JPH01100813A - High temperature superconducting material - Google Patents

High temperature superconducting material

Info

Publication number
JPH01100813A
JPH01100813A JP62258772A JP25877287A JPH01100813A JP H01100813 A JPH01100813 A JP H01100813A JP 62258772 A JP62258772 A JP 62258772A JP 25877287 A JP25877287 A JP 25877287A JP H01100813 A JPH01100813 A JP H01100813A
Authority
JP
Japan
Prior art keywords
superconducting
superconducting layer
group
elements
periodic table
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62258772A
Other languages
Japanese (ja)
Inventor
Tsukasa Kono
河野 宰
Nobuyuki Sadakata
伸行 定方
Shinya Aoki
青木 伸哉
Mikio Nakagawa
中川 三紀夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP62258772A priority Critical patent/JPH01100813A/en
Publication of JPH01100813A publication Critical patent/JPH01100813A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Physical Vapour Deposition (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To obtain a high temperature superconducting material of high critical current density by forming a layer via a deposition method on an A-B-C-D system layer made via a sputtering method (A: Y and the like in group IIIa of the periodic table, B: Sr and the like in group IIa, C: Cu and Nb in Ib group and D: O and the like in group VI). CONSTITUTION:The A-B-C-D system comprises a high temperature superconducting material, where A stands for one or more elements such as Y and Sc in group IIIa of the periodic table, B for one or more elements such as Sr, Ba and Ca in group IIa and C for two elements containing Cu among Ib group elements such as Cu and Ag and Nb, or Cu. And the superconducting material comprising the second superconducting layer 2b is laminated via a laser deposition method on the first superconducting layer 2a formed on a substrate 1 via a sputtering method. According to the aforesaid process, a thick superconducting layer can be efficiently formed in a short time and a superconducting material having large current capacity can be formed in a short time.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、ジョセフソン素子や超電導記憶素子等の超
電導デバイス、あるいは超電導マグネット用コイルなど
として使用可能な高温超電導材に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a high-temperature superconducting material that can be used as a superconducting device such as a Josephson element or a superconducting memory element, or a coil for a superconducting magnet.

[従来の技術] 最近に至り、常電導状態から超電導状態に遷移する臨界
温度(Tc)が液体窒素温度以上の高い値を示す酸化物
系の超電導体が種々発見されつつある。そして、このよ
うな酸化物系の超電導体は、液体ヘリウムで冷却する必
要のあった従来の合金系あるいは金属間化合物系の超電
導体に比較して格段に育利な冷却条件で使、用できるこ
とから、実用上極めて有望な超電導材料として種々の研
究と開発がなされている。
[Prior Art] Recently, various oxide-based superconductors have been discovered that exhibit a critical temperature (Tc) for transitioning from a normal conducting state to a superconducting state that is higher than the temperature of liquid nitrogen. Furthermore, such oxide-based superconductors can be used under much more convenient cooling conditions than conventional alloy-based or intermetallic compound-based superconductors, which require cooling with liquid helium. Since then, various research and development efforts have been carried out as superconducting materials that are extremely promising for practical use.

ところで、このような酸化物系の超電導体における臨界
温度や臨界電流密度(Jc)は、製造方法、製造条件な
どの種々のファクターにより極めて大きく変動すること
が知られている。そして現在のところでは、スパッタリ
ング法、レーザ蒸着法等の薄膜形成手段により形成され
た超電導体が比較的良好な超電導特性を発揮することが
知られている。
Incidentally, it is known that the critical temperature and critical current density (Jc) of such an oxide-based superconductor vary considerably depending on various factors such as the manufacturing method and manufacturing conditions. At present, it is known that superconductors formed by thin film forming means such as sputtering and laser vapor deposition exhibit relatively good superconducting properties.

[発明が解決しようとする問題点] ところで、前記スパッタリング法を用いた製造方法によ
れば、比較的配向性の良好な結晶構造の超電導層を生成
できるために、臨界電流密度の高い超電導体を製造でき
る利点を有するが、十分な膜厚の超電導層を得るために
は製造時間が長くなる問題がある。また、スパッタリン
グ法によって成膜する場合、欠陥などを生じることなく
マイクロオーダーまで膜厚を大きくすることは極めて困
難なために、十分な電流容量の超電導層を得ることがで
きない問題がある。
[Problems to be Solved by the Invention] By the way, according to the manufacturing method using the sputtering method, a superconducting layer having a crystal structure with relatively good orientation can be produced, so it is possible to produce a superconducting layer with a high critical current density. Although it has the advantage of being easy to manufacture, there is a problem in that it takes a long time to manufacture in order to obtain a superconducting layer of sufficient thickness. Furthermore, when a film is formed by a sputtering method, it is extremely difficult to increase the film thickness to the micro order without causing defects, so there is a problem that a superconducting layer with sufficient current capacity cannot be obtained.

[問題点を解決するための手段] この発明は、A−B−C−D系(ただし、AはY、Sc
、La、Yb、Er、Ho、Dy等の周期律表IIIa
族元素のうち1種以上を示し、BはSr、Ba、Ca等
の周期律表Ila族元素のうち1種以上を示し、CはC
u、Ag、Auなどの周期律表Ib族元素とNbのうち
CuあるいはCuを含む2種以上を示し、Dは0、S、
Se等の周期律表VIb族元素およびP 、CI。
[Means for solving the problem] This invention is based on the A-B-C-D system (where A is Y, Sc
, La, Yb, Er, Ho, Dy, etc. Periodic Table IIIa
B represents one or more of the Group Ila elements of the periodic table such as Sr, Ba, Ca, etc., and C represents C.
Denotes Cu or two or more of Nb, group Ib elements of the periodic table such as u, Ag, and Au, and D is 0, S,
Group VIb elements of the periodic table such as Se and P, CI.

Br等の周期律表VIIb族元素のうちOを含む1種以
上を示す。)の高温超電導材であって、スパッタリング
法により形成されたA−B−C−D系の第1の超電導層
と、この第1の超電導層上にレーザ蒸着法法により形成
されたA−B−C−D系の第2の超電導層とからなるこ
とを解決手段とした。
One or more elements including O among group VIIb elements of the periodic table, such as Br. ), which is a high-temperature superconducting material having an A-B-C-D system first superconducting layer formed by a sputtering method, and an A-B C-D system superconducting layer formed by a laser vapor deposition method on this first superconducting layer. -C-D type second superconducting layer was used as a solution.

[作用] スパッタリング法により生成された結晶配向性の良好な
第■の超電導層の上に第2の超電導層が形成されるので
、第2の超電導層の結晶の配向性も良好になる。
[Operation] Since the second superconducting layer is formed on the second superconducting layer produced by sputtering and having good crystal orientation, the crystal orientation of the second superconducting layer also becomes good.

また、第2の超電導層かレーザ蒸着法で生成されるので
、超電導層の成膜速度が向上し、全体をスパッタリング
法で積層する場合に比較して短時間で膜厚の大きな超電
導材の生成が可能になる。
In addition, since the second superconducting layer is produced by laser vapor deposition, the deposition rate of the superconducting layer is improved, and a thicker superconducting material can be produced in a shorter time than when the entire layer is laminated by sputtering. becomes possible.

以下に本発明を更に詳細に説明する。The present invention will be explained in more detail below.

第1図は、この発明の酸化物系の高温超電導材の一例を
示すもので、図中符号lは基体である。
FIG. 1 shows an example of the oxide-based high-temperature superconducting material of the present invention, and the reference numeral l in the figure represents a substrate.

この基体lの表面には、2層構造の酸化物系の高温超電
導材2が形成されている。この高温超電導材2は、スパ
ッタリング法により形成された第1の超電導層2aと、
レーザ蒸着法により形成された第2の超電導層2bとか
ら構成されている。
A two-layered oxide-based high-temperature superconducting material 2 is formed on the surface of this base 1. This high temperature superconducting material 2 includes a first superconducting layer 2a formed by a sputtering method,
and a second superconducting layer 2b formed by laser vapor deposition.

次に、このような高温超電導材2の形成方法の一例につ
いて説明する。
Next, an example of a method for forming such a high temperature superconducting material 2 will be explained.

高温超電導材2を形成するための基体1は、板材、線材
、テープ材、筒状体、柱状体など、種々の形状のものが
用いられる。そして、このような基体lの構成材料とし
ては、酸化物系の高温超電導材の生成時に加える熱処理
時の高温に耐えうる材料が選択され、具体的には、銀、
金、白金、アルミニウム、銅等の金属材料、あるいはこ
れらの合金材料、またはこれら金属または金属の、窒化
物、炭化物、あるいはステンレス鋼などであり、更には
チタン酸ストロンチウム(S rT io 、)5.ア
ルミナ(AlzOs)、シリコン(S i)、シリカ(
Sift)、ニオブ酸リチウム(L iN bOy)、
サファイア、ルビー等の結晶材料などが好適に用いられ
る。
The substrate 1 for forming the high-temperature superconducting material 2 may be of various shapes, such as a plate, a wire, a tape, a cylinder, a column, or the like. As the constituent material of such a substrate l, a material is selected that can withstand the high temperature during the heat treatment applied during the production of the oxide-based high-temperature superconducting material, and specifically, silver,
Metal materials such as gold, platinum, aluminum, copper, alloy materials thereof, nitrides, carbides, stainless steel, etc. of these metals or metals, and further strontium titanate (S rT io )5. Alumina (AlzOs), silicon (Si), silica (
Sift), lithium niobate (L iN bOy),
Crystal materials such as sapphire and ruby are preferably used.

次に、このような基板lの表面に2層構造の酸化物系の
高温超電導材2を形成する。この例の高温超電導材2の
形成工程は、2つの工程からなっている。
Next, a two-layered oxide-based high-temperature superconducting material 2 is formed on the surface of such a substrate 1. The process of forming the high temperature superconducting material 2 in this example consists of two steps.

第1の工程では、スパッタリング法を用いて第1の超電
導層2aを形成し、第2の工程では、レーザ蒸着法を用
いて第2の超電導層2bを形成する。
In the first step, a first superconducting layer 2a is formed using a sputtering method, and in the second step, a second superconducting layer 2b is formed using a laser evaporation method.

第1の工程におけるスパッタリング法としては、絶縁物
のスパッタリングに適した高周波スパッタリング法が好
適であるが、これ以外にマグネトロンスパッタリング法
、イオンビームスパッタリング法などの種々のスパッタ
リング法も使用可能である。そして、スパッタリング時
の前記基体lの温度は、600〜1000℃程度が好ま
しく、スパッタリング雰囲気は、例えば、アルゴンガス
、窒素ガスなどの不活性ガス雰囲気が好ましい。また、
この工程では、予め酸化物超電導体の種類、組成などに
応じてターゲットを用意する必要がある。このターゲッ
トは、酸化物超電導体を構成する元素を含む材料、ある
いは、この材料と前記酸化物超電導体との混合材料など
を仮焼、焼結するなどして得ることができる。
As the sputtering method in the first step, a high frequency sputtering method suitable for sputtering an insulator is suitable, but various other sputtering methods such as magnetron sputtering method and ion beam sputtering method can also be used. The temperature of the substrate 1 during sputtering is preferably about 600 to 1000°C, and the sputtering atmosphere is preferably an inert gas atmosphere such as argon gas or nitrogen gas. Also,
In this step, it is necessary to prepare a target in advance depending on the type, composition, etc. of the oxide superconductor. This target can be obtained by calcining or sintering a material containing elements constituting the oxide superconductor, or a mixed material of this material and the oxide superconductor.

このような酸化物超電導体としては、A−B−C−D系
(ただし、Aは、Y SS cSL aSCes Pr
、 Nd、 Pm、 Sm、 Eu1Gdq Tb5D
ys Ho。
Such oxide superconductors include A-B-C-D system (where A is Y SS cSL aSCes Pr
, Nd, Pm, Sm, Eu1Gdq Tb5D
ys Ho.

Er、 Tn+、 Yb、 Luなどの周期律表I[1
e族元素のうち1種あるいは2種以上を示し、Bは5r
1Ba。
Periodic table I [1
Indicates one or more types of e group elements, B is 5r
1Ba.

Ca、Be%Mg、Raなどの周期律表Ira族元素の
うち1種あるいは2種以上を示し、DはO,Se。
It represents one or more elements of the Ira group of the periodic table such as Ca, Be%Mg, and Ra, and D is O and Se.

Te、Poなどの周期率表vtb族元素およびF、CI
Vtb group elements of the periodic table such as Te and Po, as well as F and CI
.

Br、I、Atなどの周期律表VIIb族元索のうちO
あるいはOを含む2種以上を示す)のものが用いられる
。なお、この酸化物超電導体の各構成元素の組成は、例
えば、Y−Ba−Cu−0系の酸化物超電導体の場合、
Y:Ba:Cu:O= 1 :(1〜3):(2〜4)
:(7−X)とされ、Xは0≦X≦5の範囲とされる。
O of group VIIb elements of the periodic table such as Br, I, At
Alternatively, those showing two or more types containing O) are used. In addition, the composition of each constituent element of this oxide superconductor is, for example, in the case of a Y-Ba-Cu-0 based oxide superconductor,
Y:Ba:Cu:O=1:(1-3):(2-4)
:(7-X), where X is in the range of 0≦X≦5.

そして、前述のような第1の工程により形成された第1
の超電導層2aは、その膜厚が小さいものであるが、結
晶の配向性が良好なことから特に高い臨界電流密度を示
すものとなる。
Then, the first
Although the superconducting layer 2a has a small thickness, it exhibits a particularly high critical current density because of its good crystal orientation.

次に、この第1の超電導層2aの上に、レーザ蒸着法を
用いて第1の超電導層2aより厚い第2の超電導層2b
を形成する。
Next, on this first superconducting layer 2a, a second superconducting layer 2b which is thicker than the first superconducting layer 2a is formed using a laser vapor deposition method.
form.

第2の工程で用いるレーザ蒸着装置として、例えば第2
図に示す装置を用いる。第2図に示す装置は、内部を真
空雰囲気や酸素ガス雰囲気に保持可能な容器10と、こ
の容器lOの側方に付設されたレーザビーム発射装置9
を具備して構成されている。
As a laser evaporation device used in the second step, for example, a second
Use the apparatus shown in the figure. The apparatus shown in FIG. 2 includes a container 10 whose interior can be maintained in a vacuum atmosphere or an oxygen gas atmosphere, and a laser beam emitting device 9 attached to the side of this container IO.
It is configured with the following.

前記容器10の内部には、基板ホルダ11と円筒状の回
転基材!2が対向して設けられ、回転基材12の側方側
の容器10の外壁には導入孔13が形成され、この導入
孔I3には、Zn5eなどからなる透明窓14が装着さ
れている。また、容器lOの内部の基板ホルダ11の側
方には、凹面鏡15がその鏡面部分を前記回転基材12
と透明窓14に向けるように設置されていて、レーザビ
ーム発射装置9から容器内に透明窓14を介して入射さ
れたレーザビームを前記回転基材12に照射できるよう
になっている。一方、基板ホルダ11には回転基材12
に対向して基板lが装着されるとともに、基板ホルダ1
1には基板lを加熱可能なヒータ16が付設されている
。なお、回転基材12は容器lOの内部に設けられた図
示路の回転装置によってその周回りに回転自在に支持さ
れてい、る。
Inside the container 10, there is a substrate holder 11 and a cylindrical rotating base material! An introduction hole 13 is formed in the outer wall of the container 10 on the side of the rotary base material 12, and a transparent window 14 made of Zn5e or the like is attached to the introduction hole I3. Further, on the side of the substrate holder 11 inside the container 10, a concave mirror 15 extends its mirror surface to the rotating base material 12.
The rotary base material 12 can be irradiated with a laser beam that is incident from the laser beam emitting device 9 into the container through the transparent window 14 . On the other hand, the rotating base material 12 is attached to the substrate holder 11.
A board l is mounted facing the board holder 1.
1 is attached with a heater 16 that can heat the substrate l. Note that the rotating base material 12 is supported so as to be freely rotatable around it by a rotating device shown in the illustrated path provided inside the container IO.

前記回転基材12は、酸化物超電導体から構成され、具
体的にはA−B−C−D系(ただしAは、Y 、Sc、
La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、T
b。
The rotating base material 12 is made of an oxide superconductor, specifically an A-B-C-D system (where A is Y, Sc,
La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, T
b.

Dy、Ho、Er、Tm、Yb、Luなどの周期率表1
1Ia族元素のうち1種あるいは2種以上を示し、Bは
Sr。
Periodicity table 1 for Dy, Ho, Er, Tm, Yb, Lu, etc.
One or more types of Group 1Ia elements are shown, and B is Sr.

Ba、Ca、Be、Mg、Raなどの周期率表IIa族
元素のうち1種あるいは2種以上を示し、CはCus 
A glAuなどの周期律表Ib族元素とNbのうちC
uあるいはCuを含む2種以上を示し、Dは0.Se、
Te。
It represents one or more elements of Group IIa of the periodic table such as Ba, Ca, Be, Mg, and Ra, and C represents Cu.
A Group Ib elements of the periodic table such as glAu and C of Nb
Indicates two or more types containing u or Cu, and D is 0. Se,
Te.

Poなどの周期率表VIb族元素のうち0あるいは0を
含む2種以上を示す)のものが用いられる。
Among the group VIb elements of the periodic table, such as Po, 0 or two or more elements containing 0 are used.

なお、この酸化物超電導体の各構成元素の組成は、例え
ば、Y−Ba−Cu−0系の酸化物高温超電導体の場合
、Y:Ba:Cu:0= 1 :(1〜3):(2〜4
):(7−X)とされ、Xは0≦X≦5の範囲とされる
In addition, the composition of each constituent element of this oxide superconductor is, for example, in the case of a Y-Ba-Cu-0-based oxide high temperature superconductor, Y:Ba:Cu:0=1:(1 to 3): (2~4
): (7-X), where X is in the range of 0≦X≦5.

第2図に示す構造のレーザ蒸着装置を使用して第2の超
電導層2bを形成するには、基板ホルダ11に、スパッ
タリング法により形成された第1の超電導層2aが形成
された基板1を装着し、容器10の内部を酸素雰囲気と
し、所定の温度にするとともに、回転基材12を回転さ
せる。次いでレーザビーム発射装置9から発射したレー
ザビームを凹面鏡15を介して回転基材12に照射して
回転基材12の外周部を蒸発させ、蒸発原子を基板lに
蒸着させる。このような処理によって第1の超電導層2
aの上面に第2の超電導層2bを形成することができる
In order to form the second superconducting layer 2b using the laser vapor deposition apparatus having the structure shown in FIG. The rotating base material 12 is rotated while the inside of the container 10 is made to have an oxygen atmosphere and a predetermined temperature. Next, a laser beam emitted from the laser beam emitting device 9 is irradiated onto the rotating base material 12 through the concave mirror 15 to evaporate the outer peripheral portion of the rotating base material 12, and evaporated atoms are deposited on the substrate l. Through such treatment, the first superconducting layer 2
A second superconducting layer 2b can be formed on the upper surface of a.

そして、このようなレーザ蒸着法によれば、レーザの出
力調節と回転基材12の回転速度の調節と、回転基材1
2の温度調節により0.5〜1.0時間で1μm程度の
厚さの超電導層を形成することができるので、十分な厚
さを有する第2の超電導層2bを得ることができる。ま
た、下地となる第1の超電導層2aは配向性の良い結晶
構造であり、第2の超電導層2bの結晶は前記第1の超
電導層2aの結晶を核として成長するために、第2の超
電導層2bの結晶構造も第1の超電導層2aに近い配向
性の良好な結晶構造となる。
According to such a laser vapor deposition method, it is possible to adjust the output of the laser, adjust the rotation speed of the rotating base material 12, and adjust the rotation speed of the rotating base material 1.
Since a superconducting layer with a thickness of about 1 μm can be formed in 0.5 to 1.0 hours by adjusting the temperature in step 2, a second superconducting layer 2b having a sufficient thickness can be obtained. Further, the first superconducting layer 2a serving as the base has a crystal structure with good orientation, and the crystals of the second superconducting layer 2b grow using the crystals of the first superconducting layer 2a as nuclei. The crystal structure of the superconducting layer 2b also has a good orientation close to that of the first superconducting layer 2a.

以上のように形成された高温超電導材2は、必要に応じ
て酸素ガスを含む雰囲気中で熱処理することが好ましい
。この熱処理は、400 S−1000℃程度の温度に
おいてt−too時間程度加熱することで行う。このよ
うな熱処理により、高温超電導体2内の各構成元素が更
に十分に反応しあうことから、高温超電導材2の超電導
特性の向上を計ることができる。さらに第1の超電導層
2aが配向性の良好な結晶構造を有し、この層に第2の
超電導層2bが密着しているために、両者を熱処理する
ことによって第2の超電導層2bの結晶構造が第1の超
電導層2aに揃い、超電導特性が更に向上することにな
る。このため高温超電導材2は高い臨界温度と臨界電流
密度とを示す。また、前述のレーザ蒸着法によれば十分
な厚さの第2の超電導層2bでも短時間で生成できるた
めに十分な厚さを有する高温超電導材2でも効率良く製
造することができる。
The high-temperature superconducting material 2 formed as described above is preferably heat-treated in an atmosphere containing oxygen gas, if necessary. This heat treatment is performed by heating at a temperature of about 400 S-1000° C. for about t-too hours. By such heat treatment, the constituent elements within the high temperature superconductor 2 react more sufficiently with each other, so that the superconducting properties of the high temperature superconductor material 2 can be improved. Furthermore, since the first superconducting layer 2a has a crystal structure with good orientation and the second superconducting layer 2b is in close contact with this layer, by heat-treating both, the crystals of the second superconducting layer 2b are The structure is aligned with the first superconducting layer 2a, and the superconducting properties are further improved. Therefore, the high temperature superconducting material 2 exhibits a high critical temperature and critical current density. Further, according to the laser vapor deposition method described above, even a second superconducting layer 2b having a sufficient thickness can be produced in a short time, so that even a high temperature superconducting material 2 having a sufficient thickness can be efficiently manufactured.

なお、前記熱処理時の雰囲気には、酸素ガス以外に、5
SSeなどの周期律表vtb族元素のガスまたはF、C
1%Brなどの周期律表VIIb族元素のガスを含める
こともできる。これらの元素ガスは、得られた高温超電
導体の構成元素の一部として結晶内部に侵入し、超電導
特性の向上に寄与するものとなる。また、高温超電導材
2が形成された基体lとして、銀あるいは銀合金からな
るものを用いれば、熱処理雰囲気中の酸素が基体1の内
部を透過することから、第1の超電導層2aに十分な酸
素を供給することができ、このようにしても超電導特性
を向上させることが可能となる。
In addition, in addition to oxygen gas, the atmosphere during the heat treatment includes 5
Gases of group Vtb elements of the periodic table such as SSe, or F, C
Gases of Group VIIb elements of the periodic table, such as 1% Br, may also be included. These elemental gases penetrate into the crystal as part of the constituent elements of the obtained high-temperature superconductor and contribute to improving the superconducting properties. Furthermore, if the substrate l on which the high-temperature superconducting material 2 is formed is made of silver or a silver alloy, oxygen in the heat treatment atmosphere will permeate through the inside of the substrate 1, so that it will be sufficient for the first superconducting layer 2a. Oxygen can be supplied, and the superconducting properties can also be improved in this way.

[実施例] Y +B at、sc us、ro ?−Xの組成の酸
化物超電導焼結体をスパッタリングターゲットとして厚
さ0゜5mmのAgテープに厚さ0.2μmのスパッタ
リング超電導層を形成し、これに第2図に示す装置と同
等の構成のレーザ蒸着装置を用いてレーザ蒸着を施した
。レーザ蒸着は、上記のスパッタリングが施されたAg
テープをレーザ蒸着装置の基板ホルダに装着し、回転基
材として、円筒状のY r B am、sc ua、s
O?−Xの組成の酸化物超電導焼結体製の基材を用い、
容器の内部圧をI O−’Torrとした。
[Example] Y + B at, sc us, ro? A sputtering superconducting layer with a thickness of 0.2 μm was formed on an Ag tape with a thickness of 0°5 mm using an oxide superconducting sintered body having the composition of Laser deposition was performed using a laser deposition device. Laser deposition is performed on the above-mentioned sputtered Ag.
The tape is attached to the substrate holder of the laser vapor deposition apparatus, and a cylindrical Y r B am, sc ua, s is used as a rotating base material.
O? - Using a base material made of an oxide superconducting sintered body with a composition of X,
The internal pressure of the container was IO-'Torr.

次に炭酸ガスレーザビームを発射して回転基材に照射す
るとともに回転基材を1回/秒で回転させた。以上の操
作により回転基材の原子をレーザによって溶融飛散させ
て基板表面に厚さ1.0μmの第2の超電導層を形成し
た。
Next, a carbon dioxide gas laser beam was emitted to irradiate the rotating base material, and the rotating base material was rotated once per second. Through the above operations, the atoms of the rotating base material were melted and scattered by a laser to form a second superconducting layer with a thickness of 1.0 μm on the substrate surface.

以上の工程において、スパッタリング装置にょる成膜に
4時間、レーザ蒸着装置にょる成膜に1時間要した。こ
の後に酸化雰囲気中において9゜0℃に2時間加熱する
熱処理を行って最終製品の高温超電導材を得た。
In the above steps, it took 4 hours to form a film using a sputtering device, and 1 hour to form a film using a laser evaporation device. Thereafter, heat treatment was performed at 9.degree. C. for 2 hours in an oxidizing atmosphere to obtain a final high-temperature superconducting material.

この超電導材は、 臨界温度(Tc)    92.8に 臨界電流密度(J c)  1 、OX 10 ’A/
、cm”(77Kにおいて) を示した。
This superconducting material has a critical temperature (Tc) of 92.8, a critical current density (Jc) 1, and OX 10'A/
, cm” (at 77K).

なお、厚さ1.2μmの超電導層をスパッタリング法の
みで製造しようとすると、膜厚を十分に確保することは
困難である。
Note that when attempting to manufacture a superconducting layer with a thickness of 1.2 μm using only a sputtering method, it is difficult to ensure a sufficient film thickness.

以上の結果から本発明構造を採用することによって高い
臨界電流密度と臨界温度を有し、厚さも十分な超電導層
を製造できることが判明した。
From the above results, it was found that by employing the structure of the present invention, a superconducting layer having high critical current density and critical temperature and sufficient thickness could be manufactured.

[発明の効果] 以上説明したように本発明の高温超電導材は、スパッタ
リング法により形成され、臨界電流密度が高く配向性の
良好な結晶構造を有する第1の超電導層と、成膜時間の
短いレーザ蒸着法のより形成された厚い第2の超電導層
とからなり、第2の超電導層が生成される際に第1の超
電導層を核として成長するために、全体として高い臨界
電流密度を有するとともに、十分な厚さを有する高温超
電導材を短時間で製造できる効果がある。また、本発明
によれば、厚い超電導層でも短時間で効率良く形成でき
る構造であるので、電流容量の大きな超電導材が短時間
で得られる効果がある。
[Effects of the Invention] As explained above, the high temperature superconducting material of the present invention is formed by a sputtering method, and has a first superconducting layer having a high critical current density and a crystal structure with good orientation, and a first superconducting layer having a short deposition time. It consists of a thick second superconducting layer formed by laser vapor deposition, and has a high critical current density as a whole because it grows using the first superconducting layer as a nucleus when the second superconducting layer is generated. In addition, there is an effect that a high temperature superconducting material having sufficient thickness can be manufactured in a short time. Further, according to the present invention, since the structure is such that even a thick superconducting layer can be formed efficiently in a short time, there is an effect that a superconducting material with a large current capacity can be obtained in a short time.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す断面図、第2図は本発
明の実施に用いるレーザ蒸着装置の一例を示す構成図で
ある。 l・・・基板、 2・・・高温超電導材、 2a・・・第1の超電導層、 2b・・・第2の超電導層。
FIG. 1 is a sectional view showing an embodiment of the present invention, and FIG. 2 is a configuration diagram showing an example of a laser evaporation apparatus used for carrying out the invention. l... Substrate, 2... High temperature superconducting material, 2a... First superconducting layer, 2b... Second superconducting layer.

Claims (1)

【特許請求の範囲】 A−B−C−D系 (ただし、AはY、Sc、La、Yb、Er、Ho、D
y等の周期律表IIIa族元素のうち1種以上を示し、B
はSr、Ba、Ca等の周期律表IIa族元素のうち1種
以上を示し、CはCu、Ag、Auなどの周期律表 I
b族元素とNbのうちCuあるいはCuを含む2種以上
を示し、DはO、S、Se等の周期律表VIb族元素およ
びF、Cl、Br等の周期律表VIIb族元素のうちOを
含む1種以上を示す。)の高温超電導材であって、 スパッタリング法により形成されたA−B−C−D系の
第1の超電導層と、この第1の超電導層上にレーザ蒸着
法により形成されたA−B−C−D系の第2の超電導層
とからなることを特徴とする高温超電導材。
[Claims] A-B-C-D system (where A is Y, Sc, La, Yb, Er, Ho, D
Indicates one or more elements of group IIIa of the periodic table such as y, B
represents one or more elements of group IIa of the periodic table such as Sr, Ba, and Ca, and C represents elements of group I of the periodic table such as Cu, Ag, and Au.
Denotes Cu or two or more of group b elements and Nb, including Cu, and D is an element of group VIb of the periodic table such as O, S, and Se, and O of group VIIb of the periodic table elements such as F, Cl, and Br. Indicates one or more types including. ), which comprises a first A-B-C-D superconducting layer formed by a sputtering method, and an A-B-C-D superconducting layer formed on the first superconducting layer by a laser evaporation method. A high-temperature superconducting material comprising a CD-based second superconducting layer.
JP62258772A 1987-10-14 1987-10-14 High temperature superconducting material Pending JPH01100813A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62258772A JPH01100813A (en) 1987-10-14 1987-10-14 High temperature superconducting material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62258772A JPH01100813A (en) 1987-10-14 1987-10-14 High temperature superconducting material

Publications (1)

Publication Number Publication Date
JPH01100813A true JPH01100813A (en) 1989-04-19

Family

ID=17324869

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62258772A Pending JPH01100813A (en) 1987-10-14 1987-10-14 High temperature superconducting material

Country Status (1)

Country Link
JP (1) JPH01100813A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01198465A (en) * 1988-02-04 1989-08-10 Fujitsu Ltd Superconducting coated material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01198465A (en) * 1988-02-04 1989-08-10 Fujitsu Ltd Superconducting coated material

Similar Documents

Publication Publication Date Title
JP2757284B2 (en) Method for producing metal oxide superconducting material layer by laser evaporation
US5650378A (en) Method of making polycrystalline thin film and superconducting oxide body
KR100413533B1 (en) Fabrication method of superconducting magnesium diboride thin film and its apparatus
JP3447077B2 (en) Thin film laminate, oxide superconducting conductor, and method for producing the same
JPH01100813A (en) High temperature superconducting material
JPH01100820A (en) High temperature superconducting material
JPH01100816A (en) High temperature superconducting material
JPH01100818A (en) High temperature superconducting material
JPH01100827A (en) High temperature superconducting material
JPH01100817A (en) High temperature superconducting material
JP3251034B2 (en) Oxide superconductor and method of manufacturing the same
JPH01100819A (en) High temperature superconducting material
JP4619697B2 (en) Oxide superconducting conductor and manufacturing method thereof
JPH01100814A (en) High temperature superconducting material
EP0591588A1 (en) Method of making polycrystalline thin film and superconducting oxide body
JP2817299B2 (en) Preparation method of composite oxide superconducting thin film
JPH01261204A (en) Production of oxide based superconductor
JPH01100815A (en) High temperature superconducting material
JPH05302163A (en) Formation of multiple-oxide superconducting thin film
JP2523785B2 (en) Method for manufacturing superconductor thin film
JP3415874B2 (en) Manufacturing method of oxide superconducting conductor
JPH01201008A (en) Production of thin film of oxide superconductor
JPH01259582A (en) Manufacture of oxide superconductive thin film
JPH01215963A (en) Formation of thin superconducting film
JP2004362784A (en) Oxide superconductor and its manufacturing method