JPH0312396A - Production of superconducting thin film - Google Patents
Production of superconducting thin filmInfo
- Publication number
- JPH0312396A JPH0312396A JP1148004A JP14800489A JPH0312396A JP H0312396 A JPH0312396 A JP H0312396A JP 1148004 A JP1148004 A JP 1148004A JP 14800489 A JP14800489 A JP 14800489A JP H0312396 A JPH0312396 A JP H0312396A
- Authority
- JP
- Japan
- Prior art keywords
- thin film
- substrate
- superconducting thin
- gas
- reactor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000010409 thin film Substances 0.000 title claims abstract description 54
- 238000004519 manufacturing process Methods 0.000 title claims description 12
- 239000000758 substrate Substances 0.000 claims abstract description 33
- 229910052788 barium Inorganic materials 0.000 claims abstract description 22
- 229910052727 yttrium Inorganic materials 0.000 claims abstract description 21
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 12
- 239000010408 film Substances 0.000 claims abstract description 11
- 238000005229 chemical vapour deposition Methods 0.000 claims abstract description 10
- 229910052802 copper Inorganic materials 0.000 claims abstract description 9
- 229910009203 Y-Ba-Cu-O Inorganic materials 0.000 claims abstract 3
- 238000000034 method Methods 0.000 claims description 16
- 239000002887 superconductor Substances 0.000 claims description 12
- 230000015572 biosynthetic process Effects 0.000 abstract description 4
- 239000007789 gas Substances 0.000 description 43
- 239000002994 raw material Substances 0.000 description 16
- 239000013078 crystal Substances 0.000 description 7
- 238000010586 diagram Methods 0.000 description 7
- 238000000151 deposition Methods 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 2
- 238000007740 vapor deposition Methods 0.000 description 2
- 238000002441 X-ray diffraction Methods 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 239000012159 carrier gas Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 229910010293 ceramic material Inorganic materials 0.000 description 1
- 239000013522 chelant Substances 0.000 description 1
- 150000004696 coordination complex Chemical class 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 125000002524 organometallic group Chemical group 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052594 sapphire Inorganic materials 0.000 description 1
- 239000010980 sapphire Substances 0.000 description 1
- 238000002230 thermal chemical vapour deposition Methods 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E40/00—Technologies for an efficient electrical power generation, transmission or distribution
- Y02E40/60—Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment
Landscapes
- Crystals, And After-Treatments Of Crystals (AREA)
- Chemical Vapour Deposition (AREA)
- Superconductor Devices And Manufacturing Methods Thereof (AREA)
- Superconductors And Manufacturing Methods Therefor (AREA)
Abstract
Description
【発明の詳細な説明】
「産業上の利用分野」
本発明は、ジョセフソン素子や5QUIDなどの超電導
デバイス、超電導マグネットコイルや電力輸送用の超電
導体、超電導磁気シールド材等に使用されるY −B
a−Cu−0系超電導薄膜を化学蒸着法によって製造す
る方法に関する。DETAILED DESCRIPTION OF THE INVENTION "Field of Industrial Application" The present invention is directed to the Y- B
The present invention relates to a method of manufacturing an a-Cu-0 based superconducting thin film by a chemical vapor deposition method.
「従来の技術」
最近に至り、常電導状態から超電導状態へ遷移する臨界
温度(T c)が液体窒素温度を超える値を示す酸化物
系超電導体が種々発見されている。この種の酸化物系超
電導体としては、Y −B a−Cu−0系、B i−
P b−9r−Ca−Cu−0系、T I−B a−C
aCu−0系などが知られている。"Prior Art" Recently, various oxide-based superconductors have been discovered whose critical temperature (T c ) for transitioning from a normal conductive state to a superconducting state exceeds the liquid nitrogen temperature. This type of oxide-based superconductor includes Y-B a-Cu-0 system, B i-
P b-9r-Ca-Cu-0 system, T I-B a-C
The aCu-0 series and the like are known.
また、このような酸化物系超電導体の製造方法の一つと
して、化学蒸着法(以下、CVD法という)を用い、基
体上に酸化物超電導体からなる薄膜を成膜する方法が知
られている。このCVD法による超電導薄膜の製造方法
では、基体として長尺金属線、長尺金属テープ、セラミ
ックス板などの種々の基体を用いることができ、これら
の各種基体上に数十μmオーダーの成膜が容易であるこ
とから、酸化物超電導体の実用上有利であり、酸化物超
電導体の実用化に向けて種々の研究がなされてきている
。Furthermore, as one method for manufacturing such oxide-based superconductors, a method is known in which a thin film made of an oxide superconductor is formed on a substrate using a chemical vapor deposition method (hereinafter referred to as CVD method). There is. In this method of manufacturing superconducting thin films using the CVD method, various substrates such as long metal wires, long metal tapes, and ceramic plates can be used as substrates, and films on the order of tens of micrometers can be formed on these various substrates. Since oxide superconductors are easy to use, they are advantageous in practical use, and various studies have been conducted toward the practical application of oxide superconductors.
CVD法によって超電導薄膜を製造するには、酸化物超
電導体を構成する元素を含む有機金属錯体(気相源)が
収納された複数の原料ガス供給器(バブラーなど)内に
Arガスなどのキャリアガスを導入して各原料ガス供給
器から何機金属錯体のガスを含む原料ガスを取り出して
混合し、この混合ガスをリアクター内に導入し、このリ
アクター内で混合ガスを分解して、リアクター内に配置
された基体表面に酸化物超電導体を成膜して超電導薄膜
を製造する。上記リアクター内に供給された混合ガスは
、熱、光、プラズマ、レーザ光などによって分解される
。In order to produce a superconducting thin film by the CVD method, a carrier such as Ar gas is placed in multiple source gas supply devices (bubblers, etc.) containing organometallic complexes (gas phase sources) containing elements constituting the oxide superconductor. Gas is introduced, raw material gas containing several metal complex gases is taken out from each raw material gas supply device, mixed, this mixed gas is introduced into the reactor, the mixed gas is decomposed in this reactor, and the mixed gas is decomposed in the reactor. A superconducting thin film is manufactured by depositing an oxide superconductor on the surface of a substrate placed on the substrate. The mixed gas supplied into the reactor is decomposed by heat, light, plasma, laser light, etc.
ところで、このような超電導薄膜の製造方法では、原料
ガスの状態で元素の組成比を一定にコントロールして成
膜していた。例えばY + B at CL130X(
X≦7)なる組成の超電導薄膜を製造する場合には、混
合ガス中のメタルモル比が、Y:Ba:Cu=l:2・
3となるように各原料ガスの供給量を調節、混合して成
膜を行っていた。By the way, in such a method of manufacturing a superconducting thin film, the film is formed by controlling the composition ratio of elements at a constant level in the state of the raw material gas. For example, Y + B at CL130X (
When producing a superconducting thin film with a composition of X≦7), the metal molar ratio in the mixed gas is Y:Ba:Cu=l:2.
Film formation was performed by adjusting and mixing the supply amount of each raw material gas so that the amount of gas was 3.
この場合、基体面上には、面に対して平行に、Y :B
a:Cu= l :2 :3である面が生成し易く、生
成した膜は(110)面や(+03)面配向したものが
ほとんどであった。第3図にY IB a2 Cu30
xの(110)面内の原子配列を示す。また第4図は
その積層状態を示す図である。In this case, on the substrate surface, Y:B is parallel to the surface.
A plane with a:Cu=l:2:3 was easily produced, and most of the produced films were oriented in the (110) plane or (+03) plane. Figure 3 shows Y IB a2 Cu30
The atomic arrangement in the (110) plane of x is shown. Moreover, FIG. 4 is a diagram showing the laminated state.
[発明が解決しようとする課題]
しかしながら、先のY + B at Cu30 x超
電導体では、超電導電流がペロブスカイト酸化物型の結
晶構造におけるa軸、b軸、C軸の各軸方向のうちのC
軸に垂直な面内、すなわち(002)、(003)、(
005)、(006)などの(OOX)面内を流れるた
め、先の(+10)面に配向された超電導薄膜では大き
な臨界型流密1t(Jc)が得られない問題があった。[Problems to be Solved by the Invention] However, in the above-mentioned Y + B at Cu30
In the plane perpendicular to the axis, i.e. (002), (003), (
Since it flows in the (OOX) plane such as (005) and (006), there was a problem that a large critical flow density 1t (Jc) could not be obtained in the superconducting thin film oriented in the (+10) plane.
本発明は、上記事情に鑑みてなされたもので、基体表面
にy、Ba、Cu30xの組成でC軸配向の超電導薄膜
を成膜する方法の提供を目的としている。The present invention has been made in view of the above circumstances, and aims to provide a method for forming a C-axis oriented superconducting thin film with a composition of y, Ba, and Cu30x on the surface of a substrate.
「課題を解決するための手段」
上記課題解決の手段として、本発明は、基体の表面にY
−B a−Cu−0系超電導体からなる超電導薄膜を
化学蒸着法によって成膜する超電導薄膜の製造方法であ
って、上記基体の表面に、YとBaと0とを含む第1の
薄膜を形成した後に、この第1の薄膜上にYとBaとC
uとOとを含む第2の薄膜を形成し、基体表面にY −
B a−Cu−0配向膜を形成することを特徴とする方
法である。"Means for Solving the Problems" As a means for solving the above problems, the present invention provides Y
-B A method for producing a superconducting thin film comprising forming a superconducting thin film made of a-Cu-0 based superconductor by chemical vapor deposition, the method comprising: depositing a first thin film containing Y, Ba and 0 on the surface of the substrate; After forming, Y, Ba, and C are formed on this first thin film.
A second thin film containing u and O is formed, and Y −
This method is characterized by forming a B a-Cu-0 oriented film.
「作用 」
Y IB atc u30 xの結晶構造においては、
7面とBaO面とによる立方体に近い格子構造内にCu
がおさまった形になっていることから、本発明方法では
、基体表面にY、Ba、Oを含む第1の薄膜を成膜し、
YとBaの骨格を作り易くし、この後にY、Ba、Cu
、Oを含む第2の薄膜を成膜することにより基体表面に
C軸配向したY IB atc uso X超電導薄膜
が得られる。"Action" In the crystal structure of Y IB atc u30 x,
Cu is present in a nearly cubic lattice structure consisting of 7 planes and BaO planes.
In the method of the present invention, a first thin film containing Y, Ba, and O is formed on the surface of the substrate, and
It makes it easy to create a skeleton of Y and Ba, and then Y, Ba, Cu
By forming a second thin film containing O, a C-axis oriented Y IB atc uso X superconducting thin film can be obtained on the substrate surface.
「実施例」
以下、図面を参照して本発明方法の一実施例を詳細に説
明する。"Example" Hereinafter, an example of the method of the present invention will be described in detail with reference to the drawings.
第1図は、本発明方法を実施するに好適なCVD装置の
一例を示す図である。このCVD装置は、Cuの気相源
(Cuソース)とYの気相源(Yソース)とBaの気相
源(Baソース)とが各々収容された原料ガス供給器!
、2.3と、これらの原料ガス供給i5+、2.3か
ら供給された−3原料ガスおよび0゜ガスを混合するミ
キシングチューブ4と、このミキシングチューブ4で混
合された混合ガスを導入し加熱して反応させるリアクタ
ー5とを具備して構成されている。FIG. 1 is a diagram showing an example of a CVD apparatus suitable for carrying out the method of the present invention. This CVD apparatus is a raw material gas supply device that accommodates a Cu gas phase source (Cu source), a Y gas phase source (Y source), and a Ba gas phase source (Ba source).
, 2.3, these raw material gas supplies i5+, a mixing tube 4 that mixes -3 raw material gas and 0° gas supplied from 2.3, and the mixed gas mixed in this mixing tube 4 is introduced and heated. and a reactor 5 for causing a reaction.
このリアクター5内には、Y 、−B a−Cu−0系
超電導薄膜を成膜すべき基体6が収納されている。This reactor 5 houses a substrate 6 on which a Y, -Ba-Cu-0 based superconducting thin film is to be formed.
またリアクター5の一端は、図示路の真空ポンプに接続
されている。またリアクタ−5外周には、リアクター5
内を加熱するためのヒータ7が配設されている。上記各
原料ガス供給器1,2.3には、各々Arガス(キャリ
アガス)が導入されるようになっている。Further, one end of the reactor 5 is connected to a vacuum pump in the illustrated path. Also, on the outer periphery of the reactor 5, the reactor 5
A heater 7 is provided to heat the inside. Ar gas (carrier gas) is introduced into each of the raw material gas supply devices 1, 2.3.
上記Cuソース、YソースおよびBaソースとしては、
Y、Ba、Cuの各元素の2,266−チトラメチルー
3.5−へブタンジオン(以下、T)(Dと略記する。The Cu source, Y source and Ba source are as follows:
2,266-titramethyl-3.5-hebutanedione (hereinafter referred to as T) (abbreviated as D) of each element of Y, Ba, and Cu.
)などのβ−ジケトンキレート錯体が好適に使用される
。β-diketone chelate complexes such as ) are preferably used.
また上記基体6の材料としては、Y −B a−CuO
系超超電導体結晶構造における a軸長(第2図の図中
Aで示す部分の長さ、約3.88人。)およびb軸長(
第2図の図中Bで示す部分の長さ、約3.83人。)に
類似の面間隔を有する材料を用いることが望ましく、特
にS rT io sが好適に使用される。Further, as the material of the base 6, Y-Ba-CuO
The a-axis length (the length of the part indicated by A in Fig. 2, approximately 3.88 people) and the b-axis length (
The length of the part indicated by B in Figure 2 is approximately 3.83 people. It is desirable to use a material having a lattice spacing similar to ), and S rT ios is particularly preferably used.
このCVD装置によりY −B a−Cu−0系超電導
薄膜を製造するには、まずリアクター5内に基板6を配
置し、リアクター5内の排気を開始するとともにヒータ
7でリアクター5内を加熱する。To manufacture a Y-B a-Cu-0 based superconducting thin film using this CVD apparatus, first place the substrate 6 in the reactor 5, start exhausting the inside of the reactor 5, and heat the inside of the reactor 5 with the heater 7. .
続いて各原料ガス供給器1.2.3のうち、Yソースと
Baソースが収容された各原料ガス供給器2.3にAr
ガスを供給し、リアクター5内にYとBaとを含む原料
ガスと0.ガスとの混合ガスを供給し、基体6表面にY
とBaと0とを含む第1の薄膜を成膜する。Next, among the raw material gas supply devices 1.2.3, each raw material gas supply device 2.3 containing the Y source and Ba source is supplied with Ar.
Gas is supplied, and raw material gas containing Y and Ba is mixed into the reactor 5. A mixed gas with Y is supplied to the surface of the base 6.
A first thin film containing Ba and 0 is formed.
この第1の薄膜を0.05μm程度の厚さに成膜した後
、Cuソースが収容された原料ガス供給器i内にArガ
スを供給し、混合ガス中のメタルモル比が、Y :Ba
:Cu= 1 :2 :3となるようにArガス供給量
を調節し、基体6の第1の薄膜上に、Y。After forming this first thin film to a thickness of about 0.05 μm, Ar gas is supplied into the raw material gas supply device i containing the Cu source, and the metal molar ratio in the mixed gas is adjusted to Y:Ba
:Cu=1:2:3 by adjusting the amount of Ar gas supplied, and depositing Y on the first thin film of the substrate 6.
Ba、Cu、Oの各元素を含みかッY :Ba:Cu=
I :2・3の組成の第2の薄膜を成膜する。Contains each element of Ba, Cu, and O.Y:Ba:Cu=
I: A second thin film having a composition of 2.3 is formed.
ところで、第2図に示すようにYIBa2Cu30x超
電導体の結晶構造は、基板面とa、b面とが平行になっ
た場合、すなわちC軸配向した場合には、下層よりY面
−Cu O1面−BaO面−CuO面−CuO面−Ba
O面−CuO面−Y面の繰り返しとなっている。またこ
の構造では7面とBaO面によって形成された立方体に
近い格子内に、Cuがおさまった形となっている。この
YとBaによる格子の間隔は約3,8へ程度であり、C
u’+イオン半径は約0.72八とかなり小さく、高温
条件下では移動し易い。By the way, as shown in FIG. 2, the crystal structure of the YIBa2Cu30x superconductor is such that when the a and b planes are parallel to the substrate surface, that is, when the C axis is oriented, the Y plane - Cu O1 plane - BaO surface-CuO surface-CuO surface-Ba
The O plane-CuO plane-Y plane is repeated. Moreover, in this structure, Cu is contained in a nearly cubic lattice formed by seven planes and BaO planes. The lattice spacing of Y and Ba is about 3.8 to
The u'+ ion radius is quite small, approximately 0.728, and is easily mobile under high temperature conditions.
そして上述したようにCu原料ガスに先駆けてY、Ba
の原料ガスを導入し、Y、Baの骨格を作り易くしてC
uを導入し、かつ基板材料に Y+BatCu30xの
結晶構造における a軸、b軸長に類似の面間隔を有し
第2図の図中符号C(c/3= 3.89人)の長さが
若干長い材料を用いることにより、基板表面にC軸配向
した均質な膜が得られる。As mentioned above, Y, Ba
Introducing raw material gas to facilitate the formation of Y and Ba skeletons
u is introduced, and the substrate material has a lattice spacing similar to the a-axis and b-axis lengths in the crystal structure of Y+BatCu30x, and the length of the symbol C (c/3 = 3.89 people) in Fig. 2 is By using a slightly longer material, a homogeneous film with C-axis orientation can be obtained on the substrate surface.
基体6表面に成膜された超電導薄膜は、上述のようにY
+B atCLi2OKの均質なC軸配向膜となるの
で、この製造方法によれば、臨界電流密度の大きい高性
能な超電導薄膜を製造することができる。The superconducting thin film formed on the surface of the substrate 6 is Y as described above.
Since a homogeneous C-axis oriented film of +B atCLi2OK is obtained, according to this manufacturing method, a high-performance superconducting thin film with a high critical current density can be manufactured.
なお、上記基体6の形状は板状体に限定されることなく
、長尺線状、長尺帯状、管状、柱状などの種々の形状の
基体を使用することができる。また基体6の材質はS
rT io 3に限定されることなく、アルミナ、サフ
ァイア、Zr0t、Ti12などのセラミックス材やC
uSAg、Ta、TiXZrなどの金属材であっても良
い。Note that the shape of the base 6 is not limited to a plate-like body, and various shapes such as a long linear shape, a long strip shape, a tubular shape, and a columnar shape can be used. The material of the base 6 is S.
Not limited to rT io 3, ceramic materials such as alumina, sapphire, Zr0t, Ti12 and C
Metal materials such as uSAg, Ta, and TiXZr may also be used.
また本発明方法は、熱CVD法のみでなく、光CVD法
、プラズマCVD法などの各種のCVD法に適用させる
ことができる。Furthermore, the method of the present invention can be applied not only to thermal CVD methods but also to various CVD methods such as optical CVD methods and plasma CVD methods.
(製造例)
本発明方法に基づいてY −B a−Cu−0超電導薄
膜の製造を実施した。(Production Example) A Y-B a-Cu-0 superconducting thin film was produced based on the method of the present invention.
CuソースにCu(T HD )e、YソースにY(T
HD)3、BaソースにB a(T HD )zを用い
、第1図に示すプラズマCVD装置と同等の装置を用い
、0.5mmX lommX 10mmの5rTiOs
製の基板上にY +B atc L130 Kの組成の
超電導体を成膜して超電導薄膜を作製した。Cu(T HD )e for Cu source, Y(T HD )e for Y source
HD) 3, using Ba(T HD )z as the Ba source and using an apparatus equivalent to the plasma CVD apparatus shown in Fig. 1, 5rTiOs of 0.5 mm x lo mm x 10 mm.
A superconducting thin film was fabricated by depositing a superconductor having a composition of Y + B atc L130 K on a substrate made of Y + B atc L130 K.
リアクター内に基板を入れ、この基板を800 ’Cに
加熱し、リアクター内にY原料ガスとBa原料ガスと酸
素の混合ガスを供給し、基板表面にYとBaと0とを含
む第1の薄膜を成膜した。成膜開始から約10分経過後
、基板表面の第1の薄膜の厚さが0.05μmとなり、
この時点でCu原料ガスの供給を開始し、Y、Ba、C
uを含む混合ガス中のメタルモル比がY :Ba:Cu
= I :2 :3となるように原料ガス供給量を調節
した。Y、Ba、Cuの各元素を含む混合ガスの供給に
よって、基板表面の第1の薄膜上にY、Ba、Cu、O
(Y:Ba:Cu= l :2:3)を含む薄膜が蒸着
された。この蒸着開始から約1時間蒸着を継続して厚さ
約5μmの超電導薄膜を得た。A substrate is placed in a reactor, this substrate is heated to 800'C, a mixed gas of Y source gas, Ba source gas, and oxygen is supplied into the reactor, and a first layer containing Y, Ba, and 0 is formed on the substrate surface. A thin film was formed. Approximately 10 minutes after the start of film formation, the thickness of the first thin film on the substrate surface became 0.05 μm.
At this point, the supply of Cu raw material gas is started, and Y, Ba, C
The metal molar ratio in the mixed gas containing u is Y:Ba:Cu
The raw material gas supply amount was adjusted so that = I:2:3. By supplying a mixed gas containing each element of Y, Ba, and Cu, Y, Ba, Cu, and O are deposited on the first thin film on the substrate surface.
A thin film containing (Y:Ba:Cu=l:2:3) was deposited. Vapor deposition was continued for about 1 hour from the start of this vapor deposition to obtain a superconducting thin film with a thickness of about 5 μm.
得られた超電導薄膜の結晶構造をX線回折によって調べ
た結果、薄膜中の結晶が(OOX)面に配向されており
、また均質な結晶構造であることが判明した。As a result of examining the crystal structure of the obtained superconducting thin film by X-ray diffraction, it was found that the crystals in the thin film were oriented in the (OOX) plane and that the crystal structure was homogeneous.
また得られた超電導薄膜の超電導特性は、臨界温度(T
c)= 92 K、臨界電流密度(Jc)= 2X1
0 ’ A/cm”(at 77K)と、高性能の薄膜
が得られた。In addition, the superconducting properties of the obtained superconducting thin film are determined by the critical temperature (T
c) = 92 K, critical current density (Jc) = 2X1
A thin film with a high performance of 0'A/cm" (at 77K) was obtained.
「発明の効果」
以上説明したように、本発明による超電導薄膜の製造方
法は、基体表面にYとBaとOを含む第1の薄膜を成膜
し、この後にY、Ba、Cu、Oを含む第2の薄膜を成
膜することにより、基体表面に、YIBatCu30x
の均質なC軸配向膜を成膜することができ、臨界電流密
度の大きい高性能な超電導薄膜を製造することができる
。"Effects of the Invention" As explained above, the method for producing a superconducting thin film according to the present invention involves forming a first thin film containing Y, Ba, and O on the surface of a substrate, and then depositing Y, Ba, Cu, and O. By forming a second thin film containing YIBatCu30x on the substrate surface,
A homogeneous C-axis oriented film can be formed, and a high-performance superconducting thin film with a high critical current density can be manufactured.
【図面の簡単な説明】
第1図は本発明の一実施例において好適に使用されるC
VD装置の一例を示す概略構成図、第2図は本発明方法
により製造される超電導薄膜の結晶構造を説明するため
の図、第3図はY −B a−Cu−〇超電導体の(1
10)面の原子配列を示す図、第4図は同積層状態を示
す図である。
1.2.3・・・原料ガス供給器、
チューブ、5・・・リアクター
4・・・ミキシング
6・・・基板(基体)、
7・・・ヒータ。[BRIEF DESCRIPTION OF THE DRAWINGS] FIG. 1 shows a C
A schematic configuration diagram showing an example of a VD apparatus, FIG. 2 is a diagram for explaining the crystal structure of a superconducting thin film produced by the method of the present invention, and FIG. 3 is a diagram showing the (1
10) A diagram showing the atomic arrangement of the plane, and FIG. 4 is a diagram showing the same stacked state. 1.2.3... Raw material gas supply device, tube, 5... Reactor 4... Mixing 6... Substrate (substrate), 7... Heater.
Claims (1)
超電導薄膜を化学蒸着法によって成膜する超電導薄膜の
製造方法であって、上記基体の表面に、YとBaとOと
を含む第1の薄膜を形成した後に、この第1の薄膜上に
YとBaとCuとOとを含む第2の薄膜を形成し、基体
表面にY−Ba−Cu−O配向膜を形成することを特徴
とする超電導薄膜の製造方法。A method for producing a superconducting thin film comprising forming a superconducting thin film made of a Y-Ba-Cu-O based superconductor on the surface of a substrate by chemical vapor deposition, the method comprising: After forming the first thin film, a second thin film containing Y, Ba, Cu, and O is formed on the first thin film, and a Y-Ba-Cu-O alignment film is formed on the substrate surface. Characteristic method for manufacturing superconducting thin films.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1148004A JPH0312396A (en) | 1989-06-09 | 1989-06-09 | Production of superconducting thin film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1148004A JPH0312396A (en) | 1989-06-09 | 1989-06-09 | Production of superconducting thin film |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0312396A true JPH0312396A (en) | 1991-01-21 |
Family
ID=15442959
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1148004A Pending JPH0312396A (en) | 1989-06-09 | 1989-06-09 | Production of superconducting thin film |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0312396A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006223647A (en) * | 2005-02-18 | 2006-08-31 | Hiroyasu Yamamoto | Training machine for enhancing running speed |
-
1989
- 1989-06-09 JP JP1148004A patent/JPH0312396A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006223647A (en) * | 2005-02-18 | 2006-08-31 | Hiroyasu Yamamoto | Training machine for enhancing running speed |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR910007382B1 (en) | Superconductor material and method of manufacturing super-conductor film | |
CN1364321B (en) | Multi-layer articles and method of making same | |
JPH0217685A (en) | Manufacture of metal oxide superconducting material layer using laser vaporization | |
JPH06293596A (en) | Device for forming cushioning layer for arranged high tc tape superconduction and device for forming high-density condenser | |
JPH0312396A (en) | Production of superconducting thin film | |
JPH04214097A (en) | Manufacture of superconductor thin film | |
JPH0312323A (en) | Production of superconducting thin film | |
JP4619697B2 (en) | Oxide superconducting conductor and manufacturing method thereof | |
JPH01100820A (en) | High temperature superconducting material | |
JP4012772B2 (en) | Oxide superconductor tape wire | |
JPH01100818A (en) | High temperature superconducting material | |
KR970009739B1 (en) | Method of manufacture for superconductor thin film | |
CN1013813B (en) | Hypothermia composition method for high tc supraconduction film material | |
JPH01100816A (en) | High temperature superconducting material | |
JPH01100817A (en) | High temperature superconducting material | |
JPH09275009A (en) | Plate-shaped conductor with triaxial orientation oxide superconductors and laminated superconductive magnet | |
JPH01203258A (en) | Production of oxide superconducting sintered body | |
Stadel et al. | Single source MOCVD system for deposition of superconducting films onto moved tapes | |
Jiang et al. | Thin films of the protonic conductor gadolinium‐doped barium cerate by solid‐source metalorganic chemical vapor deposition | |
JPH0196015A (en) | Formation of superconducting thin film | |
JPH02118075A (en) | Production of oxide superconductor | |
JPH01212218A (en) | Production of thin superconducting oxide film | |
JP2518121B2 (en) | Method for producing BiSrCaCuO-based superconducting film | |
JPH04188683A (en) | Planar type josephson element and manufacture thereof | |
JPH01100815A (en) | High temperature superconducting material |