JPH03123807A - Measuring device for three-dimensional form - Google Patents

Measuring device for three-dimensional form

Info

Publication number
JPH03123807A
JPH03123807A JP26272589A JP26272589A JPH03123807A JP H03123807 A JPH03123807 A JP H03123807A JP 26272589 A JP26272589 A JP 26272589A JP 26272589 A JP26272589 A JP 26272589A JP H03123807 A JPH03123807 A JP H03123807A
Authority
JP
Japan
Prior art keywords
model
measuring device
stylus
optical measuring
dimensional shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26272589A
Other languages
Japanese (ja)
Inventor
Hisayoshi Honda
尚義 本田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Kiko Co Ltd
Original Assignee
Osaka Kiko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Kiko Co Ltd filed Critical Osaka Kiko Co Ltd
Priority to JP26272589A priority Critical patent/JPH03123807A/en
Publication of JPH03123807A publication Critical patent/JPH03123807A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To effectively avoid the lowering of a measuring speed by allowing a single optical measuring device to horizontally move along the arranging direction of a stylus group. CONSTITUTION:The stylus groups 6, 6... are disposed every frame 1 above a model 8. Thereafter, the styli 6, 6... are allowed to simultaneously descend by gravity toward the upper surface of the model 8 by utilizing the engagement of a guide wire 2 with a through hole so that the contacts 6B formed at the lower ends of the respective styli 6, 6... are made to abut on the upper surface of the model 8. As a result, the three-dimensional form of the model 8 is replaced with the staircase-like displacement through the displacement in the vertical direction of the stylus groups 6, 6.... In such a state, the optical measuring device 19B is relatively moved in a horizontal direction with respect to the stylus groups 6, 6... and reflected light from a flat light receiving surfaces 6A formed at the upper ends of the respective styli 6 is consecutively measured. Thus, the lowering of the measuring speed is avoided.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は3次元形状の測定装置に関するものであり、詳
細には、数値制御工作機械の主軸に装着して3次元形状
を有するモデル、例えば送りテーブル上に固定された成
形用金型等の3次元モデル形状を測定するための装置と
して使用される計測手段の改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a three-dimensional shape measuring device, and in particular, it is attached to the main shaft of a numerically controlled machine tool to measure a model having a three-dimensional shape, e.g. The present invention relates to an improvement in a measuring means used as a device for measuring the shape of a three-dimensional model such as a molding die fixed on a feeding table.

〔従来の技術〕[Conventional technology]

成形用金型のような3次元形状を具えたモデルの寸法な
らびに立体形状を測定する手段として、第6図に示す接
触式測定装置や第8図に示す非接触式測定装置が使用さ
れている。
A contact measuring device shown in Fig. 6 and a non-contact measuring device shown in Fig. 8 are used as means for measuring the dimensions and three-dimensional shape of a model with a three-dimensional shape such as a molding die. .

接触式測定装置(15A)は、数値制御工作機械、例え
ばマシニングセンタの主軸に取付けて使用するものであ
り、XY力方向沿うモデル(8)の寸法を測定するため
のセンサ(16)(17)  (18)を具えた測定装
置の本体(19A)と、この測定装置(19A)の本体
の下端にZ方向に沿うモデル(8)の寸法測定手段とし
て取付けられたスタイラスと呼称される素子棒(6)か
ら構成されている。
The contact measuring device (15A) is used by being attached to the main axis of a numerically controlled machine tool, such as a machining center, and includes sensors (16) (17) for measuring the dimensions of the model (8) along the XY force directions. 18) and an element rod (6 ).

第7図に基づいてその計測要領を説明すると、X方向及
びY方向に沿って移動する送りテーブル(20)上に3
次元形状を具えたモデル、例えば成形用金型模型(8)
を固定し、数値制御工作機械の主軸に装着された測定装
置(15A)の本体(19A)に対して送りテーブル(
20)をX方向、Y方向に相対移動させながらスタイラ
ス(6)の先端をモデル(8)の表面に圧接させ、スタ
イラス(6)の常時接触下に2方向に沿う変位を検出す
ることによって成形用金型模型(8)のZ方向寸法を計
測している。
To explain the measurement procedure based on FIG. 7, three
Models with dimensional shapes, such as molding mold models (8)
is fixed, and the feed table (
The tip of the stylus (6) is brought into pressure contact with the surface of the model (8) while moving the stylus (20) relatively in the X and Y directions, and the displacement along the two directions is detected while the stylus (6) is constantly in contact with the model. The Z-direction dimension of the mold model (8) is being measured.

一方、非接触測定装置(15B)は、第8図に示すよう
に数値制御工作機械の主軸に光学式測定装置(19B)
を装着することによって構成されている。モデル(8)
のZ方向寸法の測定に際しては、第4図に示すように送
りテーブル(20)をX方向、Y方向に相対移動させな
がら光学式測定装置(19B)からモデル(8)の被計
測面に向って光を投射し、その反射光が受光素子の中心
に結像するように制御してモデル(8)の3次元形状を
測定している。
On the other hand, the non-contact measuring device (15B) is attached to the optical measuring device (19B) on the main shaft of the numerically controlled machine tool as shown in Figure 8.
It is constructed by attaching. Model (8)
When measuring the dimension in the Z direction of the model (8), as shown in Fig. 4, while moving the feed table (20) relatively in the The three-dimensional shape of the model (8) is measured by projecting light and controlling the reflected light to form an image at the center of the light receiving element.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

接触式測定装置(15A)は、モデル(8)の被計測面
に対してスタイラス(6)の先端を常時接触させ乍ら、
送りテーブル(20)によってモデル(8)をX方向、
Y方向に水平移動させ、スタイラス(6)の変位量εが
一定となるように接圧と送りテーブル(20)の送り速
度を調整し、モデル(8)のXY力方向位置座標値と、
その位置におけるZ方向の寸法を測定している。このた
め、計測速度が低下するという問題が発生する。
The contact measuring device (15A) keeps the tip of the stylus (6) in constant contact with the surface to be measured of the model (8).
The model (8) is moved in the X direction by the feeding table (20).
Move the model (8) horizontally in the Y direction, adjust the contact pressure and feed speed of the feed table (20) so that the amount of displacement ε of the stylus (6) is constant, and set the position coordinate values of the model (8) in the XY force direction.
The dimension in the Z direction at that position is measured. Therefore, a problem arises in that the measurement speed decreases.

一方、非接触式測定装置(15B)を使用した場合には
、接触式測定装置(15A)に認められた問題は避けら
れるものの、第8図の左方に白抜きの矢印で拡大図示す
るようにモデル(8)の被計測面の傾斜角が大きくなっ
たとき、光線の反射率が悪くなり、所期の計測精度が得
られないという問題が発生する。
On the other hand, when a non-contact measuring device (15B) is used, the problems observed with the contact measuring device (15A) can be avoided, but as shown in the enlarged view by the white arrow on the left side of Fig. When the inclination angle of the surface to be measured in model (8) becomes large, the reflectance of light rays deteriorates, causing a problem that the desired measurement accuracy cannot be obtained.

〔課題を解決するための手段〕[Means to solve the problem]

上記課題の解決手段として本発明は、数値制御工作機械
の主軸に取付けられた単一の光学式測定装置と、3次元
形状を有するモデルの上面全域又は一部を覆うように上
記光学式測定装置の下方に配置された枠体と、この枠体
内にそれぞれの軸線方向を光学式測定装置の軸線方向と
一致させた状態で上下動自在に、かつ格子状をなして整
列支持され、上端面を平坦な受光面とした複数本の同一
長さの計測素子棒とからなり、モデルの3次元形状を上
記複数本の計測素子棒の階段状の変位に置換え、上記光
学式測定装置で計測素子の上端の平坦な受光面として測
定する計測系を構成したことを特徴とする3次元形状の
測定装置を提供するものである。
As a means for solving the above problems, the present invention includes a single optical measuring device attached to the main shaft of a numerically controlled machine tool, and the optical measuring device is installed so as to cover the entire or part of the upper surface of a model having a three-dimensional shape. A frame body is placed below the optical measuring device, and within this frame body, each axis line direction is aligned with the axis line direction of the optical measuring device, and it is vertically movable and aligned and supported in a grid pattern. It consists of a plurality of measurement element rods of the same length with a flat light-receiving surface, and the three-dimensional shape of the model is replaced with a step-like displacement of the plurality of measurement element rods, and the measurement element is measured using the optical measuring device. The object of the present invention is to provide a three-dimensional shape measuring device characterized in that a measuring system for measuring is configured as a flat light-receiving surface at the upper end.

〔作用〕[Effect]

モデルの3次元形状を、上端に平坦な受光面を有する複
数本の計測素子棒(スタイラス)の垂直方向変位を介し
て階段状の変位に置換え、上記スタイラス群の上方に配
置された光学式計測装置を、スタイラス群に対して水平
方向に相対移動させながら前記受光面からの反射光を測
定することによって、モデルの3次元形状を連続的に測
定する。
The three-dimensional shape of the model is replaced with a step-like displacement through the vertical displacement of multiple measuring element rods (styli) each having a flat light-receiving surface at the upper end, and optical measurement is performed above the stylus group. The three-dimensional shape of the model is continuously measured by measuring the reflected light from the light receiving surface while moving the device relative to the stylus group in the horizontal direction.

〔実施例〕〔Example〕

第1図は光学式計測装置と、枠体内に整列配置されたス
タイラス群の斜視図、第2図はスタイラス単体の拡大斜
視図、第3図は枠体とスタイラス群の部分上面図、第4
図はスタイラス群の拡大正面図、第5図は本発明装置の
全体構造と計測要領の説明図である。尚、以下の記述に
於いて、従来技術を示す第6図乃至第8図と同一の構成
部材は同一の参照番号で表示し、重複する事項に関して
は説明を省略する。
Fig. 1 is a perspective view of the optical measuring device and the stylus group arranged in the frame, Fig. 2 is an enlarged perspective view of the stylus alone, Fig. 3 is a partial top view of the frame and the stylus group, and Fig. 4
The figure is an enlarged front view of the stylus group, and FIG. 5 is an explanatory diagram of the overall structure and measurement procedure of the device of the present invention. In the following description, the same constituent members as in FIGS. 6 to 8 showing the prior art are indicated by the same reference numerals, and explanations of the same items will be omitted.

スタイラス(6)は細径の棒状体から形成されており、
上端を平坦な受光面(6A)に形成すると共に、下端を
半球状の計測用接触点(6B)に形成している。スタイ
ラス(6)の細径胴部には、縦長な貫通溝(3)が設け
られている。
The stylus (6) is formed from a narrow rod-shaped body,
The upper end is formed into a flat light receiving surface (6A), and the lower end is formed into a hemispherical measurement contact point (6B). A vertically long through groove (3) is provided in the narrow diameter body of the stylus (6).

数値制御工作機械、例えばマシニングセンタの主軸には
単一の光学式測定装置(19B)が取付けられており、
この光学式測定装置(19B)の下方には、前記スタイ
ラス(6)の複数本を上下動可能に、かつ、格子状の整
列配置形態を維持せしめた状態で収納支持する枠体(1
)が配設されている。この枠体(1)の内部には、複数
本のスタイラス(6)(6)・・・をX方向、Y方向に
沿って整列配置させると共に、個々のスタイラス(6)
(6)・・・に個別の垂直方向変位Zが与えられるとき
にガイド部材として機能する孔明きの支持体(4)とガ
イドワイヤ(2)(2)・・・が取付けられている。ガ
イドワイヤ(2)は、第2図及び第4図に拡大図示する
ように、スタイラス(6)の細径胴部に設けられた貫通
溝(3)内に押通されており、前記孔明きの支持体(4
)と協働してスタイラス(6)がZ方向に変位する際に
位置決めガイド機能を発揮する。3次元形状を有するモ
デル、例えば成形用金型模型(8)は、数値制御工作機
械の送りテーブル(20)上に固定されており、この送
りテーブル(20)は、CPUを組込んだコンピュータ
(図示省略)から送出される計測プロダラムに従って光
学式測定装置(19B)に対して水平移動し得るように
構成されている。枠体(1)の開口寸法は、その内部に
所定の配設ピッチ(Po )を維持して配置された前記
複数本のスタイラス群(6)(6)・・・がモデル(8
)の上面全域を覆い得るようにモデル(8)の平面形状
に合わせて設計されている。尚、大型モデルに対しては
、複数区画に分けた1区画分の枠体(1)を使用し、各
区画毎に順次、枠体(1)を移動させて計測を行うもの
である。
A single optical measuring device (19B) is attached to the main axis of a numerically controlled machine tool, such as a machining center.
Below the optical measuring device (19B), there is a frame (1) that stores and supports a plurality of the styli (6) in a vertically movable manner and maintains a grid-like alignment.
) are provided. Inside this frame (1), a plurality of styluses (6), (6), etc. are arranged in alignment along the X direction and the Y direction, and each stylus (6)
A perforated support (4) and a guide wire (2), which function as a guide member when an individual vertical displacement Z is applied to (6)..., are attached. As shown in enlarged views in FIGS. 2 and 4, the guide wire (2) is pushed through a through groove (3) provided in the narrow body of the stylus (6), and is inserted into the hole. support (4
) to perform a positioning guide function when the stylus (6) is displaced in the Z direction. A model having a three-dimensional shape, for example, a molding die model (8), is fixed on a feed table (20) of a numerically controlled machine tool, and this feed table (20) is controlled by a computer ( It is configured to be able to move horizontally with respect to the optical measuring device (19B) according to a measurement program sent out from an optical measuring device (not shown). The size of the opening of the frame (1) is such that the plurality of styli groups (6) (6)... arranged within the frame while maintaining a predetermined arrangement pitch (Po) are model (8).
) is designed to match the planar shape of model (8) so that it can cover the entire upper surface of the model (8). Note that for a large model, a frame (1) for one section divided into a plurality of sections is used, and the measurement is performed by sequentially moving the frame (1) for each section.

以下、第5図に基づいて本発明装置によるモデルの3次
元形状(2方向度位量)の測定順序を説明する。モデル
(8)の上方にスタイラス群(6)(6)・・・を枠体
(1)毎配設し、この後、ガイドワイヤ(2)と貫通溝
(3)との保合を利用してスタイラス(6)(6)・・
・をモデル(8)の上面に向けて一斉に自重降下させ、
それぞれのスタイラス(6)(6)・・・の下端に形成
されている半球状の接触点(6B)をモデル(8)の上
面に所定の押圧力で当接させる。この結果、モデル(8
)の3次元形状は、スタイラス群(6)(6)・・・の
垂直方向(Z方向)変位を介して階段状の変位に置換え
られる。この状態で光学式測定装置(19B)をスタイ
ラス群(6)(6)・・・に対して水平方向(X方向及
びY方向)に相対移動させ、各スタイラス(6)の上端
に形成された平坦な受光面(6A)からの反射光を連続
的に測定する。光学式測定装置(19B)によって検出
された測定値は図示しない変換回路を経て電気的な信号
に変換され、測定データとしてコンピュータのCPUに
送出され、各点の位置座標とスタイラス径(D)から、
既植のオフセット演算処理によって3次元形状データに
変換されコンピュータの記憶回路に記憶される。
Hereinafter, the order of measuring the three-dimensional shape (two-direction degree amount) of a model using the apparatus of the present invention will be explained based on FIG. Above the model (8), the stylus group (6) (6)... is placed on each frame (1), and then, using the engagement between the guide wire (2) and the through groove (3), Stylus (6) (6)...
・ all at once toward the top of the model (8) by their own weight,
A hemispherical contact point (6B) formed at the lower end of each stylus (6), (6), etc. is brought into contact with the upper surface of the model (8) with a predetermined pressing force. As a result, the model (8
) is replaced by a step-like displacement through the vertical direction (Z direction) displacement of the stylus group (6) (6)... In this state, the optical measuring device (19B) is moved relative to the stylus group (6), (6), etc. in the horizontal direction (X direction and Y direction), and the The reflected light from the flat light receiving surface (6A) is continuously measured. The measured value detected by the optical measuring device (19B) is converted into an electrical signal via a conversion circuit (not shown) and sent to the CPU of the computer as measurement data, and is calculated from the position coordinates of each point and the stylus diameter (D). ,
The data is converted into three-dimensional shape data by the offset calculation process previously described and stored in the storage circuit of the computer.

〔発明の効果〕〔Effect of the invention〕

自重による一斉降下方式で半球状の接触点をモデルの上
面に当接させることによって、モデルの3次元形状がス
タイラス群の上端に形成された平坦な受光面の垂直方向
変位に変換される、従って、単一の光学式測定装置がス
タイラス群の整列方向に沿って水平移動することによっ
てモデルの3次元形状が連続的に測定される。
By bringing the hemispherical contact point into contact with the top surface of the model in a simultaneous descent method due to its own weight, the three-dimensional shape of the model is converted into a vertical displacement of the flat receiving surface formed at the top end of the stylus group, thus , the three-dimensional shape of the model is continuously measured by horizontally moving a single optical measuring device along the alignment direction of the stylus group.

この結果、従来の接触式測定装置で問題とされていた測
定速度の低下が効果的に回避される。
As a result, a decrease in measurement speed, which has been a problem with conventional contact-type measuring devices, is effectively avoided.

また、スタイラスの上部に平坦な受光面を形成すること
によって従来の非接触式測定装置で問題とされていた急
斜面に於ける反射光量の低下の問題が解消される。
Furthermore, by forming a flat light-receiving surface on the top of the stylus, the problem of a reduction in the amount of reflected light on a steep slope, which has been a problem with conventional non-contact measuring devices, can be solved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は光学式計測装置と、枠体内に整列配置されたス
タイラス群の斜視図、第2図はスタイラス単体の拡大斜
視図、第3図は枠体とスタイラス群の部分上面図、第4
図はスタイラス群の拡大正面図、第5図は本発明装置の
全体構造と計測要領の説明図である。また、第6図は従
来の接触式測定装置の略示正面図、第7図はモデルの上
面図、第8図は従来の非接触式測定装置の略示正面図で
ある。 (1)・−・枠体、    (2)・−・ガイドワイヤ
、(3) −・貫通溝、 (4) −・孔明きの支持体、 (6) −スタイラス、 (6A)−平坦な受光面、 (8”) −モデル、 (19B)−光学式測定装置。 特 許 出 願 人 大阪機工株式会社 代 理 人 江 原 省 吾 第5図 5B 第2図 第 図 第 図 +5A
Fig. 1 is a perspective view of the optical measuring device and the stylus group arranged in the frame, Fig. 2 is an enlarged perspective view of the stylus alone, Fig. 3 is a partial top view of the frame and the stylus group, and Fig. 4
The figure is an enlarged front view of the stylus group, and FIG. 5 is an explanatory diagram of the overall structure and measurement procedure of the device of the present invention. 6 is a schematic front view of a conventional contact type measuring device, FIG. 7 is a top view of a model, and FIG. 8 is a schematic front view of a conventional non-contact measuring device. (1) -- Frame body, (2) -- Guide wire, (3) -- Penetration groove, (4) -- Perforated support, (6) -- Stylus, (6A) -- Flat light receiving Surface, (8”) - Model, (19B) - Optical measuring device. Patent applicant Osaka Kiko Co., Ltd. Agent Shogo Ehara Figure 5 5B Figure 2 Figure + 5A

Claims (1)

【特許請求の範囲】[Claims] (1)数値制御工作機械の主軸に取付けられた単一の光
学式測定装置と、3次元形状を有するモデルの上面全域
又は一部を覆うように上記光学式測定装置の下方に配置
された枠体と、この枠体内にそれぞれの軸線方向を光学
式測定装置の軸線方向と一致させた状態で上下動自在に
、かつ格子状をなして整列支持され、上端面を平坦な受
光面とした複数本の同一長さの計測素子棒とからなり、
モデルの3次元形状を上記複数本の計測素子棒の階段状
の変位に置換え、上記光学式測定装置で計測素子の上端
の平坦な受光面として測定する計測系を構成したことを
特徴とする3次元形状の測定装置。
(1) A single optical measuring device attached to the main shaft of a numerically controlled machine tool, and a frame placed below the optical measuring device so as to cover the entire or part of the top surface of a model having a three-dimensional shape. A plurality of lenses are supported in the frame body in a manner that they can move vertically and are aligned in a lattice shape with their axial directions aligned with the axial directions of the optical measuring device, and their upper end surfaces are flat light-receiving surfaces. It consists of a measuring element rod of the same length as a book,
3. A measurement system is constructed in which the three-dimensional shape of the model is replaced with a step-like displacement of the plurality of measurement element rods, and the measurement element is measured as a flat light-receiving surface at the upper end of the measurement element with the optical measurement device. Dimensional shape measuring device.
JP26272589A 1989-10-06 1989-10-06 Measuring device for three-dimensional form Pending JPH03123807A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26272589A JPH03123807A (en) 1989-10-06 1989-10-06 Measuring device for three-dimensional form

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26272589A JPH03123807A (en) 1989-10-06 1989-10-06 Measuring device for three-dimensional form

Publications (1)

Publication Number Publication Date
JPH03123807A true JPH03123807A (en) 1991-05-27

Family

ID=17379727

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26272589A Pending JPH03123807A (en) 1989-10-06 1989-10-06 Measuring device for three-dimensional form

Country Status (1)

Country Link
JP (1) JPH03123807A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011516137A (en) * 2008-04-03 2011-05-26 シロナ・デンタル・システムズ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Method of processing raw material using individual magnification and raw material for said method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011516137A (en) * 2008-04-03 2011-05-26 シロナ・デンタル・システムズ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Method of processing raw material using individual magnification and raw material for said method

Similar Documents

Publication Publication Date Title
JPS5973704A (en) Multi-coordinate-sensing head
CN104048625A (en) Automatic contact instrument used for measuring thin sheet material dimensions
EP2101141A2 (en) Measuring instrument
CN102661723A (en) Six-axial numerical-control three-dimensional quick laser measurer
CN203148401U (en) Contact type automatic thin-board dimension measuring instrument
CN103217128A (en) Twin-lens measuring system
CA1336532C (en) Probe motion guiding device, position sensing apparatus and position sensing method
GB2112139A (en) Gauging head
JPS6150007A (en) Tracer for measuring surface shape
KR100941970B1 (en) Measuring device for hole size and gap between holes
JPS6232302A (en) Three-dimensional measuring method and device
JPH03123807A (en) Measuring device for three-dimensional form
CN2048682U (en) Measurer for three-dimension surface shape of last
JP2017223574A (en) Industrial machine
CN110864624A (en) One-machine dual-purpose measuring instrument
US5012587A (en) Machine for measuring by coordinates
JPH0716107U (en) Three-dimensional surface roughness / contour shape measuring machine
CN202599362U (en) Six-axis numerical control laser fast three-dimensional measuring device
CN110919696A (en) Positioning and calibrating device of industrial manipulator
US20230280145A1 (en) Measurement method
CN110793442A (en) Combined type measuring device for three-dimensional coordinate measurement
KR20100045816A (en) Measuring device for hole size and gap between holes
Desai et al. Reverse engineering: A review & evaluation of contact based systems
CN215984969U (en) Tension measuring tool suitable for elastic chain system
CN214120967U (en) Contact type detection tool for engine crankshaft core shaft