JPH03124071A - Semiconductor radiation-detecting element - Google Patents

Semiconductor radiation-detecting element

Info

Publication number
JPH03124071A
JPH03124071A JP1262056A JP26205689A JPH03124071A JP H03124071 A JPH03124071 A JP H03124071A JP 1262056 A JP1262056 A JP 1262056A JP 26205689 A JP26205689 A JP 26205689A JP H03124071 A JPH03124071 A JP H03124071A
Authority
JP
Japan
Prior art keywords
type
radiation
amorphous silicon
vacuum
work function
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1262056A
Other languages
Japanese (ja)
Inventor
Akira Yunoki
彰 柚木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP1262056A priority Critical patent/JPH03124071A/en
Publication of JPH03124071A publication Critical patent/JPH03124071A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent a drop in a collection efficiency of carriers by forming a metal layer whose work function with reference to a vacuum is smaller than a work function with reference to a vacuum of p-type and n-type amorphous silicon and whose thickness does not obstruct a transmission factor of a radiation. CONSTITUTION:Metal layers 5 whose work function with reference to a vacuum is smaller than a work function p-type and n-type amorphous silicon with reference to a vacuum and whose thickness does not obstruct transmission of a radiation are formed between individual pin diodes 2. By this constitution, the metal layers 5 come into ohmic contact with p-type and n-type amorphous silicon layers. Thereby, a barrier or the like such as an electric field or the like is not formed between the p-type and n-type amorphous silicon layers. Consequently, when a radiation is incident, carriers are generated in an i-layer. Since the barrier or the like such as the electric field or the like is not formed, the carriers are sent to a measuring circuit 4 with good efficiency as an electric current through individual collection electrodes 3. As a result, a radiation dose is measured by means of the measuring circuit 4.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は半導体放射線検出素子に関する。[Detailed description of the invention] [Purpose of the invention] (Industrial application field) The present invention relates to a semiconductor radiation detection element.

(従来の技術) 半導体放射線検出素子の検出対象としては、放射性同位
元素及び放射線発生装置を使用する施設の空間放射線の
線量率や同施設の放射線管理区域内から外部へ出ていく
物品の表面及び人体の表面の放射線汚染がある。
(Prior art) Detection targets of semiconductor radiation detection elements include the dose rate of air radiation in facilities that use radioactive isotopes and radiation generating devices, and the surfaces and There is radiation contamination of the surface of the human body.

ところで第2図はタンデム型検出素子であって、このタ
ンデム型検出素子は太陽電池に適用されており、検出対
象としては可視光の透過力の弱いものとなっている。そ
の構成は、基板1上に非晶質シリコンを材質とするpi
nダイオード2を複数積層するとともにこれら pIn
ダイオード2の上層及び下層にそれぞれ収集電極3を配
置し、これら収集電極3を測定回路4に接続した構成と
なっている。このような構成で入射光があると、i層に
キャリアが発生して電流が流れる。この電流は各収集電
極3を通して測定回路4に送られる。
By the way, FIG. 2 shows a tandem type detection element, and this tandem type detection element is applied to a solar cell, and the detection target has a weak transmittance of visible light. Its structure is that a pi film made of amorphous silicon is placed on a substrate 1.
In addition to laminating a plurality of n diodes 2, these pIn
Collection electrodes 3 are arranged above and below the diode 2, respectively, and these collection electrodes 3 are connected to a measurement circuit 4. When there is incident light in such a configuration, carriers are generated in the i-layer and a current flows. This current is sent through each collecting electrode 3 to a measuring circuit 4.

しかしながら、上記構成ではpinダイオード2が直接
積層されているので、隣接するn型非晶質シリコンとn
型非晶質シリコンとの間に接合が生じ、これにより各p
inダイオード2間相互の作用により入射光によって発
生したキャリアの収集効率が低下する。ところで、かか
るタンデム型検出素子を放射線検出に適用することが行
われるが、放射線検出として適用しても上記と同様に隣
接するn型非晶質シリコンとn型非晶質シリコンとの間
に接合が生じてキャリアの収集効率が低下する。
However, in the above configuration, since the pin diode 2 is directly stacked, the adjacent n-type amorphous silicon
type amorphous silicon, which causes each p
Due to the interaction between the in diodes 2, the collection efficiency of carriers generated by the incident light is reduced. By the way, such a tandem type detection element is applied to radiation detection, but even if it is applied to radiation detection, there is no bonding between adjacent n-type amorphous silicon and n-type amorphous silicon as described above. occurs, resulting in a decrease in carrier collection efficiency.

従って、放射性同位元素などを使用する施設の空間放射
線の線量率や同施設の放射線管理区域内から外部へ出て
いく物品の表面などの放射線汚染を測定するには適用が
困難となっている。
Therefore, it is difficult to apply it to measuring the dose rate of air radiation in facilities that use radioactive isotopes, or to measuring radiation contamination on the surfaces of items that exit from the radiation-controlled area of the facility.

(発明が解決しようとする課題) 以上のように隣接するp型押晶質シリコンとn型非晶質
シリコンとの間に接合が生じてキャリアの収集効率が低
下する。
(Problems to be Solved by the Invention) As described above, a junction occurs between adjacent p-type pressed crystalline silicon and n-type amorphous silicon, reducing carrier collection efficiency.

そこで本発明は、隣接するp型押晶質シリコンとn型非
晶質シリコンとの間に接合が生じなくキャリアの収集効
率を良くてきる半導体放射線検出素子を提供することを
目的とする。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a semiconductor radiation detection element that improves carrier collection efficiency without forming a bond between adjacent p-type pressed crystalline silicon and n-type amorphous silicon.

〔発明の構成] (3題を解決しようとする手段) 本発明は、pinダイオードを積層するとともにこれら
 pinダイオードの層間にそれぞれ真空に対する仕事
関数がp型及びn型非晶質シリコンの真空に対する仕事
関数より小さくかつ放射線の透過を妨げない厚さの金属
層を形成して上記目的を達成しようとする半導体放射線
検出素子である。
[Structure of the Invention] (Means for Solving the Three Problems) The present invention stacks PIN diodes and has a structure in which the work functions with respect to vacuum are the same as those of p-type and n-type amorphous silicon, respectively, between the layers of these PIN diodes. This semiconductor radiation detection element attempts to achieve the above object by forming a metal layer smaller than the function and having a thickness that does not impede the transmission of radiation.

(作用) このような手段を備えたことにより、p型及びn型非晶
質シリコンと金属層との間がオーム性接触となって電界
の障壁等が形成されずにキャリア収集効率が低下しない
(Function) By providing such a means, there is ohmic contact between the p-type and n-type amorphous silicon and the metal layer, and no electric field barrier is formed and the carrier collection efficiency does not decrease. .

(実施例) 以下、本発明の一実施例にいって第1図に示す構成図を
参照して説明する。なお、第2図と同一部分には同一符
号を付しである。
(Embodiment) An embodiment of the present invention will be described below with reference to the configuration diagram shown in FIG. Note that the same parts as in FIG. 2 are given the same reference numerals.

各p1nダイオード2の間にはそれぞれモリブデンMo
から成る金属層5が形成されている。この金属層5を形
成するモリブデンM oは真空に対する仕事関数がp型
及びn型非晶質シリコンの真空に対する仕事関数より小
さい特性を示し、かつこの金属層5の厚さは放射線の透
過を妨げない程度に形成されている。又、測定回路4は
各収集電極3を通して各pinダイオード2に対して逆
バイアスの電圧を印加し、かつ各pinダイオード2に
発生するキャリアの移動による電流を検出して放射線量
をill定する機能を有している。
Between each p1n diode 2 is a molybdenum Mo
A metal layer 5 is formed. The molybdenum Mo forming this metal layer 5 has a vacuum work function smaller than that of p-type and n-type amorphous silicon, and the thickness of this metal layer 5 prevents the transmission of radiation. It is formed to a certain degree. The measurement circuit 4 also has a function of applying a reverse bias voltage to each pin diode 2 through each collection electrode 3, and detecting the current generated in each pin diode 2 due to the movement of carriers to determine the radiation dose. have.

このような構成であれば、モリブデンMOはp型及びn
型非晶質シリコン層に対してそれぞれオーム性接触とな
る。これにより、p型、及びn型非晶質シリコン層間で
電界の障壁等が形成されない。
With such a configuration, molybdenum MO is p-type and n-type.
Each makes ohmic contact with the type amorphous silicon layer. As a result, an electric field barrier or the like is not formed between the p-type and n-type amorphous silicon layers.

従って、放射線が入射すると、i層にキャリアが発生し
、このキャリアは上記の如く電界の障壁等が形成されな
いので各収集電極3を通して電流として効率良く測定回
路4に送られる。この結果、測定回路4により放射線量
が測定される。
Therefore, when radiation is incident, carriers are generated in the i-layer, and since no electric field barrier is formed as described above, these carriers are efficiently sent to the measurement circuit 4 as a current through each collecting electrode 3. As a result, the measurement circuit 4 measures the radiation dose.

このように上記一実施例においては、各plロダイオー
ド2の間にそれぞれ真空に対する仕事関数かp型及びn
型非晶質シリコンの真空に対する仕事関数より小さくか
つ放射線の透過を妨げない厚さのモリブデンMoの金属
層5を形成したので、隣接するp型押晶質シリコンとn
型非晶質シリコンとの間に接合が生ぜずにキャリアの収
集効率が低下しない。これにより、放射線測定に際して
のS/Nが高くなる。
In this way, in the above-mentioned embodiment, between each pl rhodiode 2, the work functions for vacuum are p-type and n-type.
Since the metal layer 5 of molybdenum Mo is formed to have a thickness smaller than the vacuum work function of the amorphous silicon and to a thickness that does not impede the transmission of radiation, it is possible to
No junction is formed with the type amorphous silicon, and the carrier collection efficiency does not decrease. This increases the S/N during radiation measurement.

なお、本発明は上記一実施例に限定されるものでなくそ
の主旨を逸脱しない範囲で変形しても良い。例えば、金
属層5はモリブデンMOに限らず真空に対する仕事関数
がp型及びn型非晶質シリコンの真空に対する仕事関数
より小さいもので、かつ放射線の透過を妨げない厚さに
形成されたものであれば良い。
Note that the present invention is not limited to the above-mentioned embodiment, and may be modified without departing from the spirit thereof. For example, the metal layer 5 is not limited to molybdenum MO, but is made of a material whose work function with respect to vacuum is smaller than that of p-type and n-type amorphous silicon, and which is formed to a thickness that does not impede transmission of radiation. It's good to have.

[発明の効果] 以上詳記したように本発明によれば、隣接するp型押晶
質シリコンとn型非晶質シリコンとの間に接合が生じな
くキャリアの収集効率を良くできる半導体放射線検出素
子を提供できる。
[Effects of the Invention] As detailed above, according to the present invention, there is no bonding between adjacent p-type extruded crystalline silicon and n-type amorphous silicon, and the semiconductor radiation detection can improve carrier collection efficiency. We can provide elements.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係わる半導体放射線検出素子の一実施
例を示す構成図、第2図は従来素子の構成図である。 1・・・基板、2・・・pinダイオード、3・・・収
集電極、4・・・測定回路、5・・・金属層。
FIG. 1 is a block diagram showing one embodiment of a semiconductor radiation detection element according to the present invention, and FIG. 2 is a block diagram of a conventional element. DESCRIPTION OF SYMBOLS 1... Substrate, 2... Pin diode, 3... Collection electrode, 4... Measurement circuit, 5... Metal layer.

Claims (1)

【特許請求の範囲】[Claims] pinダイオードを積層するとともにこれらpinダイ
オードの間にそれぞれ真空に対する仕事関数がp型及び
n型非晶質シリコンの真空に対する仕事関数より小さく
かつ放射線の透過を妨げない厚さの金属層を形成したこ
とを特徴とする半導体放射線検出素子。
PIN diodes are stacked, and a metal layer is formed between these PIN diodes, the work function of which is smaller than the vacuum work function of p-type and n-type amorphous silicon, and which has a thickness that does not impede the transmission of radiation. A semiconductor radiation detection element characterized by:
JP1262056A 1989-10-09 1989-10-09 Semiconductor radiation-detecting element Pending JPH03124071A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1262056A JPH03124071A (en) 1989-10-09 1989-10-09 Semiconductor radiation-detecting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1262056A JPH03124071A (en) 1989-10-09 1989-10-09 Semiconductor radiation-detecting element

Publications (1)

Publication Number Publication Date
JPH03124071A true JPH03124071A (en) 1991-05-27

Family

ID=17370420

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1262056A Pending JPH03124071A (en) 1989-10-09 1989-10-09 Semiconductor radiation-detecting element

Country Status (1)

Country Link
JP (1) JPH03124071A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4768612B2 (en) * 2003-07-18 2011-09-07 バーンズ グループ インコーポレーテッド Cushion and cushion cylinder for press ram or bolster

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4768612B2 (en) * 2003-07-18 2011-09-07 バーンズ グループ インコーポレーテッド Cushion and cushion cylinder for press ram or bolster

Similar Documents

Publication Publication Date Title
JP2954034B2 (en) Single carrier type solid state radiation detector
JPS5950579A (en) Semiconductor optical position detector
JPH1056196A (en) High speed radioactive ray detector
WO2001075977A1 (en) Semiconductor energy detector
JP4522531B2 (en) Semiconductor energy detector
JPH0671097B2 (en) Color sensor
JP4571267B2 (en) Radiation detector
JPH03124071A (en) Semiconductor radiation-detecting element
US3619621A (en) Radiation detectors having lateral photovoltage and method of manufacturing the same
JP2608311B2 (en) Ionized particle detector
JPH0546709B2 (en)
JPS6035834B2 (en) Semiconductor device for radiation detection
JPH0550857B2 (en)
JPH01138486A (en) Multichannel type semiconductor radiation detector
JP6753194B2 (en) Radiation detector
JP2001326376A (en) Semiconductor energy detecting element
JPH0410581A (en) Optical position detection semiconductor device
JPH06302851A (en) Beam-position detector
JPS5935486A (en) Photo semiconductor device
RU2061282C1 (en) Semiconductor ionizing-radiation detector
JPH08222754A (en) Semiconductor x-ray detector and manufacturing method thereof
JPH0521353B2 (en)
JPH06283750A (en) Junction type semiconductor element
JPS5812374A (en) Semiconductor detector
JPS6142433B2 (en)