JPS5812374A - Semiconductor detector - Google Patents

Semiconductor detector

Info

Publication number
JPS5812374A
JPS5812374A JP56109977A JP10997781A JPS5812374A JP S5812374 A JPS5812374 A JP S5812374A JP 56109977 A JP56109977 A JP 56109977A JP 10997781 A JP10997781 A JP 10997781A JP S5812374 A JPS5812374 A JP S5812374A
Authority
JP
Japan
Prior art keywords
metal layer
layer
metal
sensitivity
diode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56109977A
Other languages
Japanese (ja)
Inventor
Hideo Makishima
巻島 秀男
Fuminori Ishizuka
文則 石塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP56109977A priority Critical patent/JPS5812374A/en
Publication of JPS5812374A publication Critical patent/JPS5812374A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022416Electrodes for devices characterised by at least one potential jump barrier or surface barrier comprising ring electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022466Electrodes made of transparent conductive layers, e.g. TCO, ITO layers
    • H01L31/022491Electrodes made of transparent conductive layers, e.g. TCO, ITO layers composed of a thin transparent metal layer, e.g. gold

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Measurement Of Radiation (AREA)
  • Light Receiving Elements (AREA)

Abstract

PURPOSE:To obtain a semiconductor detector of large output, high sensitivity, and high efficiency by a method wherein a metal layer is formed on a P type layer thin and moreover in structure as to enable to prevent reduction of sensitivity as much as possible. CONSTITUTION:At a diode having P-N<->-N<+> structure, a metal 11 is formed uniformly on the P type layer 3, and in condition having ohmic contact with the P type layer 3, and a current flows from the P type layer 3, the metal layer 11, and a metal electrode 5 to a load resistor 6. As the material for the metal layer 11, a material being easy to make electrons to pass through like aluminum, and moreover having high electric conductivity is desirable. By providing the metal layer 11 like this, reduction of series resistance of the device can be attained without reducing sensitivity of the diode remarkably, large output current, namely large output can be obtained, and efficiency can be enhanced.

Description

【発明の詳細な説明】 本発明は電子線、X線などを検出する半導体検出器に関
するものである〇 最近、電子の検出に半導体の検出器(SSD)が使用さ
れるようになった。この検出器は以前に使用されていた
シンチレータと比較して小形で構造が簡単fあシ取扱い
が容易であるという特長を持ち、電子の検出ばかシでな
く、X線、放射線、レーザ光などの検出にも使用できる
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a semiconductor detector for detecting electron beams, X-rays, etc. Recently, semiconductor detectors (SSD) have been used to detect electrons. Compared to previously used scintillators, this detector is small, has a simple structure, and is easy to handle. It can also be used for detection.

このような検出器は第1図に示す構造を持つことが多い
◇第1図において、lはn土層基板、2はn一層、a 
tf p層、4は二酸化シリコン層、5は金属電極、6
は負荷抵抗、7はバイアス電源である。
Such detectors often have the structure shown in Figure 1 ◇ In Figure 1, l is an n-layer substrate, 2 is an n-layer substrate, and a
tf p layer, 4 is silicon dioxide layer, 5 is metal electrode, 6
is a load resistance, and 7 is a bias power supply.

ここでは被検出体として電子を例にとって説明する。電
子はリング状になった金属電極5に囲まれた領域に入射
する。電子はそのエネルギに応じて9層3およびn一層
2まで浸入して、1個の電子はそのエネルギに対応して
3.6eVのエネルギ当り1対の電子・正孔対を作り、
これが外部回路に流れて、負荷抵抗6の両端に電圧降下
を発生する。さらに電源電圧を高クシ、電子が入射した
ときにこれに誘発されてアバランシェプレークダウンヲ
発生させるようにすれば、さらに高い感度が得られる。
Here, explanation will be given by taking electrons as an example of the object to be detected. Electrons enter a region surrounded by the ring-shaped metal electrode 5. The electron penetrates into the 9 layer 3 and the n layer 2 according to its energy, and one electron creates one electron-hole pair per energy of 3.6 eV, corresponding to the energy.
This flows to the external circuit and generates a voltage drop across the load resistor 6. Furthermore, even higher sensitivity can be obtained by increasing the power supply voltage and causing avalanche breakdown to occur when electrons are incident.

このような構造のダイオードのとき、高い周波数まで動
作させ、同時に大きな電流利得すなわち高い感度を得る
ためにp土層3の厚さを可能な限−ノ り薄く例えば0.1〜0.2 pm程度にして入射電子
の多くがn一層2中まで到達するようにしている0とこ
ろがp土層3の抵抗は#1ぼ100ΩcIR(不純物濃
度10”°is)と比較的高いため、出力電流が大きい
ときKはこの部分で電圧降下が大きくなり、出力電圧お
よび出力電力の低下が生じ、またこの部分の発熱によシ
ブバイスの温度が上昇するという不都合が発生する0ま
た、高周波の信号に対しても損失が大きくなり、周波数
特性が制限を受けるという欠点があった。
In the case of a diode having such a structure, in order to operate at a high frequency and at the same time obtain a large current gain, that is, high sensitivity, the thickness of the p-soil layer 3 is made as thin as possible, for example, 0.1 to 0.2 pm. However, the resistance of the p-soil layer 3 is relatively high at 100 ΩcIR (impurity concentration 10"), so the output current is large. When K is 0, the voltage drop becomes large in this part, resulting in a decrease in the output voltage and output power, and the heat generation in this part causes the temperature of the passive vice to rise. This has the drawbacks of increased loss and limited frequency characteristics.

本発明は、これらの欠点を解決するため、p層の上に薄
くしかも感度の低下を可能な限り防止できる構造に金属
層を形成することにより、大出力。
The present invention solves these drawbacks by forming a thin metal layer on the p-layer and having a structure that prevents a decrease in sensitivity as much as possible, thereby achieving high output.

高感度、高能率の半導体検出器を実現することを目的と
する。
The aim is to realize a highly sensitive and highly efficient semiconductor detector.

以下図面により本発明の詳細な説明する0第2図は本発
明の一実施例で、11は金属層である。この金属層11
は2層3上に均一に形成してあり、2層3とオーム性接
触状態にある。電流は2層3、金属層11、金属電極5
から負荷抵抗6に流れる。−゛金属層11の材料にはア
ルミニウムのように電子を通過させ易くしかも電気の伝
導度の高い材料が望ましい。いま、2層3の厚さを0.
1μm#不純物濃度を1020./−とすると、2層3
の面抵抗は10″Ω/口となるが、厚さ500 Hのア
ルミニウムの面抵抗は5.3 X 10−107口であ
るから、ダイオードの直列抵抗は著しく低減される。ま
た、第2図の構造のダイオードにl0KVの電子ビーム
をダイオードの面に垂直に照射した時、アルミニウムの
金属層11中で損失するエネルギと反射されるエネルギ
の和は約1.31KeVである。一方、第1図の構造の
ダイオードに同じ電子ビームを照射した時に反射される
電子ビームエネルギは約1.11 KeVであるエネル
ギの損失は0.2KeV(ビームエネルギの2Δ qib>に過ぎない。
The present invention will be described in detail below with reference to the drawings. FIG. 2 shows an embodiment of the present invention, and 11 is a metal layer. This metal layer 11
is uniformly formed on the two layers 3 and is in ohmic contact with the two layers 3. Current flows through two layers 3, metal layer 11, metal electrode 5
and flows to the load resistor 6. - It is desirable for the material of the metal layer 11 to be a material that allows electrons to pass through easily and has high electrical conductivity, such as aluminum. Now, set the thickness of layer 2 to 0.
1 μm # impurity concentration 1020. /-, then 2 layers 3
The sheet resistance of 500 H thick aluminum is 5.3 x 10-107 holes, so the series resistance of the diode is significantly reduced. When a diode with the structure shown in FIG. When the same electron beam is irradiated onto a diode having the structure, the reflected electron beam energy is about 1.11 KeV, and the energy loss is only 0.2 KeV (2Δ qib> of the beam energy).

第3図(A)(B)は本発明の他の一実施例を示す断面
図及び平面図である0金属電極5は電子が照射される部
分の周辺部にリング状に厚く作られている。金属層11
は中心部では周辺部よりもさらに薄く作られている。い
ま電子ビームが金属電極5の内側に均一に照射されたと
すると、中央部分で発生したダイオード電流は2層3か
ら金属層11を通って最も近い金属電極5に流れ込む。
3(A) and 3(B) are a cross-sectional view and a plan view showing another embodiment of the present invention.0 The metal electrode 5 is formed thickly in the shape of a ring around the area where the electrons are irradiated. . metal layer 11
is made thinner in the center than in the periphery. Assuming that the electron beam is uniformly irradiated inside the metal electrode 5, the diode current generated in the center portion flows from the second layer 3 through the metal layer 11 to the nearest metal electrode 5.

周辺部分で発生したダイオード電流も2層3からその上
の金属層11に達して最も近い金属電極に流れ込むOこ
のように均一の電流密度を持つ電子ビームが照射された
時には金属層11は周辺部はど電流密度が高くなる。実
際には半径に比例して増加する0従って、中心部の金属
層11の厚さを周辺部より薄くしても均一な場合よりも
面抵抗増大の影響は少なく、逆に中心部において社、入
射ビームの金属層11中の損失を減少させられるから感
度を高くする仁とができる。また、金属層11の内側の
薄い部分の厚さを0すなわち、この部分の金属層11を
なくしても同じような効果を得ることができる0第4図
(A) (B)は第3図と同様な考え方に基づいた金属
層の構造の一例を示す。第4図において斜線を施した部
分は金属層の厚い部分で、斜線のない部分は金属層が薄
いかあるいは存在しない部分であ遥。第4図においては
斜線を施した部分において低抵抗の領域を作り、斜線を
施さない部分において比較的高い感度の領域を作り、総
合的に高感即でしかも直列抵抗の低い半導体検出器の実
現を目ざしたものであるO 第3図、第4図に示すような構造以外でも、部分的に金
属層を付けるかあるいは厚さの異る金属層を電子の照射
を受ける領域に分布させることによって、感度を著しく
低下させずに直列抵抗を減少させる効果を持つような金
属層の構成は本発明の思想に含まれることは明らかであ
る。
The diode current generated in the peripheral area also reaches the metal layer 11 above it from the second layer 3 and flows into the nearest metal electrode.When an electron beam with a uniform current density is irradiated in this way, the metal layer 11 flows in the peripheral area. The current density increases. In reality, the metal layer 11 increases in proportion to the radius. Therefore, even if the thickness of the metal layer 11 at the center is made thinner than that at the periphery, the effect of increase in sheet resistance is smaller than when it is uniform. Since the loss of the incident beam in the metal layer 11 can be reduced, the sensitivity can be increased. Also, the same effect can be obtained even if the thickness of the inner thin part of the metal layer 11 is 0, that is, the metal layer 11 in this part is omitted. An example of a metal layer structure based on the same idea is shown below. In FIG. 4, the hatched areas are thick parts of the metal layer, and the unshaded areas are areas where the metal layer is thin or absent. In Figure 4, a region of low resistance is created in the shaded area, and a region of relatively high sensitivity is created in the non-shaded area, thereby realizing a semiconductor detector with overall high sensitivity and low series resistance. In addition to the structures shown in Figures 3 and 4, it is possible to create structures other than those shown in Figures 3 and 4 by adding a metal layer partially or distributing metal layers of different thickness in the area that is irradiated with electrons. It is clear that the concept of the present invention includes a configuration of the metal layer that has the effect of reducing the series resistance without significantly reducing the sensitivity.

ここで示した実施例においてはp−n−−n+構造のダ
イオードについて説明したが、n−1)−−p層の構造
のダイオードにおいても全く同様に本発明の思想を適用
できることは明らかである0また、実施例は電子の検出
器として動作を説明したが、電子以外に、X線、光、放
射線の検出器とする場合でも本発明の思想を適用するこ
とができる。
In the embodiment shown here, a diode with a p-n--n+ structure was explained, but it is clear that the idea of the present invention can be applied in exactly the same way to a diode with an n-1)--p layer structure. Furthermore, in the embodiment, the operation was explained as an electron detector, but the idea of the present invention can be applied to a detector for X-rays, light, and radiation in addition to electrons.

さらに、半導体と電子ビームあるいは光ビームを組合せ
たデバイスの半導体についても本発明の思想が適用でき
ることは明らかである。
Furthermore, it is clear that the idea of the present invention can also be applied to a semiconductor device that combines a semiconductor and an electron beam or a light beam.

以上説明したように、本発明においては感度を著しく低
下させずにデバイスの直列抵抗を低下させることが可能
であるから、大きな出力電流すなわち大出力とすること
ができ、能率を向上させることができ、高周波信号の損
失が低下させられるので、高周波化が可能となる等の利
点がある。
As explained above, in the present invention, it is possible to reduce the series resistance of the device without significantly reducing the sensitivity, so a large output current, that is, a large output, can be achieved, and efficiency can be improved. Since the loss of high frequency signals is reduced, there are advantages such as higher frequencies can be achieved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の半導体検出器の断面図、第2図は本発明
の半導体検出器の一実施例の断面図、第3図(A)(B
)は本発明の他の一実施例の断面図と平面図、第4図(
A)(B)は本発明の半導体検出器に用いる金属層の具
体例を示す構造図である01・・・n土層基板、 2・
・・n一層、  3・・・p層、4・・・二酸化シリコ
ン層、  5・・・金属電極、6・・・負荷抵抗、  
7・・・バイアス電源、11・・・金属層。 特許出願人  日本電信電話公社 代理人 白水常雄 外1名 第1図 第2図 牙3回
FIG. 1 is a sectional view of a conventional semiconductor detector, FIG. 2 is a sectional view of an embodiment of the semiconductor detector of the present invention, and FIGS.
) are a sectional view and a plan view of another embodiment of the present invention, and FIG. 4 (
A) and (B) are structural diagrams showing specific examples of metal layers used in the semiconductor detector of the present invention. 01...n soil layer substrate, 2.
...N single layer, 3...P layer, 4...silicon dioxide layer, 5...metal electrode, 6...load resistance,
7...Bias power supply, 11...Metal layer. Patent applicant Nippon Telegraph and Telephone Public Corporation agent Tsuneo Shiramizu and one other person Figure 1 Figure 2 Fang 3 times

Claims (2)

【特許請求の範囲】[Claims] (1)第1の電導特性を持つ半導体と、該第1の電導特
性を持つ半導体の表面上に部分的に存在する第2の電導
特性を持つ半導体層とから構成される半導体装置におい
て、該第2の電導特性を持つ半導体層の表面に被検出物
が容易に透過できる厚さの金属層を形成したことを特徴
とする半導体検出器。
(1) In a semiconductor device comprising a semiconductor having a first conductive characteristic and a semiconductor layer having a second conductive characteristic partially existing on the surface of the semiconductor having the first conductive characteristic, A semiconductor detector characterized in that a metal layer having a thickness through which an object to be detected can easily pass is formed on the surface of a semiconductor layer having second conductive properties.
(2)前記金属層の厚さを部分的に変化させるかあるい
は部分的に金属層を除去したことを特徴とする特許請求
の範囲第1項記載の半導体検出器0
(2) The semiconductor detector 0 according to claim 1, characterized in that the thickness of the metal layer is partially changed or the metal layer is partially removed.
JP56109977A 1981-07-16 1981-07-16 Semiconductor detector Pending JPS5812374A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56109977A JPS5812374A (en) 1981-07-16 1981-07-16 Semiconductor detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56109977A JPS5812374A (en) 1981-07-16 1981-07-16 Semiconductor detector

Publications (1)

Publication Number Publication Date
JPS5812374A true JPS5812374A (en) 1983-01-24

Family

ID=14523944

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56109977A Pending JPS5812374A (en) 1981-07-16 1981-07-16 Semiconductor detector

Country Status (1)

Country Link
JP (1) JPS5812374A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0482912A (en) * 1990-07-18 1992-03-16 Kanebo Ltd Electrically conductive conjugate fiber
JPH068987U (en) * 1991-06-28 1994-02-04 ライネット株式会社 Electronic display
EP2242115A3 (en) * 2009-04-17 2011-09-28 Canberra Industries, Inc. Light-tight silicon radiation detector

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52131485A (en) * 1976-04-28 1977-11-04 Nippon Toki Kk Element for measuring quantity of radiation

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52131485A (en) * 1976-04-28 1977-11-04 Nippon Toki Kk Element for measuring quantity of radiation

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0482912A (en) * 1990-07-18 1992-03-16 Kanebo Ltd Electrically conductive conjugate fiber
JPH068987U (en) * 1991-06-28 1994-02-04 ライネット株式会社 Electronic display
EP2242115A3 (en) * 2009-04-17 2011-09-28 Canberra Industries, Inc. Light-tight silicon radiation detector

Similar Documents

Publication Publication Date Title
US7105827B2 (en) Semiconductor detector with optimised radiation entry window
JPH06508006A (en) low capacitance x-ray detector
JP2002311146A (en) Device and apparatus for detecting high-energy beam
JPH06318447A (en) Electron tube
US4649409A (en) Photoelectric transducer element
US3745424A (en) Semiconductor photoelectric transducer
JPS5812374A (en) Semiconductor detector
JPS6017956A (en) Radiation resistant semiconductor element
US5780913A (en) Photoelectric tube using electron beam irradiation diode as anode
US3329823A (en) Solid state thin film photosensitive device with tunnel barriers
US3523190A (en) Mos photodetector having dual gate electrodes
JPH114012A (en) Pin photodiode
JPS6035834B2 (en) Semiconductor device for radiation detection
JP2608311B2 (en) Ionized particle detector
US4835587A (en) Semiconductor device for detecting radiation
EP0190162A1 (en) Controlled turn-on thyristor.
US3928865A (en) Photo-electrical transducer
JPS6328076A (en) Semiconductor radiation detector
JP2796601B2 (en) Avalanche photodiode
JP2018017685A (en) Radiation detector
RU2061282C1 (en) Semiconductor ionizing-radiation detector
RU2141703C1 (en) Method realizing internal proportional amplification in semiconductor particle and radiation detector and gear for its implementation
JPH10190041A (en) Photodiode
JPH0529647A (en) Photodetector
JPH0494579A (en) Semiconductor photodetector