくしてソース・ドレインの一部分となる浅い不純物層
7.8が形成されも この状態を第1図りに示も (E)この上から絶縁膜 例えばシリコン酸化膜6を気
相成長法により所望の膜厚を有限 図のごとくゲート側
面を覆う部分の基板に垂直方向の膜厚が同地の部分の膜
厚よりも厚くなる如く堆積せしめる。この暇 ゲート4
′の上面4°aやゲート酸化膜3の如き水平面上に於け
る膜厚とゲート側面4°b上に於ける膜厚が出来るだけ
異ならない条件を選ぶ方がよl、%  そのためには常
圧の気相成長法よりもO,1torr程度のガス圧で行
う減圧気相成長法の方がより適していも 次に 基板1表面に対してほぼ垂直にエツチング材とし
てエツチングガス50を入射せしめて酸化膜6をドライ
エツチングにより選択的に除去する。
In this way, a shallow impurity layer 7.8 that becomes part of the source/drain is formed. This state is shown in Figure 1. As shown in the figure, the film is deposited so that the film thickness in the vertical direction is thicker on the substrate in the part covering the side of the gate than in the same part. This free time Gate 4
It is better to choose a condition in which the film thickness on a horizontal plane such as the upper surface 4°a of the gate oxide film 3 and the film thickness on the gate side surface 4°b are as similar as possible. Although the low pressure vapor phase growth method performed at a gas pressure of about 1 Torr is more suitable than the high pressure vapor phase growth method, next, an etching gas 50 as an etching agent is made to be incident almost perpendicularly to the surface of the substrate 1. Oxide film 6 is selectively removed by dry etching.

の様子をゲート4“近傍のみを拡大して第2図に示して
あも ドライエツチングとしては アルゴンイオンの如
き不活性ガスの衝突エネルギーを利用するイオン・ビー
ムエツチングやスパッタリングの如き方法と、主として
フレオン系のガスの化学反応を利用する反応性スパッタ
リングやプラズマエツチングの如き方法とがあも 前者
の方法はエツチングの選択性が少なく適用対象に限定が
ありまたプラズマエツチングではガスの運動方向に指向
性がなくエツチングは等方向に進行する。これに対して
平行な二つの電極間に試料が置かれる反応性スパッタリ
ングで(よ 条件により基板lの表面にほぼ垂直にエツ
チングガスを入射せしめる事が出来かつエツチングの選
択性もあるので本発明にとって都合が良鶏 ガスとして
フレオンCF4を用〜\ 0.01〜0.03torr
程度のガス圧力で、電極上にテフロンを敷いた状態で高
周波電力400Wのとき、酸化膜のエツチング速度は9
00人/分程度である。
Figure 2 shows an enlarged view of only the vicinity of gate 4.Dry etching includes methods such as ion beam etching and sputtering, which utilize the collision energy of inert gas such as argon ions, and methods mainly using freon etching. There are methods such as reactive sputtering and plasma etching that utilize chemical reactions of gases in the system.The former method has low etching selectivity and is limited in its application, and plasma etching has no directivity in the direction of gas movement. In contrast, reactive sputtering, in which the sample is placed between two parallel electrodes, allows etching gas to be incident almost perpendicularly to the surface of the substrate (under certain conditions, etching progresses in the same direction). Freon CF4 is convenient for the present invention because it has selectivity. Freon CF4 is used as the gas ~ \ 0.01 to 0.03 torr
When high-frequency power is 400 W with Teflon placed on the electrode at a gas pressure of
00 people/minute.

この条件の様に低いガス圧力に於てはエツチングガスは
ほとんど基板表面に垂直に入射すも 従ってゲート4′
の上面4°aおよびゲート酸化膜3上に於ける酸化膜6
の面6aおよび6Cにはエッチングガスが垂直に入射す
るカミ ゲート4°の側面4°bとほぼ平行な傾斜面6
bはガスの入射方向と平行に近く、単位面積当りのガス
の入射量力(極めて少なくエツチング速度が遅1.% 
 従って傾斜面6bの垂直方向への後退速度が遅いので
、図番こ於て右方へほとんど進ま哄 表面6 a、6 
b、6 cの最初の形状がほぼ保たれたまま下方へ平行
移動すもエツチング時間の推移t1→t2→いと共に点
線で示した如くエツチングが進行よ ゲート4゛の上面
4’aに於て酸化膜6がほぼ除去された時刻をtsとす
ると、 6′で示す形状に酸化膜6カく残されも時刻t
3又はそれをやや超過した時刻にドライエ・ソチングを
停止して、ゲート4′の側面4’bおよびその近傍のゲ
ート絶縁膜3のみを覆う如き酸化膜の微細絶縁膜パター
ン6′を形威すも 力)<シて形成されたパターン6′
の巾Wはゲート側面4’b上における酸化膜6の厚さに
ほぼ等し−〜(F)この後、ゲート4′および絶縁膜ノ
(ターン6をマスクとしてイオン注入法又は熱拡散法(
こより燐を導入してソース・ドレインの他部分となる不
純物層17および18を形成すも この時望ましく(i
層17および18の横方向ひろがりlJtが酸化膜]く
ターン6′の巾Wよりも小さくなるよう接合深さを調節
しておく。
Under such low gas pressure as in this condition, the etching gas is almost perpendicularly incident on the substrate surface.
Oxide film 6 on top surface 4°a and gate oxide film 3
The etching gas is perpendicularly incident on the surfaces 6a and 6C of the gate.
b is close to parallel to the direction of gas incidence, and the amount of gas incident per unit area (very small and the etching speed is 1.%)
Therefore, since the receding speed of the inclined surface 6b in the vertical direction is slow, it almost moves to the right in this figure.Surfaces 6a, 6
b, 6 While the initial shape of c is almost maintained, the etching moves downward in parallel, and as the etching time changes from t1 to t2, etching progresses as shown by the dotted line.At the upper surface 4'a of gate 4' If the time when the oxide film 6 is almost removed is ts, then when the oxide film 6 remains in the shape shown by 6', the time t
At a time of 3 or slightly exceeding the time, the dry etching is stopped to form a fine insulating film pattern 6' of an oxide film that covers only the side surface 4'b of the gate 4' and the gate insulating film 3 in the vicinity thereof. Pattern 6' formed by
The width W of the gate 4' is approximately equal to the thickness of the oxide film 6 on the gate side surface 4'b. After that, the gate 4' and the insulating film are processed by ion implantation or thermal diffusion using the turn 6 as a mask.
From this point, phosphorus is introduced to form impurity layers 17 and 18 which will become the other parts of the source and drain.
The junction depth is adjusted so that the lateral extent lJt of the layers 17 and 18 is smaller than the width W of the oxide film turn 6'.

(G)再び酸化膜9を気相成長法により堆積せしめて、
写真蝕刻法により所望の位置にコンタクト開孔部20.
21を設け、ソース・ドレイン、ゲート電極10、11
.12を形成して完了すん 酸化膜6はゲート側面4’b上に於て(上 ゲート上面
41 aの如き水平面上におけるよりも1〜2 It程
度薄い力t その比率は酸化膜の成長条件力く一定であ
ればほぼ定まっているので、水平面上での膜厚を監視す
ることにより微細)(ターン6゛の巾Wを所望の値に制
御することが出来る。第1図Fで明らかな如く、ソース
・ドレイン拡散層7および8を形成する際に ゲート4
゛の側面4’b力く酸化膜パターン6″により覆われて
いる・た奴 ゲート4′直下に於てはゲート酸化膜3は
直接高濃度不純物にさらされなち〜 また 以上の方法
(上 層7.8を浅く形成できるた取 ゲート4°下へ
の入り込み1J!を極めて小さくできるととも&へ 不
純物の選定によりこれらを高精度に制御することが可能
とな%  L@trはほとんどり、にのみ依存する様な
一因子型でかつ高精度になる。この事(よ 高密度化又
は高速化するためにゲート長り、を短かくした時に特に
重要である。というの(よ その場合、 ドレイン・ソ
ース間耐圧のみならず、MOS型電界効果トランジスタ
の重要な特性である閾値Vrも実効チャネル長L・41
に依存するから特に高精度にL・ITを得る必要がある
からであん な耘 第1図Fに於てソース・ドレインの
一部の層17.18を燐不純物を導入して形成すると、
この時、層17.18と先に形成した浅い拡散層7.8
は同一導電型の不純物であるので電気的に接続される。
(G) Depositing the oxide film 9 again by vapor phase growth,
Contact holes 20 are formed at desired positions by photolithography.
21 are provided, and source/drain and gate electrodes 10 and 11 are provided.
.. 12 is completed, the oxide film 6 is formed on the gate side surface 4'b (upper gate upper surface 41a). If it is constant, it is almost fixed, so by monitoring the film thickness on the horizontal plane, it is possible to finely control the width W of the turn 6゛ to a desired value. , when forming the source/drain diffusion layers 7 and 8, the gate 4
The gate oxide film 3 is directly exposed to high concentration impurities directly under the gate 4', which is covered by the oxide film pattern 6". The layer 7.8 can be formed shallowly, and the intrusion 1J! below the gate 4° can be made extremely small, and these can be controlled with high precision by selecting impurities. This is particularly important when the gate length is shortened to achieve higher density or higher speed. , Not only the drain-source breakdown voltage but also the threshold value Vr, which is an important characteristic of a MOS field effect transistor, also depends on the effective channel length L・41
This is because it is necessary to obtain L-IT with high precision because it depends on the phosphorus impurity.
At this time, layer 17.18 and shallow diffusion layer 7.8 formed earlier
are impurities of the same conductivity type, so they are electrically connected.

層17.18の横方内拡がりIJtl&  酸化膜の微
細パターン6′の巾Wよりも小さくなる如く拡散条件を
選ぶのが望ましく1 浅い層7.8もこの工程に於ける
熱処理を受けるので拡散深さが増す力支 その不純物の
拡散係数が小さいので、ゲート4′の下への拡がりIJ
Iは第1図下に示すごとくきわめて小さ(1この場合L
・r+は次式で表わされも L・tt−Lc −21Jl            
(3)ここでIJIは極めて小さく出来るので、 L・
ITはほとんどり、で決まも ソース、 ドレイン層1
7.18の接合深さXJはlJtを出来るだけWに近づ
ける事により、電極形成時の合金反応を防止出来る程度
に深くすることは可能である。上記の説明に於て(よ 
酸化膜6を堆積せしめる以前に浅い層7.8が形成され
る方法を用いた力t 他の方法も可能であも 例えば 
酸化11!6として、少くとも一部に於て砒素を含むド
ープトオキサイドを用いても良へその場合、浅い層7 
、811  ソース、 ドレイン層17.18の形成時
に同時に形成されも また上記の方法に於てはソース、
 ドレイン層17.18を燐で、浅I、)層7.8を砒
素やアンチモンの如く燐よりも拡散係数の小さい不純物
で形成するのが望ましいカミ 拡散係数には濃度依存性
があり、低濃度になる程拡散係数が小さくなることを利
用して、いずれの層も同一不純物で形成しても良い。そ
の場合(友 例えば浅い層7,8の不純物濃度を10”
 〜10”Cm−”になる如く制御し 他方ソース・ド
レイン層17.18の方は1021〜to”cr’程度
の高濃度にすも 例えば燐を用いた場合、この様に濃度
を変えることにより拡散係数を4〜6倍変化させられ 
従って接合深さを2倍以上変えることが出来も第3図に
本発明のさらに他の一実施例を示す。
It is desirable to select the diffusion conditions so that the lateral inward expansion of the layers 17 and 18 is smaller than the width W of the fine pattern 6' of the oxide film1.Since the shallow layers 7 and 8 are also subjected to heat treatment in this step, the diffusion depth is Since the diffusion coefficient of the impurity is small, the IJ spreads below the gate 4'.
As shown in the bottom of Figure 1, I is extremely small (1 In this case, L
・r+ is expressed by the following formula: L・tt−Lc −21Jl
(3) Since IJI can be made extremely small here, L.
Most ITs have source and drain layers 1
The junction depth XJ of 7.18 can be made deep enough to prevent alloy reactions during electrode formation by making lJt as close to W as possible. In the above explanation
Other methods are also possible, but for example
As the oxide 11!6, a doped oxide containing arsenic at least in part may be used. In that case, the shallow layer 7
, 811 may be formed simultaneously when forming the source and drain layers 17 and 18. Also, in the above method, the source,
It is desirable to form the drain layers 17 and 18 with phosphorus, and to form the layers 7 and 8 with an impurity having a smaller diffusion coefficient than phosphorus, such as arsenic or antimony. Taking advantage of the fact that the diffusion coefficient becomes smaller as the number increases, both layers may be formed with the same impurity. In that case (for example, the impurity concentration of shallow layers 7 and 8 is set to 10")
For example, when using phosphorus, by changing the concentration in this way, The diffusion coefficient can be changed by 4 to 6 times.
Therefore, the joining depth can be changed by more than twice. FIG. 3 shows still another embodiment of the present invention.

(A)第1図Bで多結晶シリコン4を堆積せしめた上か
らさらに酸化膜の如き第1の絶縁膜14を堆積せしぬ 
その後フォトレジストパターン5を形威すも (B’)レジストパターン5をマスクとして第1の絶縁
膜をエッチし そのまま続けて又は−旦しシストパター
ン5を除去して多結晶シリコン4のエツチングを行ない
ゲート4′およびその上面を覆う第1の絶縁膜14を形
成する。この時ゲート酸化膜3のエツチングも行ない基
板lの表面を露出せしめも (C)この眞 後で形成するソース ドレイン拡散層と
同一導電型の不純物を含む第2の絶縁膜を全面に堆積せ
しぬ 第1図り、Eの工程同様に ゲート4°側面を覆
う第2の絶縁膜6°を形成すも なお第2の絶縁膜6′
のすべてに不純物が添加されている必要はなく基板1表
面近像 すなわち膜の堆積の初肌 例えばはじめの0.
1μのみに添加されていれば十分であも (D)次にコンタクト形成に必要な程度に高濃度のソー
ス ドレイン層17.18を形成すも この時の熱処理
により、第2の絶縁膜6°下の領域にその膜中の不純物
が拡散されて浅いソース・ドレイン層7.8が形成され
も この時ソース ドレイン層17゜18の深さ(表 
ゲート4°直下の領域には達しない様に 第2の絶縁膜
6′の巾Wよりやや小さくしておく。そうする事により
第1図Fに示した構造と同様の構造が得られも (E)ゲート4°へのコンタクト開孔部はソース114
7層17.18からやや離れた領域に形成されるものと
して、第3図ではソース ドレイン電極10.11のみ
が示してあも ゲート4゛は上面および側面に於て絶縁
膜14°、6°に完全に覆われているた歇この図の如く
ソース ドレイン電極10.11がゲート4′上へ延在
していてもゲートとソース又はドレイン間が短絡する事
はな賎 この実施例に於て(飄コンタクト開孔部20.
21の一辺が絶縁膜6゛により構成されていも このた
め第1図Gの如く写真蝕刻法によってコンタクト開孔部
20,21を形成する際のマスク合せ誤差を見込んでお
く必要がないので素子寸法がソース ドレイン方向に於
てより短縮されも ゲート4°へのコンタクト形成につ
いては同様であるので素子形成に必要な基板1の面積が
減少することになり、この実施例は半導体装置の高密度
化に特に有効であも なおゲート側面の絶縁膜6としては酸化膜のみならず窒
化膜その他の絶縁膜が適宜使用可能であも さて、以上
のように ソース ドレインの一部の層17.18は電
極配線と良好なコンタクトを形成するため高濃度である
ht 本発明に於てはゲートパターン側面に絶縁膜のマ
スクが形成された構成になっているので、ゲート直下の
ゲート絶縁膜はその高濃度不純物に直接さらされること
がな(ち従ってゲート絶縁膜の耐圧力支 膜本来の値に
維持されk  MOS型半導体装置に於ける故障原因の
大きな割合をゲート絶縁膜の耐圧不良が占めているので
、本発明はMOS型半導体装置の良品取信頼性の向上に
寄与すも また本発明によれは ゲート側面の絶縁膜パターン6 
により、ソース ドレイン不純物層の接合深さXJを電
極配線とのコンタクト形成にとって望ましい程度に深く
形成しっス ゲート直下内へは浅いソース・ドレイン層
を形成するためその横方内拡がりを十分小さく出来も 
それにより実効チャネル長Lu1lはほとんどゲート長
L6にのみに確実に依存させることができるので、ゲー
トパターンを高精度に形成することにより、所望の実効
短チャネル長が高精度で得られる。MOS型半導体装置
の緒特性は実効チャネル長に依存しているので、素子間
の特性を揃えることが容易になり、設計値通りの特性が
得やすくなり製造工程の良品率が向上すム この効果(
上 高密啓化するために寸法を微細化しゲート長が短か
くなった場合に特に重要であも さらに本発明は ゲー
ト側面の絶縁膜パターン直下近傍に浅い層を形成するこ
とにより、ゲート直下へのソース・ドレイン層の拡がり
をより精密に制御して、さらに高精度の実効チャネル長
形成が可能である。しかL これらの効果をもたらした
ゲート側面の近傍を覆う絶縁膜の微細パターンの形成は
自己整合的で特別のマスクを追加することなくなされる
。それもMOSトランジスタ形成部全面に絶縁膜を堆積
せしめたの板基板表面に垂直に入射するエツチングガス
でドライエツチングを行うだけで良く、極めて簡便かつ
制御性の良い方法であも また ゲート側面の絶縁膜パターンの巾Wはその絶縁膜
の厚さにほぼ等しく形成されるので膜厚の制御によりそ
の巾が高精度に得られる。この本発明の構成では多結晶
シリコンの熱酸化を行う必要がないので、熱酸化膜の成
長に伴う膜の膨張による歪みの発生あるいはゲート耐圧
の低下などの従来の欠点はな鶏 さらに ゲート側面を
覆う絶縁膜として酸化膜のみならず窒化膜も用いること
が出来るのでアルカリ、イオンその他の外部汚染のゲー
ト絶縁膜への浸入が防止され特性の安定化に有効であも
 さらに本発明において!よ ゲート側面の上記絶縁膜
パターン直下近傍に形成されるソース・ドレイン層をソ
ース・ドレインの他の部分より低濃度とする構造を容易
かつ高精度に得ることができ、ソース・ドレインからゲ
ート直下領域方向への不純物分布の傾斜をより緩やかに
しドレイン近傍の電界強度を緩和することにより、短チ
ャネルにおいて特に問題となるドレイン耐圧の低下を防
止する効果を生じも 以上の様に本発明は短チャネルMOS型半導体装置の種
々の問題を解決し微細パターンを有する高密度半導体集
積回路装置の実現に産業上の価値の極めて高いものであ
(A) A first insulating film 14 such as an oxide film is not further deposited on top of the polycrystalline silicon 4 deposited in FIG. 1B.
After that, the photoresist pattern 5 is formed (B'), and the first insulating film is etched using the resist pattern 5 as a mask, and then the polycrystalline silicon 4 is etched either by continuing or after removing the cyst pattern 5. A first insulating film 14 is formed to cover the gate 4' and its upper surface. At this time, the gate oxide film 3 is also etched to expose the surface of the substrate 1 (C). In the same way as step E in the first drawing, a second insulating film 6° covering the 4° side surface of the gate is formed.
It is not necessary that impurities be added to all of the substrate 1 surface. In other words, the first surface of the film deposition. For example, the first 0.
Although it is sufficient to add only 1 μm (D), the source and drain layers 17 and 18 with a high concentration necessary for contact formation are formed. Even if the impurities in the film are diffused into the underlying region and a shallow source/drain layer 7.8 is formed, the depth of the source/drain layer 17.
It is made slightly smaller than the width W of the second insulating film 6' so that it does not reach the region directly below the gate 4°. By doing so, a structure similar to that shown in FIG.
In Figure 3, only the source and drain electrodes 10.11 are shown as being formed in a region slightly apart from the 7th layer 17.18. Even if the source and drain electrodes 10 and 11 extend over the gate 4' as shown in this figure, there will be no short circuit between the gate and the source or drain. (Air contact opening 20.
Even if one side of 21 is composed of an insulating film 6', there is no need to take into account mask alignment errors when forming contact openings 20 and 21 by photolithography as shown in FIG. Although it is shortened further in the source-drain direction, the contact formation to the gate 4° is the same, so the area of the substrate 1 required for device formation is reduced, and this embodiment is suitable for high-density semiconductor devices. However, as the insulating film 6 on the gate side surface, not only an oxide film but also a nitride film or other insulating film can be used as appropriate.As described above, some layers 17 and 18 of the source and drain are In the present invention, an insulating film mask is formed on the side surface of the gate pattern, so the gate insulating film directly under the gate has a high concentration. It is not directly exposed to impurities (therefore, the withstand pressure of the gate insulating film is maintained at its original value). Although the present invention contributes to improving the reliability of quality products of MOS type semiconductor devices, the present invention also improves the reliability of the insulating film pattern 6 on the side surface of the gate.
By forming the junction depth XJ of the source/drain impurity layer as deep as desired for forming contact with the electrode wiring, the lateral inward expansion of the source/drain layer can be made sufficiently small to form a shallow source/drain layer directly under the gate. too
As a result, the effective channel length Lu1l can be reliably made to almost exclusively depend on the gate length L6, so that by forming the gate pattern with high precision, a desired effective short channel length can be obtained with high precision. Since the characteristics of a MOS semiconductor device depend on the effective channel length, it is easier to match the characteristics between elements, making it easier to obtain characteristics as designed and improving the yield rate in the manufacturing process. (
Although this is particularly important when the gate length is shortened due to miniaturization in order to achieve high-density transistors, the present invention also provides a method for forming a shallow layer directly under the insulating film pattern on the side of the gate. By controlling the spread of the source/drain layer more precisely, it is possible to form an effective channel length with even higher precision. However, the formation of the fine pattern of the insulating film covering the vicinity of the gate side surface which brought about these effects is done in a self-aligned manner and without the addition of a special mask. This is an extremely simple and controllable method, as it only requires dry etching with an etching gas that is incident perpendicularly to the surface of the board after the insulating film is deposited on the entire surface of the MOS transistor forming area. Since the width W of the film pattern is formed to be approximately equal to the thickness of the insulating film, the width can be obtained with high precision by controlling the film thickness. In the configuration of the present invention, there is no need to thermally oxidize the polycrystalline silicon, so there are no conventional drawbacks such as distortion caused by expansion of the film due to growth of the thermal oxide film or reduction in gate breakdown voltage. Since not only an oxide film but also a nitride film can be used as the covering insulating film, it is possible to prevent alkali, ion, and other external contaminants from entering the gate insulating film, which is effective in stabilizing the characteristics. It is possible to easily and accurately obtain a structure in which the source/drain layer formed directly under the above-mentioned insulating film pattern on the side surface of the gate has a lower concentration than the other parts of the source/drain. By making the slope of the impurity distribution more gentle in the direction and relaxing the electric field strength near the drain, the present invention has the effect of preventing a drop in drain breakdown voltage, which is a problem especially in short channels. It solves various problems of type semiconductor devices and has extremely high industrial value for realizing high-density semiconductor integrated circuit devices with fine patterns.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図A−Gは本発明の一実施例にかかるMOSトラン
ジスタの製造工程@ 第2図は第1図における要部工程
の拡大断面諷 第3図A−Eはゲートを絶縁膜で覆った
さらに他の実施例の工程図であも
Figures 1A-G are manufacturing steps of a MOS transistor according to an embodiment of the present invention; Figure 2 is an enlarged cross-section of the main steps in Figure 1; Figures 3A-E are the steps in which the gate is covered with an insulating film. Furthermore, process diagrams of other embodiments are also available.

Claims (5)

【特許請求の範囲】[Claims] (1)半導体基板上のMOSトランジスタ形成部にゲー
ト絶縁膜を介してゲートを設けた後、上記ゲートをマス
クとして上記形成部に不純物を導入してソース、ドレイ
ンの一部分を形成し、上記ゲートの側面を覆う部分の上
記基板に垂直方向の膜厚がその他の部分の同膜厚よりも
厚い絶縁膜を上記形成部全面に堆積せしめ、上記基板に
ほぼ垂直にエッチング材を入射せしめて上記形成部の絶
縁膜全面を垂直方向に所定量ドライエッチングすること
により、上記ゲートの側面を覆う部分の絶縁膜を絶縁膜
パターンとして残存させ、上記ゲートおよび上記絶縁膜
パターンをマスクとして上記基板表面に不純物を導入し
て上記ソース、ドレインの他の部分を形成することを特
徴とするMOS型半導体装置の製造方法。
(1) After providing a gate in a MOS transistor formation area on a semiconductor substrate via a gate insulating film, using the gate as a mask, impurities are introduced into the formation area to form part of the source and drain, and the gate is An insulating film is deposited on the entire surface of the forming part, the thickness of which is thicker in the vertical direction on the substrate in the part covering the side surface than the same film thickness in other parts, and an etching material is applied almost perpendicularly to the substrate to form the forming part. By dry etching the entire surface of the insulating film by a predetermined amount in the vertical direction, the part of the insulating film covering the side surface of the gate remains as an insulating film pattern, and impurities are added to the surface of the substrate using the gate and the insulating film pattern as a mask. A method for manufacturing a MOS type semiconductor device, characterized in that the other parts of the source and drain are formed by introducing the above-mentioned source and drain.
(2)半導体基板上のMOSトランジスタ形成部にゲー
ト絶縁膜を介してゲートを設けた後、上記ゲートをマス
クとして上記形成部に不純物として砒素又はアンチモン
をイオン注入法にて導入してソース、ドレインの一部分
を形成し、上記ゲートの側面を覆う部分の上記基板に垂
直方向の膜厚がその他の部分の同膜厚よりも厚い絶縁膜
を上記形成部全面に堆積せしめ、上記基板にほぼ垂直に
エッチング材を入射せしめて上記形成部の絶縁膜全面を
垂直方向に所定量ドライエッチングすることにより、上
記ゲートの側面を覆う部分の絶縁膜を絶縁膜パターンと
して残存させ、上記ゲートおよび上記絶縁膜パターンを
マスクとして上記基板の一部分に不純物を導入して上記
ソース、ドレインの一部分より高濃度のソース、ドレイ
ンの他の部分を上記一部分の上記ゲート直下端部に達し
ないように形成することを特徴とするMOS型半導体装
置の製造方法。
(2) After providing a gate in the MOS transistor formation area on the semiconductor substrate via a gate insulating film, using the gate as a mask, arsenic or antimony is introduced as an impurity into the formation area by ion implantation to form the source and drain. An insulating film is deposited on the entire surface of the forming part, and the insulating film is thicker in the vertical direction of the substrate in the part covering the side surface of the gate than in the other parts, and is deposited almost perpendicularly to the substrate. By injecting an etching material and dry etching the entire surface of the insulating film in the formation area by a predetermined amount in the vertical direction, the insulating film covering the side surface of the gate remains as an insulating film pattern, and the gate and the insulating film pattern are Impurities are introduced into a portion of the substrate using the mask as a mask to form other portions of the source and drain that are more highly concentrated than the portions of the source and drain so as not to reach the ends directly below the gate of the portion of the substrate. A method for manufacturing a MOS type semiconductor device.
(3)他の部分をゲート直下の領域に達しないように形
成することを特徴とする特許請求の範囲第2項記載のM
OS型半導体装置の製造方法。
(3) M according to claim 2, characterized in that the other portion is formed so as not to reach the area directly under the gate.
A method for manufacturing an OS type semiconductor device.
(4)他の部分形成用不純物として一部分形成用不純物
と同一のものを用いることを特徴とする特許請求の範囲
第2項記載のMOS型半導体装置の製造方法。
(4) The method for manufacturing a MOS type semiconductor device according to claim 2, wherein the same impurity as the impurity for forming the part is used as the impurity for forming the other part.
(5)他の部分形成用不純物として一部分形成用不純物
よりも拡散係数の大きいものを用いることを特徴とする
特許請求の範囲第1項記載のMOS型半導体装置の製造
方法。
(5) The method for manufacturing a MOS type semiconductor device according to claim 1, characterized in that the other partial forming impurity uses an impurity having a larger diffusion coefficient than the partial forming impurity.
JP20610190A 1977-09-14 1990-08-02 Manufacture of mos-type semiconductor device Granted JPH03129740A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20610190A JPH03129740A (en) 1977-09-14 1990-08-02 Manufacture of mos-type semiconductor device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP11072477A JPS5444482A (en) 1977-09-14 1977-09-14 Mos type semiconductor device and its manufacture
JP20610190A JPH03129740A (en) 1977-09-14 1990-08-02 Manufacture of mos-type semiconductor device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP11072477A Division JPS5444482A (en) 1977-09-14 1977-09-14 Mos type semiconductor device and its manufacture

Publications (2)

Publication Number Publication Date
JPH03129740A true JPH03129740A (en) 1991-06-03
JPH0465530B2 JPH0465530B2 (en) 1992-10-20

Family

ID=26450281

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20610190A Granted JPH03129740A (en) 1977-09-14 1990-08-02 Manufacture of mos-type semiconductor device

Country Status (1)

Country Link
JP (1) JPH03129740A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009268674A (en) * 2008-05-07 2009-11-19 Kyoto Nishikawa:Kk Household electric therapeutic instrument of mattress form

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5232277A (en) * 1975-09-05 1977-03-11 Toshiba Corp Insulated gate type field-effect transistor
JPS5250686A (en) * 1975-10-22 1977-04-22 Hitachi Ltd Production of semiconductor device
JPS5284981A (en) * 1976-01-06 1977-07-14 Mitsubishi Electric Corp Production of insulated gate type semiconductor device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5232277A (en) * 1975-09-05 1977-03-11 Toshiba Corp Insulated gate type field-effect transistor
JPS5250686A (en) * 1975-10-22 1977-04-22 Hitachi Ltd Production of semiconductor device
JPS5284981A (en) * 1976-01-06 1977-07-14 Mitsubishi Electric Corp Production of insulated gate type semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009268674A (en) * 2008-05-07 2009-11-19 Kyoto Nishikawa:Kk Household electric therapeutic instrument of mattress form

Also Published As

Publication number Publication date
JPH0465530B2 (en) 1992-10-20

Similar Documents

Publication Publication Date Title
JPS6231506B2 (en)
JPH05206451A (en) Mosfet and its manufacture
JP3144056B2 (en) Manufacturing method of thin film transistor
JPS6110995B2 (en)
US5319231A (en) Insulated gate semiconductor device having an elevated plateau like portion
JPH03129740A (en) Manufacture of mos-type semiconductor device
JPH05283687A (en) Production of semiconductor element
KR0170436B1 (en) Method of manufacturing mosfet
JPH0465531B2 (en)
JPS6316672A (en) Manufacture of semiconductor element
JPH05129335A (en) Manufacture of vertical-type transistor
JP2888461B2 (en) Insulated gate semiconductor device and method of manufacturing the same
JPH0567634A (en) Manufacture of mis type semiconductor device
JPS59231863A (en) Insulated gate semiconductor device and manufacture thereof
JPH06196707A (en) Manufacture of vertical type insulated-gate transistor
JP3009683B2 (en) Method for manufacturing semiconductor nonvolatile memory element
JP2823833B2 (en) Compound semiconductor device and method of manufacturing the same
KR0130626B1 (en) Structure and fabrication of mosfet
JP2007048840A (en) Semiconductor device and manufacturing method thereof
JPS6229165A (en) Manufacture of vertical semiconductor device
JPH0582066B2 (en)
JPH03270139A (en) Semiconductor device
JPS61189653A (en) Semiconductor integrated device and manufacture thereof
JPH0475349A (en) Manufacture of semiconductor device
JPH065622A (en) Manufacture of polyside gate structure of semiconductor device