JPH0312955B2 - - Google Patents
Info
- Publication number
- JPH0312955B2 JPH0312955B2 JP7865184A JP7865184A JPH0312955B2 JP H0312955 B2 JPH0312955 B2 JP H0312955B2 JP 7865184 A JP7865184 A JP 7865184A JP 7865184 A JP7865184 A JP 7865184A JP H0312955 B2 JPH0312955 B2 JP H0312955B2
- Authority
- JP
- Japan
- Prior art keywords
- fermentation
- organic substances
- wastewater
- membrane
- anaerobic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000012528 membrane Substances 0.000 claims description 52
- 239000000126 substance Substances 0.000 claims description 35
- 238000000855 fermentation Methods 0.000 claims description 33
- 230000004151 fermentation Effects 0.000 claims description 29
- 239000002351 wastewater Substances 0.000 claims description 29
- 238000000034 method Methods 0.000 claims description 13
- 239000002253 acid Substances 0.000 claims description 12
- 230000002209 hydrophobic effect Effects 0.000 claims description 10
- 244000005700 microbiome Species 0.000 claims description 10
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 7
- 239000001301 oxygen Substances 0.000 claims description 7
- 229910052760 oxygen Inorganic materials 0.000 claims description 7
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 29
- 238000000926 separation method Methods 0.000 description 22
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 18
- 238000002309 gasification Methods 0.000 description 8
- -1 alkyl sulfuric acid Chemical compound 0.000 description 7
- 239000007788 liquid Substances 0.000 description 7
- 238000006243 chemical reaction Methods 0.000 description 6
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 6
- 239000004810 polytetrafluoroethylene Substances 0.000 description 6
- 230000029087 digestion Effects 0.000 description 5
- 241000894006 Bacteria Species 0.000 description 4
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 4
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 239000010802 sludge Substances 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 229910001868 water Inorganic materials 0.000 description 4
- 239000010865 sewage Substances 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- 239000002033 PVDF binder Substances 0.000 description 2
- 241000589516 Pseudomonas Species 0.000 description 2
- 230000003851 biochemical process Effects 0.000 description 2
- 239000001569 carbon dioxide Substances 0.000 description 2
- 229910002092 carbon dioxide Inorganic materials 0.000 description 2
- 239000012141 concentrate Substances 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 235000014113 dietary fatty acids Nutrition 0.000 description 2
- XBDQKXXYIPTUBI-UHFFFAOYSA-N dimethylselenoniopropionate Natural products CCC(O)=O XBDQKXXYIPTUBI-UHFFFAOYSA-N 0.000 description 2
- 230000005672 electromagnetic field Effects 0.000 description 2
- 238000005265 energy consumption Methods 0.000 description 2
- 239000003925 fat Substances 0.000 description 2
- 239000000194 fatty acid Substances 0.000 description 2
- 229930195729 fatty acid Natural products 0.000 description 2
- 150000004665 fatty acids Chemical class 0.000 description 2
- 150000004676 glycans Chemical class 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 150000002576 ketones Chemical class 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 229920001282 polysaccharide Polymers 0.000 description 2
- 239000005017 polysaccharide Substances 0.000 description 2
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 2
- 102000004169 proteins and genes Human genes 0.000 description 2
- 108090000623 proteins and genes Proteins 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 238000000108 ultra-filtration Methods 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- 241000193403 Clostridium Species 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 239000013543 active substance Substances 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 150000001299 aldehydes Chemical class 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 239000010840 domestic wastewater Substances 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000010800 human waste Substances 0.000 description 1
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 239000010806 kitchen waste Substances 0.000 description 1
- 244000144972 livestock Species 0.000 description 1
- 230000000696 methanogenic effect Effects 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 230000002062 proliferating effect Effects 0.000 description 1
- 235000019260 propionic acid Nutrition 0.000 description 1
- IUVKMZGDUIUOCP-BTNSXGMBSA-N quinbolone Chemical compound O([C@H]1CC[C@H]2[C@H]3[C@@H]([C@]4(C=CC(=O)C=C4CC3)C)CC[C@@]21C)C1=CCCC1 IUVKMZGDUIUOCP-BTNSXGMBSA-N 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-N sulfuric acid Substances OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 1
- 241001148471 unidentified anaerobic bacterium Species 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- 238000004065 wastewater treatment Methods 0.000 description 1
Classifications
-
- Y02W10/12—
Landscapes
- Separation Using Semi-Permeable Membranes (AREA)
- Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
Description
【発明の詳細な説明】
本発明は、有機排水中に含まれている有機物質
を分解して分離除去する有機排水の処理方法の改
良に関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in a method for treating organic wastewater that decomposes and separates and removes organic substances contained in organic wastewater.
一般に、下水・屎尿・厨介等あるいはそれらの
分解物等のような生活排水や、オレンジの皮等の
農畜水産排出物等の有機物質を含む排水を処理す
る方法として、例えば限外過膜・逆滲透膜等の
分離用膜を用いて排水から有機物質を分離するよ
うにしたものが知られているが、この処理方法は
分離速度が遅く、また処理中に濃度分極が生じて
分離用膜の透過性が低下し、また低下させないよ
うにするための消費エネルギーが大きくなるなど
の欠点があつた。 In general, as a method for treating domestic wastewater such as sewage, human waste, kitchen waste, etc. or their decomposition products, and wastewater containing organic substances such as agricultural, livestock, and fishery waste such as orange peel, ultrafiltration membranes are used.・It is known that organic substances are separated from wastewater using a separation membrane such as a reverse permeation membrane, but this treatment method has a slow separation speed and concentration polarization occurs during the treatment, making it difficult to separate organic substances. There were disadvantages such as a decrease in membrane permeability and an increase in energy consumption to prevent the decrease.
また、嫌気性の微生物を利用して排水中の有機
成分を分解して除去する嫌気性消化法も知られて
いる。この嫌気性消化法は、例えば脂肪、蛋白
質、多糖類またはそれらの分解物等を含む排水を
発酵して揮発性脂肪酸等の低級有機物質に変え、
次いでメタンガス化発酵してメタンガス、炭酸ガ
ス等に分解させる如く、通性嫌気性の微生物によ
り主として酸を生成する反応(酸発酵)と、絶対
嫌気性の微生物によりメタンを生成する反応(メ
タンガス化発酵)との二段階からなるが、この方
法は、消化温度を維持する必要のある場合以外
は、格別外部エネルギーを必要とせず、また汚泥
の生成量が少ないことなどもあつて、省エネルギ
ーの見地からは優れてはいるものの、反応速度が
遅く、また生物化学的工程も長くなるために、処
理時間が長くて処理設備も大型化するうえ、さら
に有機物負荷などの外的環境条件の大きな変動に
敏感で、反応が停止するなどの不都合があつた。 Also known is an anaerobic digestion method that uses anaerobic microorganisms to decompose and remove organic components in wastewater. This anaerobic digestion method ferments wastewater containing, for example, fats, proteins, polysaccharides, or their decomposition products, and converts them into lower organic substances such as volatile fatty acids.
Next, methane is gasified and fermented to decompose it into methane gas, carbon dioxide, etc., such as a reaction in which acid is mainly produced by facultatively anaerobic microorganisms (acid fermentation), and a reaction in which methane is produced by obligately anaerobic microorganisms (methane gasification fermentation). ), but this method does not require any particular external energy except when it is necessary to maintain the digestion temperature, and it produces less sludge, so it is recommended from an energy-saving perspective. Although it is excellent, the reaction rate is slow and the biochemical process is long, so the processing time is long and the processing equipment is large, and it is also sensitive to large changes in external environmental conditions such as organic load. However, there were some inconveniences such as the reaction stopping.
そこで、本発明者は、酸発酵速度は後続のメタ
ンガス化発酵速度に比較して約10倍も早い点、お
よび排水中の有機物質が脂肪、蛋白質、多糖類や
その他これらの分解物等の複雑な混合物であつて
も、酸発酵することによつて酢酸等の揮発性脂肪
酸、アルコール、アルデヒド、ケトン、アンモニ
ア、炭酸ガス、水素、水等の少種類の常温で液状
または気体状の低分子有機物質に集約分解するう
え、さらにまたアルキル硫酸のような界面活性物
質を除くことができる点に着目し、この酸発酵に
よつて生成した低級有機物質を処理液から分離す
る分離用膜を開発するための研究を行つた結果、
高周波振動する疎水性多孔質膜を使用すれば、前
述の低分子有機物質を効率的に分離、濃縮するこ
とができ、前述の如き速度の遅いメタンガス化発
酵に依存することなく、極めて効率的に有機排水
の処理ができるということを知見するに至り、本
発明を構成するに至つた。 Therefore, the present inventor discovered that the rate of acid fermentation is approximately 10 times faster than the rate of subsequent methane gasification and fermentation, and that the organic substances in wastewater are complex, such as fats, proteins, polysaccharides, and other decomposed products of these. Even if it is a mixture, acid fermentation can produce volatile fatty acids such as acetic acid, alcohols, aldehydes, ketones, ammonia, carbon dioxide, hydrogen, water, and a small number of low-molecular-weight organic compounds that are liquid or gaseous at room temperature. Focusing on the fact that it not only concentrates and decomposes substances, but also removes surface-active substances such as alkyl sulfuric acid, we developed a separation membrane that separates lower organic substances produced by this acid fermentation from the treated liquid. As a result of research for
By using a hydrophobic porous membrane that vibrates at high frequencies, it is possible to efficiently separate and concentrate the low-molecular-weight organic substances mentioned above, without relying on the slow methane gasification fermentation mentioned above. We have come to the knowledge that organic wastewater can be treated, and have come to form the present invention.
さらに、通常、嫌気性消化は、反応液のPHが
6.8前後にある場合、あるいは増殖菌体の系内滞
留時間が長くなつて、その濃度が高くなると、メ
タンガス化発酵が起り、酸発酵によつて生成した
低級有機物質、すなわち低分子有機物質の濃度が
希薄になつて疎水性多孔質膜による分離効率が低
下することを知り、これについての検討結果、有
機排水中の溶存酸素濃度を0.1〜0.0001mg/位
として嫌気性発酵を行えば、酸発酵のみが行わ
れ、メタンガス化発酵を抑制できることを求め得
た。そして、この有機排水中の溶存酸素濃度を
0.1〜0.0001mg/とする手段としては、メタン
ガス化発酵が生起した場合には酸素を供給し、有
機排水中の溶存酸素濃度を調節することとした。 Furthermore, in anaerobic digestion, the pH of the reaction solution is usually
When the concentration is around 6.8, or when the residence time of the proliferating bacteria in the system increases and the concentration increases, methane gasification fermentation occurs, and the concentration of lower organic substances produced by acid fermentation, that is, low molecular weight organic substances, increases. As a result of our study, we found that if anaerobic fermentation is performed with the dissolved oxygen concentration in organic wastewater at 0.1 to 0.0001 mg/d, acid fermentation will occur. It was found that methane gasification and fermentation could be suppressed. Then, we determined the dissolved oxygen concentration in this organic wastewater.
As a means to adjust the amount to 0.1 to 0.0001 mg/, when methane gasification and fermentation occurs, oxygen is supplied to adjust the dissolved oxygen concentration in the organic wastewater.
すなわち、本発明に係る有機排水の処理方法
は、有機物質を含む排水を嫌気性雰囲気下で微生
物によつて発酵させることにより低級有機物質を
生成せしめ、この低級有機物質を高周波振動せし
められた疎水性多孔質膜により安定して分離、濃
縮して系外に除去するようにしたことを特徴とす
るものである。 That is, the method for treating organic wastewater according to the present invention involves fermenting wastewater containing organic substances with microorganisms in an anaerobic atmosphere to produce lower organic substances, and converting the lower organic substances into hydrophobic substances subjected to high frequency vibration. It is characterized in that it is stably separated, concentrated, and removed from the system using a porous membrane.
この本発明において、嫌気性発酵に使用される
微生物としては、例えばシユードモナス属、クロ
ストリデイウム属、脱窒素菌等の通性嫌気性菌、
アルコール発酵性、酢酸発酵性、セルロース分解
性等の好熱性嫌気性細菌等がある。 In the present invention, examples of microorganisms used for anaerobic fermentation include facultative anaerobes such as Pseudomonas, Clostridium, and denitrifying bacteria;
There are thermophilic anaerobic bacteria that ferment alcohol, acetic acid, and cellulose.
また、疎水性多孔質膜としては、例えば第3図
に示した概略図におけるが如く、ポリテトラフル
オロエチレン膜1等に、強誘電性があり、必要に
応じて二重結合を適当に分布させたポリフツ化ビ
ニリデン膜3,3を、ポリテトラフルオロエチレ
ン膜等をラジカル化処理した膜2,2を介してク
ラツドして疎水性多孔質膜Xとなし、この多孔質
膜Xに炭素繊維等の導電体を電極材として使用
し、この電極5を高周波電源に接続して前記ラジ
カル化処理した膜2,2に高周波ドライブを印加
することにより、前記膜3,3の表面に高調マイ
クロ波を発生させるようにしたものが用いられ
る。そして、これらの詳細な構成は、本特許出願
人が先に出願した特願昭58−221443号(特開昭60
−114303号)において開示した「平板型膜分離装
置」と同様である。 In addition, as a hydrophobic porous membrane, for example, as shown in the schematic diagram shown in FIG. The polyvinylidene fluoride membranes 3, 3 are clad through membranes 2, 2 which have been radicalized polytetrafluoroethylene membranes, etc. to form a hydrophobic porous membrane X, and this porous membrane X is coated with carbon fiber, etc. By using a conductor as an electrode material and connecting this electrode 5 to a high frequency power source to apply a high frequency drive to the radicalized films 2, 2, harmonic microwaves are generated on the surfaces of the films 3, 3. The one that is made to do so is used. These detailed configurations can be found in Japanese Patent Application No. 58-221443 (Japanese Unexamined Patent Publication No. 60-60), which was previously filed by the applicant of this patent.
This is similar to the "flat plate membrane separation device" disclosed in No.-114303).
ここで、ポリテトラフルオロエチレン膜1等を
主体としてなる疎水性多孔質膜Xの表面の電磁場
特性、すなわち表面電位、あるいは導電性は、分
離・濃縮しようとする低級有機物質水溶液の分子
間・電磁場特性に応じてポリテトラフルオロエチ
レン膜等のラジカル化条件、すなわちラジカル化
処理した膜2,2の厚さ、組合わせ方を変えるな
どして調節することができる。なお、ポリテトラ
フルオロエチレン膜をラジカル化処理するには、
気相で活性酸素、あるいは有機溶液中で強制電解
処理を行うことにより実施できる。 Here, the electromagnetic field characteristics of the surface of the hydrophobic porous membrane Depending on the characteristics, it can be adjusted by changing the radicalization conditions of the polytetrafluoroethylene membrane, etc., that is, the thickness of the radicalized membranes 2, 2, and the way they are combined. In addition, in order to radicalize the polytetrafluoroethylene membrane,
This can be carried out by performing forced electrolytic treatment with active oxygen in the gas phase or in an organic solution.
また、一般に、液体が固体の表面に対して運動
することにより流動電位を生ずるが、本発明にお
いては、ポリテトラフルオロエチレン膜1等とラ
ジカル化処理等した膜2,2を適宜組合わせるこ
とにより、電磁場特性を調節し、流動電位を逆用
して前記の高周波振動により分離した低級有機物
質と水を、疎水性多孔質膜Xの膜内移動時の電位
変化を組合わせることにより分離を促進すること
もできる。このために、第3図における多孔質膜
Xを挟んで両側に電位差を設ける電極6,6を配
装してもよい。 Generally, a flowing potential is generated when a liquid moves with respect to the surface of a solid, but in the present invention, by appropriately combining the polytetrafluoroethylene membrane 1 and the membranes 2 and 2 that have been subjected to radicalization treatment, etc. , by adjusting the electromagnetic field characteristics and reversely using the flowing potential to promote the separation of the lower organic substances and water separated by the above-mentioned high-frequency vibration, by combining the potential change during movement within the hydrophobic porous membrane X. You can also. For this purpose, electrodes 6, 6 may be provided to provide a potential difference on both sides of the porous membrane X in FIG. 3.
そして、嫌気性雰囲気下における微生物による
発酵は、第1図および第2図に示したように、嫌
気性発酵槽A1,A2に有機排水を導入すると共に、
前述の通性嫌気性の微生物を消化汚泥の形で植種
し、0.1〜0.0001mg/位の僅かな溶存酸素の存
在下で酸発酵を行う。そして、この状態では、酸
発酵処理液中の酢酸、アルコール、ケトン等の低
級有機物質は液中の水高分子と水素結合した状態
にある。 Fermentation by microorganisms in an anaerobic atmosphere is carried out by introducing organic wastewater into anaerobic fermenters A 1 and A 2 as shown in Figures 1 and 2.
The aforementioned facultative anaerobic microorganisms are inoculated in the form of digested sludge, and acid fermentation is performed in the presence of a small amount of dissolved oxygen of about 0.1 to 0.0001 mg/d. In this state, lower organic substances such as acetic acid, alcohol, and ketone in the acid fermentation solution are in a state of hydrogen bonding with water polymers in the solution.
そこで、この処理液を疎水性多孔質膜Xを備え
た膜分離濃縮槽部B1,B2に供給し、この多孔質
膜Xを高周波振動させると、水高分子と水素結合
していた低級有機物質はそれから分離・濃縮して
多孔質膜Xを透過して排水から除去される。 Therefore, when this treated liquid is supplied to the membrane separation concentration tank sections B 1 and B 2 equipped with a hydrophobic porous membrane X and the porous membrane X is vibrated at high frequency, the lower The organic substances are then separated, concentrated and passed through the porous membrane X to be removed from the wastewater.
この際における嫌気性発酵槽A1,A2と膜分離
濃縮槽部B1,B2との間の接続関係は、第1図に
示したように、発酵完了した後に、発酵終了物を
膜分離濃縮槽部B1に供給するように構成しても
よく、また第2図に示したように、発酵途中で膜
分離濃縮槽部B2に供給し、該膜分離濃縮槽部B2
にて低級有機物質分のみを分離し、その他は再度
発酵槽A2へと戻す循環方式を採つてもよい。い
ずれの形式によるも、膜分離濃縮槽部B1,B2で
低級有機物質は分離・濃縮され、この分離・濃縮
された低級有機物質は系外へと除去することによ
つて、有機排水の処理が行われる。 At this time, the connection relationship between the anaerobic fermenters A 1 , A 2 and the membrane separation concentration tank sections B 1 , B 2 is as shown in FIG. Alternatively, as shown in FIG. 2, the product may be supplied to the membrane separation concentration tank section B 2 during fermentation, and the membrane separation concentration tank section B 2 may be supplied to the membrane separation concentration tank section B 2 .
A circulation method may be adopted in which only the lower organic substances are separated in the fermenter A 2 and the rest is returned to the fermenter A 2 . In either type, lower organic substances are separated and concentrated in the membrane separation concentration tank sections B 1 and B 2 , and the separated and concentrated lower organic substances are removed from the system to form organic wastewater. Processing takes place.
上述の如く、本発明は、嫌気性発酵法と膜分離
法とを巧みに組み合わせ、結合させることによつ
て、有機物質含有排水から低級有機物質を含有す
る排水に変換し、これを高効率、かつ迅速に分
離・濃縮する処理を行うことができ、生物化学的
工程を短縮させることとなる結果として、当然の
ことながら処理設備も小型化し得るし、また例え
ば有機物質の濃度が1%以下の希薄な酸発酵液か
ら低級有機物質を分離・濃縮する場合、蒸溜法に
よるときと比較すると、その消費エネルギーは約
600分の1となり、所謂省エネに資するところは
極めて大なるものがあり、また通常の限外過や
逆滲透膜による分離と異なつて分離物の濃度が極
めて高く、少量で貯蔵その他の取扱いも容易であ
り、さらにまた通常、メタンガス化発酵では除け
ないプロピオン酸、エタノールなども除ける点
で、メタンガス化発酵よりは遥かに優れている。 As described above, the present invention skillfully combines and combines the anaerobic fermentation method and the membrane separation method to convert wastewater containing organic substances into wastewater containing lower organic substances, and to convert the wastewater into wastewater containing lower organic substances with high efficiency. As a result, the biochemical process can be shortened, and as a result, the processing equipment can also be made smaller. When separating and concentrating lower organic substances from dilute acidic fermentation liquid, the energy consumption is approximately
1/600, which greatly contributes to so-called energy saving.Also, unlike separation using normal ultrafiltration or reverse filtration membranes, the concentration of the separated product is extremely high, and it is easy to store and handle in small quantities. Furthermore, it is far superior to methane gasification and fermentation in that it removes propionic acid, ethanol, etc. that cannot normally be removed by methane gasification and fermentation.
次に、本発明の実施例について説明することと
する。 Next, examples of the present invention will be described.
実施例 1
排水の処理装置を第1図に示したように構成
し、下水処理場で余剰汚泥を遠心分離機を用いて
固形分濃度5%となるように濃縮した有機排水を
採取し、分析したところ、酢酸濃度が300mg/
であつた。この有機排水の1に、微生物として
下水処理場の消化槽より採取したシユードモナス
菌等を含む消化汚泥を種菌として植種して38℃に
保ち、窒素ガスで2000倍にうすめた空気を吹き込
んで撹拌しつつ、嫌気性雰囲気下で2日間発酵す
ることによつて、酢酸を3000mg/含有する酸発
酵処理液を得た。この間に、メタンガスの発生は
全く認められなかつた。この酸発酵処理液を膜分
離濃縮槽部B1に導入し、該膜分離濃縮槽部B1内
に装着した前述の構成を有する疎水性多孔質膜X
(膜表面積50cm2)に接触させ、この多孔質膜Xに
455KHz、250V程度の高周波ドライブをかけて、
2GHz前後の高調マイクロ波を膜表面に発生させ
ることにより低分子有機物質の分離を行つた。Example 1 A wastewater treatment device was configured as shown in Figure 1, and organic wastewater was collected by concentrating excess sludge at a sewage treatment plant using a centrifuge to a solid content concentration of 5%, and analyzed. As a result, the acetic acid concentration was 300mg/
It was hot. Digested sludge containing Pseudomonas bacteria collected as microorganisms from the digestion tank of a sewage treatment plant was inoculated into this organic wastewater as a seed, kept at 38℃, and air diluted 2000 times with nitrogen gas was blown into the mixture and stirred. By fermenting for 2 days in an anaerobic atmosphere, an acid fermentation solution containing 3000 mg of acetic acid was obtained. During this period, no generation of methane gas was observed. This acid fermentation treatment liquid was introduced into the membrane separation concentration tank section B1 , and the hydrophobic porous membrane X having the above-mentioned configuration was installed in the membrane separation concentration tank section B1.
(membrane surface area 50cm 2 ), and this porous membrane
Apply a high frequency drive of about 455KHz, 250V,
Low-molecular organic substances were separated by generating harmonic microwaves of around 2 GHz on the membrane surface.
この結果、1.2W分程度の僅かな使用エネルギ
ーで、12〜13ml/分の速度で、水分の10%程度含
有し、酢酸を主とする低分子有機物質を分離する
ことができた。 As a result, it was possible to separate low-molecular organic substances containing about 10% of water and mainly acetic acid at a rate of 12 to 13 ml/min with a small energy usage of about 1.2 W min.
実施例 2
処理装置を第2図に示したように嫌気性発酵槽
部A2と膜分離濃縮槽部B2との間で循環流を形成
することができるように接続し、実施例1と同様
にして採取した排水を発酵槽A2内に充填し、植
種直後から膜分離濃縮槽部B2に供給して膜分離
を開始したところ、半日後より平均約0.1ml/時
の速度で低分子有機物質を分離することができ
た。この間、メタンガスの発生は見られなかつ
た。10日間で発酵および膜分離を終了して処理液
中の有機物質の濃度を調べたところ、最初に存在
した有機物質の約50%を消化、除去されているこ
とが判つた。通常の酸発酵菌とメタン生成菌が同
居して一相で発酵させるメタン化を行う方法で
は、同程度の処理を行うのに20日必要とするのに
比較して、大幅な時間の短縮が得られた。Example 2 The processing equipment was connected to form a circulating flow between the anaerobic fermenter section A 2 and the membrane separation concentration tank section B 2 as shown in FIG. The wastewater collected in the same manner was filled into the fermenter A 2 , and immediately after seeding, it was supplied to the membrane separation concentration tank section B 2 to start membrane separation. From half a day later, the rate was approximately 0.1 ml/hour on average. We were able to separate low-molecular organic substances. During this period, no methane gas was observed to be generated. After completing the fermentation and membrane separation in 10 days, we examined the concentration of organic substances in the treated solution and found that approximately 50% of the organic substances initially present had been digested and removed. The conventional method of methanation, in which acid-fermenting bacteria and methanogenic bacteria coexist and ferment in one phase, requires 20 days to perform the same amount of treatment, but the time is significantly reduced. Obtained.
ここで、本実施例の如く、処理液を発酵槽A2
と膜分離濃縮槽部B2との間に循環流を形成する
ように構成すると、発酵処理中に発酵生成物であ
る低級有機物質による発酵阻害およびメタン発酵
が防止され、反応の促進及び反応時間の短縮を図
ることができ、処理装置を小型化しても充分な処
理能力が得られる。 Here, as in this example, the treatment liquid is transferred to the fermenter A2.
By forming a circulating flow between the membrane separation and concentration tank section B2 , fermentation inhibition and methane fermentation caused by lower organic substances, which are fermentation products, are prevented during the fermentation process, and the reaction is accelerated and the reaction time is reduced. It is possible to shorten the processing time, and even if the processing device is downsized, sufficient processing capacity can be obtained.
図面の第1図および第2図は本発明に係る有機
排水の処理方法を実施する各別の実施例のフロー
シートであり、第3図は膜分離濃縮槽部の内部構
成説明用概略図である。
A1,A2:嫌気性発酵槽、B1,B2:膜分離濃縮
槽部、X;疎水性多孔質膜、1;ポリテトラフル
オロエチレン膜、2;ポリテトラフルオロエチレ
ン膜等をラジカル化処理した膜、3;ポリフツ化
ビニリデン膜、5,6;電極。
Figures 1 and 2 of the drawings are flow sheets of different embodiments of the method for treating organic wastewater according to the present invention, and Figure 3 is a schematic diagram for explaining the internal configuration of the membrane separation concentration tank section. be. A 1 , A 2 : Anaerobic fermentation tank, B 1 , B 2 : Membrane separation concentration tank part, X : Hydrophobic porous membrane, 1 : Polytetrafluoroethylene membrane, 2 : Radicalization of polytetrafluoroethylene membrane, etc. Treated membrane, 3; Polyvinylidene fluoride membrane, 5, 6; Electrode.
Claims (1)
物によつて発酵させることにより低級有機物質を
生成せしめ、この低級有機物質を高周波振動せし
められた疎水性多孔質膜によつて分離・濃縮して
系外に除去することを特徴とする有機排水の処理
方法。 2 上記有機物質を含む排水の微生物による発酵
は、溶存酸素濃度が0.1〜0.0001mg/位の嫌気
性雰囲気下で行うことを特徴とする前記特許請求
の範囲第1項記載の有機排水の処理方法。 3 上記発酵は、酸発酵であることを特徴とする
前記特許請求の範囲第1項記載の有機排水の処理
方法。[Claims] 1. Lower organic substances are produced by fermenting wastewater containing organic substances by microorganisms in an anaerobic atmosphere, and the lower organic substances are produced by a hydrophobic porous membrane subjected to high frequency vibration. A method for treating organic wastewater, which is characterized by separating, concentrating, and removing it from the system. 2. The method for treating organic wastewater according to claim 1, wherein the fermentation of the wastewater containing organic substances by microorganisms is carried out in an anaerobic atmosphere with a dissolved oxygen concentration of about 0.1 to 0.0001 mg/. . 3. The method for treating organic wastewater according to claim 1, wherein the fermentation is acid fermentation.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59078651A JPS60222196A (en) | 1984-04-20 | 1984-04-20 | Treatment of organic waste water |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59078651A JPS60222196A (en) | 1984-04-20 | 1984-04-20 | Treatment of organic waste water |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS60222196A JPS60222196A (en) | 1985-11-06 |
JPH0312955B2 true JPH0312955B2 (en) | 1991-02-21 |
Family
ID=13667761
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59078651A Granted JPS60222196A (en) | 1984-04-20 | 1984-04-20 | Treatment of organic waste water |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60222196A (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5025844B2 (en) * | 2000-06-02 | 2012-09-12 | 日産化学工業株式会社 | Membrane permeation control method by microwave |
CN104355405B (en) * | 2014-11-24 | 2016-01-20 | 河海大学 | Anaerobism distillation membrane biological reaction pond integrated sewage water advanced treatment apparatus and technique thereof |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60150896A (en) * | 1984-01-18 | 1985-08-08 | Kubota Ltd | Treatment of sludge |
-
1984
- 1984-04-20 JP JP59078651A patent/JPS60222196A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60150896A (en) * | 1984-01-18 | 1985-08-08 | Kubota Ltd | Treatment of sludge |
Also Published As
Publication number | Publication date |
---|---|
JPS60222196A (en) | 1985-11-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4875864B2 (en) | Biomass processing system | |
JP4966523B2 (en) | Biomass processing system | |
CN106915883A (en) | A kind of minimizing of endogenous FNA pretreating sludges and process for reclaiming | |
AU2610595A (en) | Process for purifying dairy wastewater | |
WO2003004423A1 (en) | Method of anaerobically treating organic material and anaerobic treatment apparatus | |
KR101317490B1 (en) | High-efficiency biogas generation system and methods of excess sludge treatment in membrane bio-reactor combined with thickening and disintegration | |
JP5873736B2 (en) | Organic wastewater treatment method and treatment apparatus | |
JPH0312955B2 (en) | ||
JPH09206786A (en) | Anaerobic treatment and apparatus therefor | |
JP2001327998A (en) | Organic sludge digesting method | |
JP4590756B2 (en) | Organic drainage treatment method and organic drainage treatment apparatus | |
JPS6291293A (en) | Treatment of waste water based on anaerobic treatment | |
JPS62102896A (en) | Treatment of organic waste water containing colored substance | |
JP2003164840A (en) | Method and apparatus for treating organic matter | |
Marty | Microbiology of anaerobic digestion | |
JPH0318955B2 (en) | ||
JP3814855B2 (en) | Anaerobic treatment method for organic drainage | |
JP2001025789A (en) | Treatment of organic waste liquid and device therefor | |
JPS59109296A (en) | Anaerobic digestion treatment | |
JPH09253684A (en) | Treatment method for organic waste water | |
CN115448559B (en) | Method for strengthening methane conversion and membrane pollution resistance of sludge by combining carbon points with membrane | |
JP3697900B2 (en) | Wastewater treatment method and apparatus therefor | |
JP3800990B2 (en) | Anaerobic digestion method and apparatus of organic sludge | |
JP3377949B2 (en) | Method and apparatus for treating organic wastewater | |
JPH09206785A (en) | Anaerobic treatment and apparatus therefor |