JPH01100820A - High temperature superconducting material - Google Patents

High temperature superconducting material

Info

Publication number
JPH01100820A
JPH01100820A JP62258779A JP25877987A JPH01100820A JP H01100820 A JPH01100820 A JP H01100820A JP 62258779 A JP62258779 A JP 62258779A JP 25877987 A JP25877987 A JP 25877987A JP H01100820 A JPH01100820 A JP H01100820A
Authority
JP
Japan
Prior art keywords
superconducting
superconducting layer
group
elements
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62258779A
Other languages
Japanese (ja)
Inventor
Tsukasa Kono
河野 宰
Nobuyuki Sadakata
伸行 定方
Shinya Aoki
青木 伸哉
Mikio Nakagawa
中川 三紀夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP62258779A priority Critical patent/JPH01100820A/en
Publication of JPH01100820A publication Critical patent/JPH01100820A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PURPOSE:To obtain an excellent high temperature superconductor by sandwiching a layer formed via an MBE method between two layers of an A-B-C-D system formed via a laser deposition method, where A stands for Y and the like in group IIIa of the periodic table, B for Sr and the like in group IIa, C for Cu and the like in Ib group and Nb, and D for O and the like in group VI. CONSTITUTION:The A-B-C-D system comprises a high temperature superconducting material, where A stands for one or more elements such as Y and Sc in IIIa group of the periodic table, C for two or more elements containing Cu among Ib group elements such as Cu and Ag, and Nb, or Cu and D for elements containing O among element VIb such as O and S and group VIIb elements such as F and Cl. And the high temperature superconductor of an oxide system having a three-layer structure is formed on a substrate 2. A superconducting layer 1a is formed on the substrate 2 via a laser deposition method, another superconducting layer 1b formed thereon via a molecular-beam epitaxial(MBE) method and another superconducting layer 1c further thereon via a laser deposition method. According to the aforesaid process, it is possible to obtain high critical current density and make film thickness larger.

Description

【発明の詳細な説明】 「産業上の利用分野」 この発明は、ジョセフソン素子や超電導記憶素子等の超
電導デバイス、あるいは超電導マグネット用コイルなど
として使用可能な高温超電導材に関するもめである。
DETAILED DESCRIPTION OF THE INVENTION "Field of Industrial Application" The present invention relates to a high-temperature superconducting material that can be used as a superconducting device such as a Josephson element or a superconducting memory element, or a coil for a superconducting magnet.

「従来の技術」 最近に至り、常電導状態から超電導状態に遷移する臨界
温度(T c)が液体窒素温度以上の高い値を示す酸化
物系の超電導体が種々発見されつつある。そして、この
ような酸化物系の超電導体は、液体ヘリウムで冷却する
必要のあった従来の合金系あるいは金属間化合物系の超
電導体に比較して格段に有利な冷却条件で使用できるこ
とから、実用上極めて有望な超電導材料とされている。
"Prior Art" Recently, various oxide-based superconductors have been discovered that exhibit a critical temperature (T c ) for transitioning from a normal conducting state to a superconducting state that is higher than the temperature of liquid nitrogen. These oxide-based superconductors can be used under much more advantageous cooling conditions than conventional alloy-based or intermetallic compound-based superconductors, which require cooling with liquid helium. It is considered to be an extremely promising superconducting material.

ところで、このような酸化物超電導体における臨界温度
(T c)や臨界電流密度(Jc)等の超電導特性は、
製造方法、製造条件などの種々のファクタ−により変動
することが知られている。そして、現在のところでは、
分子線エピタキシー(以下、M B Eと言う。)法、
レーザ蒸着法等の薄膜形成手段により形成された超電導
体が比較的良好な超電導特性を示す可能性があるとして
有望視されている。
By the way, the superconducting properties such as critical temperature (Tc) and critical current density (Jc) in such an oxide superconductor are as follows.
It is known that it varies depending on various factors such as the manufacturing method and manufacturing conditions. And at present,
Molecular beam epitaxy (hereinafter referred to as MBE) method,
Superconductors formed by thin film forming means such as laser evaporation are considered promising as they may exhibit relatively good superconducting properties.

「発明が解決しようとする問題点J ところが、MBE法を用いれば、基体上に酸化物超電導
体をエピタキシャル成長させることができ、高い臨界電
流密度を示す酸化物超電導体を得ることができるが、成
膜速度が遅いため、膜厚の厚い酸化物超電導体を得るの
に長時間かかり、製造効率が悪い問題がある。一方、レ
ーザ蒸着法は成膜速度を速くすることが可能であり、厚
い超電導層でも比較的短時間で生成できる利点を有して
いる。
"Problem to be Solved by the Invention J" However, if the MBE method is used, it is possible to epitaxially grow an oxide superconductor on a substrate, and it is possible to obtain an oxide superconductor that exhibits a high critical current density. Because the film speed is slow, it takes a long time to obtain a thick oxide superconductor, which poses the problem of poor manufacturing efficiency.On the other hand, laser evaporation can increase the film formation speed, making it possible to obtain a thick superconductor. It has the advantage that even layers can be produced in a relatively short time.

本発明は、前記問題に鑑みてなされたもので、成膜速度
の速いレーザ蒸着法と先のMBE法の各々の長所を生か
し、十分な膜厚を有し、電流容量が大きいとともに、製
造効率も高い高温超電導材を提供することを目的とする
The present invention has been made in view of the above problems, and takes advantage of the respective advantages of the laser evaporation method, which has a high film formation rate, and the previously mentioned MBE method, and has a sufficient film thickness, a large current capacity, and a manufacturing efficiency. The purpose is to provide high-temperature superconducting materials with high performance.

「問題点を解決するための手段」 本発明は、前記問題点を解決するために、A−B −C
−D系(ただしAはY、Sc、La、Yb、Er、Ho
"Means for Solving the Problems" In order to solve the above problems, the present invention provides
-D system (A is Y, Sc, La, Yb, Er, Ho
.

Dy等の周期律表ms族元素のうち1種以上を示し、B
はSr、Ba、Ca等の周期律表■a族元素のうち1種
以上を示し、CはCu、Ag、Auなどの周期律表Ib
族元素とNbのうちCuあるいはCuを含む2種以上を
示し、DはO,S、Se等の周期律表VIb族元素およ
びF、Cl、Br等の周期律表VIIb族元素のうち0
を含む1種以上を示す。)の高温超電導材であって、レ
ーザ蒸着法により形成されたA −B −C−D系のレ
ーザ蒸着超電導層と、分子線エピタキシー(MBE)法
により形成されたA −B −C−D系のMBE超電導
層とを交互に積層して、上記レーザ蒸着超電導層および
MBE超電導層のうち少なくとも一方の超電導層を2層
以上積層してなるものである。
Indicates one or more elements of the ms group of the periodic table such as Dy, B
represents one or more elements of group Ib of the periodic table, such as Sr, Ba, Ca, etc., and C represents elements of group Ib of the periodic table, such as Cu, Ag, and Au.
Denotes Cu or two or more of the group elements and Nb, including Cu, and D is 0 of the group VIb elements of the periodic table such as O, S, and Se, and the group VIIb elements of the periodic table such as F, Cl, and Br.
Indicates one or more types including. ) high-temperature superconducting materials, including an A-B-C-D system laser-deposited superconducting layer formed by a laser evaporation method and an A-B-C-D system formed by a molecular beam epitaxy (MBE) method. MBE superconducting layers are alternately laminated, and two or more superconducting layers of at least one of the laser-deposited superconducting layer and the MBE superconducting layer are laminated.

「作用」 短時間で厚い成膜が可能なレーザ蒸着法により形成され
たレーザ蒸着超電導層と、高い臨界電流密度が得られる
分子線エピタキシー(M B E )法により形成され
たMBE超電導層とを交互に積層して、上記レーザ蒸着
超電導層およびMBE超電導層のうち少なくとも一方の
超電導層を2層以上積層して構成したので、少なくとも
一つのレーザ蒸着超電導層がMBE超電導層の上に形成
されることになり、これによりこのレーザ蒸着超電導層
がすぐ下のMBE超電導層を成長核として結晶配向を揃
えて成長する。
"Function" A laser-deposited superconducting layer formed by a laser vapor deposition method that can form a thick film in a short time, and an MBE superconducting layer formed by a molecular beam epitaxy (MBE) method that can obtain a high critical current density. Since two or more superconducting layers of at least one of the laser-deposited superconducting layer and the MBE superconducting layer are laminated alternately, at least one laser-deposited superconducting layer is formed on the MBE superconducting layer. As a result, this laser-deposited superconducting layer grows with the crystal orientation aligned using the MBE superconducting layer immediately below as a growth nucleus.

以下、この発明を二つの例を挙げて詳細に説明する。Hereinafter, this invention will be explained in detail by giving two examples.

この発明の酸化物系の高温超電導材の一例を第1図に示
す。
An example of the oxide-based high temperature superconducting material of the present invention is shown in FIG.

この例の超電導材1は、基体2の表面に形成されたもの
であって、この基体2上にレーザ蒸着法によって形成さ
れた第一の超電導層1a(レーザ蒸着超電導層)とこの
第一の超電導層La上にMBE法によって形成された第
二の超電導層1 b(M B E超電導層)とこの第二
の超電導層とこの第二の超電導層1b上にレーザ蒸着法
によって形成された第三の超電導層1c(レーザ蒸着超
電導層)との3層からなるものである。
The superconducting material 1 of this example is formed on the surface of a base body 2, and includes a first superconducting layer 1a (laser-deposited superconducting layer) formed on this base body 2 by a laser vapor deposition method, A second superconducting layer 1b (MBE superconducting layer) formed on the superconducting layer La by the MBE method, and a second superconducting layer 1b formed by the laser vapor deposition method on the second superconducting layer 1b. It consists of three layers, including the third superconducting layer 1c (laser-deposited superconducting layer).

このような超電導材1の形成方法について説明する。A method for forming such a superconducting material 1 will be explained.

まず、基体2を用意する。この基体2には、例えば板材
、線材、テープ材、筒状体、柱状体など、種々の形状の
ものが用いられる。また、このような基体2の構成材料
としては、酸化物系の高温超電導材の生成時に加える熱
処理時の高熱に耐えうる材料が選択され、具体的には、
銀、金、白金、アルミニウム、銅等の金属材料、あるい
は、これらの合金材料、またはこれら金属または合金の
窒化物、炭化物、あるいは、ステンレス鋼などであり、
更にはチタン酸ストロンチウlh (S rT io 
s>、アルミナ(AI!03)、シリコン(S i)、
シリカ(SiO2)、ニオブ酸リチウム(LiNbOs
)、サファイア、ルビー等の結晶材料などが好適に用い
られる。
First, the base body 2 is prepared. The base body 2 may be of various shapes, such as a plate material, a wire material, a tape material, a cylindrical body, a columnar body, etc., for example. Further, as the constituent material of such a base 2, a material that can withstand high heat during heat treatment applied during the generation of the oxide-based high-temperature superconducting material is selected, and specifically,
Metal materials such as silver, gold, platinum, aluminum, copper, alloy materials thereof, nitrides, carbides of these metals or alloys, stainless steel, etc.
Furthermore, strontium titanate lh (S rT io
s>, alumina (AI!03), silicon (S i),
Silica (SiO2), lithium niobate (LiNbOs)
), sapphire, ruby, and other crystalline materials are preferably used.

次に、このような基体2の表面に3層構造の酸化物系の
高温超電導材1を形成する。この例の高温超電導Htの
形成工程は、連続した三つの工程からなっている。すな
わち、第1の工程ではレーザ蒸着法を用いて第一の超電
導層1aを形成し、第2の工程ではMBE法を用いて上
記第一の超電導層1aを成長核として第一の超電導層L
a上に第二の超電゛導層tbを形成し、第3の工程では
レーザ蒸着法を用いて第二の超電導層lb上に第3の超
電導層1cを形成する。
Next, a three-layered oxide-based high-temperature superconducting material 1 is formed on the surface of such a base 2. The process of forming high temperature superconducting Ht in this example consists of three consecutive steps. That is, in the first step, the first superconducting layer 1a is formed using a laser vapor deposition method, and in the second step, the first superconducting layer L is formed using the first superconducting layer 1a as a growth nucleus using the MBE method.
A second superconducting layer tb is formed on the second superconducting layer lb, and in a third step, a third superconducting layer 1c is formed on the second superconducting layer lb using a laser evaporation method.

第1の工程におけるレーザ蒸着法は、例えば第2図に示
すレーザ蒸着装置を用いて行われる。第2図に示す装置
は、内部を真空雰囲気や酸素ガス雰囲気に保持可能な容
器lOと、この容器IOの側方に付設されたレーザビー
ム発射装置9を具備して構成されている。
The laser evaporation method in the first step is performed using, for example, a laser evaporation apparatus shown in FIG. The apparatus shown in FIG. 2 includes a container IO that can maintain a vacuum atmosphere or an oxygen gas atmosphere inside, and a laser beam emitting device 9 attached to the side of the container IO.

前記容器lOの内部には、基板ホルダ11と円筒状の回
転基材12が対向して設けられ、回転基材12の側方側
の容器IOの外壁には導入孔が形成され、この導入孔に
はZn5eなどからなる透明窓14が装着されている。
Inside the container IO, a substrate holder 11 and a cylindrical rotating base 12 are provided facing each other, and an introduction hole is formed in the outer wall of the container IO on the side of the rotating base 12. A transparent window 14 made of Zn5e or the like is attached.

また、容器10の内部であって基板ホルダ11の側方に
は、凹面鏡15がその鏡面部分をH記回転基材12と透
明窓14に向けるように設置されていて、レーザビーム
発射装置9から容器内に透明窓14を介して入射された
レーザビームを前記回転基材12に照射できるようにな
っている。一方、基板ホルダ11には回転基材12に対
向して基板2が装着されるとともに、基板ホルダ11に
は基板2を加熱可能なヒータI6が付設されている。な
お、回転基材I2は容器IOの内部に設けられた図示略
の回転装置によってその周回りに回転自在に支持されて
いる。
Further, inside the container 10 and on the side of the substrate holder 11, a concave mirror 15 is installed so that its mirror surface is directed toward the H rotary base material 12 and the transparent window 14. The rotating base material 12 can be irradiated with a laser beam that enters the container through the transparent window 14. On the other hand, the substrate 2 is mounted on the substrate holder 11 so as to face the rotating base material 12, and the substrate holder 11 is also provided with a heater I6 capable of heating the substrate 2. Note that the rotating base material I2 is rotatably supported around the circumference by a rotating device (not shown) provided inside the container IO.

前記回転基材12は、酸化物超電導体から構成され、具
体的にはA −B −C−D系(ただしAは、Y。
The rotating base material 12 is made of an oxide superconductor, and specifically is an A-B-CD system (where A is Y).

Sc、La、Ce、Pr、Nd、Pm、Sm、Eu、G
d、Tb、Dy。
Sc, La, Ce, Pr, Nd, Pm, Sm, Eu, G
d, Tb, Dy.

Ho、Er、T’ffi、Yb、Luなどの周期律表■
a族元素のうち1種あるいは2種以上を示し、BはS 
r、 B a。
Periodic table of Ho, Er, T'ffi, Yb, Lu, etc.■
Indicates one or more types of group a elements, B is S
r, B a.

Ca、Be、Mg、Raなどの周期律表IIa族元素の
うち1種あるいは2N以上を示し、CはCu、Ag、A
uの周期律表1b族元素とNbのうちCuあるいはCu
を含む2種以上を示し、DはO、S、Se、Te、P。
Represents one or more than 2N of Group IIa elements of the periodic table such as Ca, Be, Mg, and Ra, and C represents Cu, Ag, and A.
Among the group 1b elements of the periodic table of u and Nb, Cu or Cu
D is O, S, Se, Te, P.

などの周期律表vtb族元素およびF、Cl、Br等の
周期律表VIIb族元索のうち0あるいはOを含む2種
以上を示す)のものが用いられる。なお、この酸化物超
電導体の各構成元素の組成は、例えば、Y −B a−
Cu−0系の酸化物高温超電導体の場合、Y :Ba:
Cv:O= l :C1〜3):(2〜4):(7−δ
)とされ、δはO≦δ≦5の範囲とされる。
and two or more elements of group VIIb of the periodic table such as F, Cl, and Br containing 0 or O) are used. The composition of each constituent element of this oxide superconductor is, for example, Y-Ba-
In the case of Cu-0 based oxide high temperature superconductor, Y:Ba:
Cv:O=l:C1-3):(2-4):(7-δ
), and δ is in the range O≦δ≦5.

第2図に示す構造のレーザ蒸着装置を使用して第一の超
電導JiI2aを形成するには、基板ホルダ11に基板
2を装着し、容器!0の内部を酸素雰囲気とし、所定の
温度にするとともに、回転基材12を回転させる。次い
でレーザビーム発射装置9から発射したレーザビームを
凹面鏡I5を介して回転基材12に照射して回転基材1
2の外周部を蒸発させ、蒸発原子を基板2に蒸着させる
。このような処理によって基板2の上面に第一の超電導
層1aを形成することができる。
To form the first superconducting JiI2a using the laser evaporation apparatus having the structure shown in FIG. 2, the substrate 2 is mounted on the substrate holder 11, and the container is opened! 0 is made into an oxygen atmosphere, the temperature is set to a predetermined value, and the rotating base material 12 is rotated. Next, the rotating base material 12 is irradiated with a laser beam emitted from the laser beam emitting device 9 via the concave mirror I5.
The outer peripheral portion of the substrate 2 is evaporated, and the evaporated atoms are deposited on the substrate 2. The first superconducting layer 1a can be formed on the upper surface of the substrate 2 through such processing.

以上のように形成された第一の超電導層1aは、レーザ
蒸着法で形成されたものであるために、緻密で−様な結
晶構造を有している。なお、このようなレーザ蒸着法に
よれば、レーザの出力調節と、回転基材12の回転速度
の調節と、回転基材12の温度調節により0.5〜1.
0時間で1μm程度の厚さの超電導層を形成することが
できる。
The first superconducting layer 1a formed as described above is formed by laser evaporation, and therefore has a dense -like crystal structure. In addition, according to such a laser vapor deposition method, by adjusting the output of the laser, adjusting the rotation speed of the rotating base material 12, and controlling the temperature of the rotating base material 12, the deposition rate can be reduced by 0.5 to 1.
A superconducting layer with a thickness of about 1 μm can be formed in 0 hours.

次に、前記第一の超電導FJ 1 aの上に、MBE法
を用いて第二の超電導層1bを形成する第2の工程を実
施する。この第2の工程で用いるMBE装置は、真空状
態で蒸発源(分子線源)から飛散させた分子や原子を反
応させて、ホルダーに装着した基板2上に超電導層をエ
ピタキシャル成長させるもので、このMBE法により成
膜すると、レーザ蒸着により成膜する場合に比較して臨
、界電流密度を向上させることができる。なお、反応時
の前記基板2の温度は、600〜1000℃程度が好ま
しい。また、この工程では、予め酸化物超電導体のN類
、組成などに応じて複数の蒸発源を用意する必要がある
。この蒸発源は、酸化物超電導体を構成する元素を含む
材料、あるいは、この材料と前記酸化物超電導体との混
合物などを仮焼、焼結するなどして得ることができる。
Next, a second step of forming a second superconducting layer 1b on the first superconducting FJ 1 a using the MBE method is performed. The MBE device used in this second step epitaxially grows a superconducting layer on a substrate 2 mounted on a holder by reacting molecules and atoms scattered from an evaporation source (molecular beam source) in a vacuum state. When a film is formed by the MBE method, the critical field current density can be improved compared to when a film is formed by laser evaporation. Note that the temperature of the substrate 2 during the reaction is preferably about 600 to 1000°C. Further, in this step, it is necessary to prepare a plurality of evaporation sources in advance depending on the N type, composition, etc. of the oxide superconductor. This evaporation source can be obtained by calcining or sintering a material containing the elements constituting the oxide superconductor, or a mixture of this material and the oxide superconductor.

そして、このような第2の工程により形成された第二の
超電導層1bは、その膜厚が薄いものであるが、酸化物
超電導体をエピタキシー成長させることによって結晶配
向が制御されていることから、特に臨界電流密度(Jc
)などの超電導特性が良好なものとなる。
The second superconducting layer 1b formed by such a second step is thin, but the crystal orientation is controlled by epitaxial growth of the oxide superconductor. , especially the critical current density (Jc
), the superconducting properties will be good.

次に、このようにして基板2上に第一の超電導層!aお
よび第二の超電導層1bを形成した後、第二の超電導層
Ib上に上記第一の超電導層1aを形成した方法と同様
な方法によって第三の超電導層Icを形成する。
Next, in this way, the first superconducting layer is formed on the substrate 2! After forming superconducting layer a and second superconducting layer 1b, a third superconducting layer Ic is formed on second superconducting layer Ib by the same method as that of forming first superconducting layer 1a.

このような第3の工程で形成された第三の超電導層1c
は、第二の超電導層1bの良好な結晶配向性にならって
結晶配向が揃い、良好な超電導性を示すものとなる。
The third superconducting layer 1c formed in such a third step
The crystal orientation follows the good crystal orientation of the second superconducting layer 1b, and exhibits good superconductivity.

このようにして形成された高温超電導材1に対しては、
必要に応じて酸素ガスを含む雰囲気中で熱処理すること
ができる。この熱処理は、1例えば処理温度400〜1
000℃、処理時間1〜100時間の条件で行なわれる
。このような熱処理により、高温超電導材1内の各構成
元素が更に十分に反応しあうことから、高温超電導材l
の超電導特性の向上を図ることができる。
For the high temperature superconducting material 1 formed in this way,
Heat treatment can be performed in an atmosphere containing oxygen gas if necessary. This heat treatment is performed at a treatment temperature of 1, for example, 400 to 1
The treatment is carried out at a temperature of 000°C and a treatment time of 1 to 100 hours. Through such heat treatment, each constituent element in the high temperature superconducting material 1 reacts with each other more fully, so the high temperature superconducting material 1
It is possible to improve the superconducting properties of.

なお、熱処理時の雰囲気には、酸素ガス以外に、S、S
eなどの周期律表VIb族元素のガスまたはF。
In addition to oxygen gas, the atmosphere during heat treatment contains S, S
Gases of group VIb elements of the periodic table such as e or F.

C1,Brなどの周期律表VIIb族元素のガスを含め
ることもできる。これらの元素ガスは、得られた高温超
電導体の構成元素の一部として結晶内部に侵入し、超電
導特性の向上に寄与するものとなる。
Gases of Group VIIb elements of the periodic table, such as C1 and Br, can also be included. These elemental gases penetrate into the crystal as part of the constituent elements of the obtained high-temperature superconductor and contribute to improving the superconducting properties.

また、高温超電導材lが形成された基板2として、銀あ
るいは銀合金からなるものを用いれば、熱処理雰囲気中
の酸素が基体1の内部を透過することから、第一の超電
導層1aに十分な酸素を供給することができ、このよう
にしても超電導特性を向上させることが可能となる。
Furthermore, if a substrate 2 made of silver or a silver alloy is used as the substrate 2 on which the high-temperature superconducting material 1 is formed, oxygen in the heat treatment atmosphere permeates through the inside of the substrate 1, so that the first superconducting layer 1a has sufficient oxygen. Oxygen can be supplied, and the superconducting properties can also be improved in this way.

このような高温超電導材lにあっては、3層の超電導層
のうち2層をレーザ蒸着法により形成したので、短時間
で所望の膜厚を確保することができる。また、MBE法
により形成された第二の超電導層lb上にレーザ蒸着法
により第三の超電導層1cを形成したので、この第三の
超電導層ICが第二の超電導層1bを成長核として成長
し、これにより第三の超電導層ICの結晶配向性が揃っ
て高い臨界電流密度を示すものとなる。更に、この高温
超電導材lに対して酸素雰囲気中で熱処理すれば、高温
超電導材lの内部に酸素を十分に供給でき、高温超電導
材lにおける超電導特性の向上を図ることができる。
In such a high-temperature superconducting material 1, two of the three superconducting layers are formed by laser vapor deposition, so that a desired film thickness can be obtained in a short time. Furthermore, since the third superconducting layer 1c was formed by the laser evaporation method on the second superconducting layer lb formed by the MBE method, this third superconducting layer IC grows using the second superconducting layer 1b as a growth nucleus. However, as a result, the crystal orientation of the third superconducting layer IC becomes uniform and a high critical current density is exhibited. Furthermore, if this high temperature superconducting material 1 is heat treated in an oxygen atmosphere, oxygen can be sufficiently supplied into the high temperature superconducting material 1, and the superconducting properties of the high temperature superconducting material 1 can be improved.

第3図は、この発明の高温超電導材の他の例を示す図で
ある。
FIG. 3 is a diagram showing another example of the high temperature superconducting material of the present invention.

この例の高温超電導材3は、基体2の表面に形成された
ものであって、二の基体2上にMBE法によって形成さ
れた第一の超電導層3aとこの第一の超電導層3a上に
レーザ蒸着法によって形成された第二の超電導層3bと
この第二の超電導層3b上にMBE法によって形成され
た第三の超電導層3Cとの3層からなるものである。
The high temperature superconducting material 3 of this example is formed on the surface of the base 2, and includes a first superconducting layer 3a formed on the second base 2 by the MBE method, and a first superconducting layer 3a formed on the second base 2 by the MBE method. It consists of three layers: a second superconducting layer 3b formed by laser vapor deposition, and a third superconducting layer 3C formed on this second superconducting layer 3b by MBE.

このような高温超電導材3によれば、MBE法により形
成された第一の超電導層3aの上にレーザ蒸着法により
第二の超電導層3bを形成し、その上にMBE法により
第3の超電導層3Cを形成したので、第一の超電導13
 aの良好な結晶配向性にならって第二の超電導層3b
および第三の超電導層3cの結晶配向が揃うことから、
これら各層からなる高温超電導材3全体の結晶配向が良
好に制御され、高い臨界電流密度を示すものとなる。
According to such a high temperature superconducting material 3, the second superconducting layer 3b is formed by laser vapor deposition on the first superconducting layer 3a formed by the MBE method, and the third superconducting layer 3b is formed by the MBE method on top of the second superconducting layer 3b. Since the layer 3C is formed, the first superconductor 13
Following the good crystal orientation of a, the second superconducting layer 3b
And since the crystal orientation of the third superconducting layer 3c is aligned,
The crystal orientation of the entire high temperature superconducting material 3 made up of these layers is well controlled and exhibits a high critical current density.

また、3層構造のうち第一の超電導層3aと第三の超電
導層3cの2層をMBE法により形成して臨界電流密度
を高めるようにしたので、この高温超電導材3に超電導
電流を流せば、その電流の大半がこれら2層の内部を流
れることから、高温超電導材3全体で多くの超電導電流
を流すことが可能である。更に、表面に露出している第
三の超電導層3cをMBE法により形成して臨界電流密
度に余裕を持たせであるので、その表面に機器、配線材
料などを接続した場合にも接続部の劣化による臨界電流
密度の低下は問題にならない。
In addition, two layers of the three-layer structure, the first superconducting layer 3a and the third superconducting layer 3c, are formed by the MBE method to increase the critical current density. For example, since most of the current flows inside these two layers, it is possible to flow a large amount of superconducting current throughout the high temperature superconducting material 3. Furthermore, since the third superconducting layer 3c exposed on the surface is formed by the MBE method to provide a margin for the critical current density, even when devices, wiring materials, etc. are connected to the surface, the connection part will be Decrease in critical current density due to deterioration is not a problem.

「実施例」 第2図に示す装置と同等の構成のレーザ蒸着装置と図示
路のMBE装置を用いて高温超電導材を製造した。
"Example" A high-temperature superconducting material was manufactured using a laser evaporation device having the same configuration as the device shown in FIG. 2 and an MBE device along the path shown.

まず、基板ホルダにS rT io 3製の基板を装着
するとともに、回転基材として円筒状、の。
First, a substrate made of S rT io 3 was mounted on a substrate holder, and a cylindrical substrate was used as a rotating base material.

Yl Bav、a Cua、a 0(7−δ)製の基材
を用い、容器の内部を10−3Torrの真空雰囲気と
した。次に炭酸ガスレーザビームを発射して回転基材に
照射するとともに回転基材を10回/秒で回転させた。
A base material made of Yl Bav, a Cua, a 0 (7-δ) was used, and a vacuum atmosphere of 10 −3 Torr was created inside the container. Next, a carbon dioxide gas laser beam was emitted to irradiate the rotating base material, and the rotating base material was rotated at 10 times/second.

以上の操作により回転基材の原子をレーザによって溶融
飛散させて基板表面に厚さ0.3μmの第一の超電導層
を形成した。
Through the above operations, the atoms of the rotating base material were melted and scattered by a laser to form a first superconducting layer with a thickness of 0.3 μm on the substrate surface.

続いて前記第一の超電導層を形成した基板をMBE装置
にセットし、基板の表面にY t O−と、B a C
O3と、CuOの蒸発源を用い、Y、Ba、Cu。
Subsequently, the substrate on which the first superconducting layer was formed was set in an MBE apparatus, and Y t O- and B a C were applied to the surface of the substrate.
Y, Ba, Cu using O3 and CuO evaporation source.

0(7−δ)の組成であって、厚さ0.1μmの第二の
超電導層を形成した。
A second superconducting layer having a composition of 0(7-δ) and a thickness of 0.1 μm was formed.

続いて前記第一および第二の超電導層を形成した基板を
、前記第一の超電導層の形成操作に用いたものと同じレ
ーザ蒸着装置にセットし、基板の表面に厚さ0,3μm
の第三の超電導層を生成させて厚さ0.7μmの高温超
電導材を得た。
Subsequently, the substrate on which the first and second superconducting layers were formed was set in the same laser evaporation apparatus used for forming the first superconducting layer, and a layer of 0.3 μm thick was deposited on the surface of the substrate.
A third superconducting layer was formed to obtain a high temperature superconducting material with a thickness of 0.7 μm.

この後、酸化雰囲気中において900℃に2時間加熱す
る熟処理を行って最終製品の高温超電導材を得た。
Thereafter, a ripening treatment was performed in which the material was heated to 900° C. for 2 hours in an oxidizing atmosphere to obtain a high-temperature superconducting material as a final product.

この高温超電導材は、 臨界温度(Tc)=92.9に 臨界電流密度(Jc)= 1 、2 X 106A/c
m”(77Kにおいて) を示し、優れた超電導特性が得られることが判明した。
This high temperature superconducting material has a critical temperature (Tc) = 92.9 and a critical current density (Jc) = 1, 2 x 106A/c.
m'' (at 77 K), indicating that excellent superconducting properties can be obtained.

「発明の効果」 以上説明したように本発明の高温超電導材は、レーザ蒸
着法により形成された。上記A −B −C−D系のレ
ーザ蒸着超電導層とMBE法により形成された上記A 
−B −C−D系のMBE超電導層とを交互に積層して
、上記レーザ蒸着超N導層およびMBE超電導層のうち
少なくとも一方の超電導層を2層以上積層したので、薄
膜層を複数積層したことによって単一層からなる高温超
電導材より臨界電流密度を高めることができる上、少な
くとも一つのレーザ蒸着超電導層がMBE超電導層の上
に形成されることとなり、これによりこのレーザ蒸着超
電導層がすぐ下のMBE超電導層を成長核として結晶配
向を揃えて成長する。したがって、成長速度の速いレー
ザ蒸着超電導層を結晶配向を揃えた状態で形成すること
ができ、膜厚を厚くし、かつ臨界電流密度も高めること
ができる
"Effects of the Invention" As explained above, the high temperature superconducting material of the present invention was formed by laser vapor deposition. The above A-B-C-D system laser-deposited superconducting layer and the above A formed by MBE method
-B -C-D system MBE superconducting layers are laminated alternately, and two or more superconducting layers of at least one of the laser-deposited super-N layer and the MBE superconducting layer are laminated, so a plurality of thin film layers are laminated. This allows the critical current density to be higher than that of a single-layer high temperature superconducting material, and at least one laser-deposited superconducting layer is formed on top of the MBE superconducting layer, which allows this laser-deposited superconducting layer to be immediately Growth occurs with the crystal orientation aligned using the underlying MBE superconducting layer as a growth nucleus. Therefore, a laser-deposited superconducting layer with a fast growth rate can be formed with the crystal orientation aligned, and the film thickness can be increased and the critical current density can also be increased.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す断面図、第2図は本発
明の実施に用いるレーザ蒸着装置の一例を示す構成図、
第3図は本発明の他の実施例を示す断面図である。 1.3・・・高温超電導材、Ia、Ic、3b・・・レ
ーザ蒸着超電導層、l b、 3 a、 3 c・・・
MBE超電導層、2・・・基体。
FIG. 1 is a sectional view showing an embodiment of the present invention, and FIG. 2 is a configuration diagram showing an example of a laser evaporation apparatus used for implementing the present invention.
FIG. 3 is a sectional view showing another embodiment of the present invention. 1.3... High-temperature superconducting material, Ia, Ic, 3b... Laser-deposited superconducting layer, l b, 3 a, 3 c...
MBE superconducting layer, 2...substrate.

Claims (1)

【特許請求の範囲】 A−B−C−D系 (ただし、AはY、Sc、La、Yb、Er、Ho、D
y等の周期律表IIIa族元素のうち1種以上を示し、B
はSr、Ba、Ca等の周期律表IIa族元素のうち1種
以上を示し、CはCu、Ag、Auなどの周期律表 I
b族元素とNbのうちCuあるいはCuを含む2種以上
を示し、DはO、S、Se等の周期律表VIb族元素およ
びF、Cl、Br等の周期律表VIIb族元素のうちOを
含む1種以上を示す。)の高温超電導材であって、 レーザ蒸着法により形成されたA−B−C−D系のレー
ザ蒸着超電導層と、分子線エピタキシー(MBE)法に
より形成されたA−B−C−D系のMBE超電導層とを
交互に積層して、上記レーザ蒸着超電導層およびMBE
超電導層のうち少なくとも一方の超電導層を2層以上積
層してなることを特徴とする高温超電導材。
[Claims] A-B-C-D system (where A is Y, Sc, La, Yb, Er, Ho, D
Indicates one or more elements of group IIIa of the periodic table such as y, B
represents one or more elements of group IIa of the periodic table such as Sr, Ba, and Ca, and C represents elements of group I of the periodic table such as Cu, Ag, and Au.
Denotes Cu or two or more of group b elements and Nb, including Cu, and D is an element of group VIb of the periodic table such as O, S, and Se, and O of group VIIb of the periodic table elements such as F, Cl, and Br. Indicates one or more types including. ) high-temperature superconducting material, which includes an A-B-C-D system laser-deposited superconducting layer formed by a laser evaporation method and an A-B-C-D system formed by a molecular beam epitaxy (MBE) method. The above laser-deposited superconducting layer and the MBE superconducting layer are alternately laminated with
A high-temperature superconducting material characterized in that it is formed by laminating two or more superconducting layers, at least one of which is one of the superconducting layers.
JP62258779A 1987-10-14 1987-10-14 High temperature superconducting material Pending JPH01100820A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62258779A JPH01100820A (en) 1987-10-14 1987-10-14 High temperature superconducting material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62258779A JPH01100820A (en) 1987-10-14 1987-10-14 High temperature superconducting material

Publications (1)

Publication Number Publication Date
JPH01100820A true JPH01100820A (en) 1989-04-19

Family

ID=17324965

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62258779A Pending JPH01100820A (en) 1987-10-14 1987-10-14 High temperature superconducting material

Country Status (1)

Country Link
JP (1) JPH01100820A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996032201A1 (en) * 1995-04-10 1996-10-17 Lockheed Martin Energy Systems, Inc. Structures having enhanced biaxial texture and method of fabricating same
US5964966A (en) * 1997-09-19 1999-10-12 Lockheed Martin Energy Research Corporation Method of forming biaxially textured alloy substrates and devices thereon
US6022832A (en) * 1997-09-23 2000-02-08 American Superconductor Corporation Low vacuum vapor process for producing superconductor articles with epitaxial layers
US6027564A (en) * 1997-09-23 2000-02-22 American Superconductor Corporation Low vacuum vapor process for producing epitaxial layers
US8153281B2 (en) * 2003-06-23 2012-04-10 Superpower, Inc. Metalorganic chemical vapor deposition (MOCVD) process and apparatus to produce multi-layer high-temperature superconducting (HTS) coated tape

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996032201A1 (en) * 1995-04-10 1996-10-17 Lockheed Martin Energy Systems, Inc. Structures having enhanced biaxial texture and method of fabricating same
US5741377A (en) * 1995-04-10 1998-04-21 Martin Marietta Energy Systems, Inc. Structures having enhanced biaxial texture and method of fabricating same
US5898020A (en) * 1995-04-10 1999-04-27 Goyal; Amit Structures having enhanced biaxial texture and method of fabricating same
US5958599A (en) * 1995-04-10 1999-09-28 Lockheed Martin Energy Research Corporation Structures having enhanced biaxial texture
US5964966A (en) * 1997-09-19 1999-10-12 Lockheed Martin Energy Research Corporation Method of forming biaxially textured alloy substrates and devices thereon
US6106615A (en) * 1997-09-19 2000-08-22 Goyal; Amit Method of forming biaxially textured alloy substrates and devices thereon
US6022832A (en) * 1997-09-23 2000-02-08 American Superconductor Corporation Low vacuum vapor process for producing superconductor articles with epitaxial layers
US6027564A (en) * 1997-09-23 2000-02-22 American Superconductor Corporation Low vacuum vapor process for producing epitaxial layers
US6426320B1 (en) 1997-09-23 2002-07-30 American Superconductors Corporation Low vacuum vapor process for producing superconductor articles with epitaxial layers
US8153281B2 (en) * 2003-06-23 2012-04-10 Superpower, Inc. Metalorganic chemical vapor deposition (MOCVD) process and apparatus to produce multi-layer high-temperature superconducting (HTS) coated tape

Similar Documents

Publication Publication Date Title
US5071828A (en) Process for the production of a crystal-oriented surface layer of a ceramic high temperature superconductor
US6226858B1 (en) Method of manufacturing an oxide superconductor wire
US5241191A (en) Cubic perovskite crystal structure, a process of preparing the crystal structure, and articles constructed from the crystal structure
JPH0217685A (en) Manufacture of metal oxide superconducting material layer using laser vaporization
CA1322514C (en) Thin film of single crystal of lna_cu_o___ having three-layered perovskite structure and process for producing the same
US5330966A (en) Method of preparing 2223 phase (Bi,Pb)-Sr-Ca-Cu-O superconducting films
JPH01100820A (en) High temperature superconducting material
CN100365741C (en) Metal base plate for oxide superconductive wire rod, oxide superconductive wire rod and process for producing the same
JPH05193938A (en) Oxide superconductor and production thereof
US5047386A (en) Apparatus for continuous manufacture of high temperature superconducting wires from molten superconducting oxides
JPH01100818A (en) High temperature superconducting material
US5270296A (en) High critical temperature superconducting wire with radially grown crystallites
JPH01100816A (en) High temperature superconducting material
JPH01100819A (en) High temperature superconducting material
JPH01224297A (en) Production of metal oxide superconductor material layer
JP4619697B2 (en) Oxide superconducting conductor and manufacturing method thereof
JPH01100817A (en) High temperature superconducting material
JPH01100815A (en) High temperature superconducting material
JPS62170108A (en) Super conductor containing nb, si and al and oxide thereof having transition temperature 77k or more
US4981839A (en) Method of forming superconducting oxide films using zone annealing
JPH01100814A (en) High temperature superconducting material
JPH01100827A (en) High temperature superconducting material
JPH01100813A (en) High temperature superconducting material
JP4519540B2 (en) Method for manufacturing oxide superconductor and oxide superconductor
JPH1112094A (en) Production of rare earth-barium-cuprate-based superconductor