JPH03123481A - Apparatus for automatic simultaneous determination of cell concentration and cell activity - Google Patents

Apparatus for automatic simultaneous determination of cell concentration and cell activity

Info

Publication number
JPH03123481A
JPH03123481A JP26170989A JP26170989A JPH03123481A JP H03123481 A JPH03123481 A JP H03123481A JP 26170989 A JP26170989 A JP 26170989A JP 26170989 A JP26170989 A JP 26170989A JP H03123481 A JPH03123481 A JP H03123481A
Authority
JP
Japan
Prior art keywords
sample
concentration
liquid
cell
mixer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26170989A
Other languages
Japanese (ja)
Other versions
JP2824793B2 (en
Inventor
Yasushi Haketa
靖 羽毛田
Ryoichi Motohashi
本橋 亮一
Kinji Gonda
権田 金治
Kazuto Kajiwara
梶原 一人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toa Electronics Ltd
Original Assignee
Toa Electronics Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toa Electronics Ltd filed Critical Toa Electronics Ltd
Priority to JP26170989A priority Critical patent/JP2824793B2/en
Publication of JPH03123481A publication Critical patent/JPH03123481A/en
Application granted granted Critical
Publication of JP2824793B2 publication Critical patent/JP2824793B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To determine the cell concentration and cell activity in a cell suspension liquid at the same time by placing a chemiluminescence detector in a detection channel and an absorbance detector in a sample supplying channel, etc., mixing a sample supplied through a sample channel and a reagent supplied through a reagent channel in a mixer and transferring the mixture through the detection channel. CONSTITUTION:A sample liquid S containing suspended cells in injected into a carrier liquid C1 and an ATP extraction liquid R is injected into the carrier liquid before a mixer 11. A luminescent reagent E containing luciferin and luciferase is injected into a carrier liquid C2 and the sample liquid is mixed to the reagent liquid with a mixer 12. A sample channel 2 is joined to a reagent channel 4 and the mixture is passed through the mixer 13 to a chemiluminescence detector 6 and an absorbance detector 7 to determine the ATP concentration and turbidity. The ATP concentration in the cell and the concentration outside of the cell can be separately determined by injecting the ATP extraction liquid R and without using the injection of the liquid.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、細胞懸濁液の細胞濃度と細胞活性を同時に測
定する装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an apparatus for simultaneously measuring cell concentration and cell activity of a cell suspension.

〔従来の技術〕[Conventional technology]

従来、発酵工程などの監視は、細胞懸濁液中の細胞濃度
や細胞活性の測定により行なっている。
Conventionally, fermentation processes and the like have been monitored by measuring cell concentration and cell activity in cell suspensions.

細胞懸濁液の細胞濃度は、顕微鏡法、コロニーカウント
法、乾燥重量測定法、濁度測定法などにより測定され、
一方細胞懸濁液の細胞活性は、細胞つ呼吸速度の測定、
酵素活性の測定、細胞のアデノシントリフオスフェート
(A T P)濃度の測定などの方法により求めている
The cell concentration of the cell suspension is measured by microscopy, colony counting, dry weight measurement, turbidity measurement, etc.
On the other hand, cell activity in cell suspensions can be measured by measuring the cell respiration rate.
It is determined by methods such as measuring enzyme activity and measuring cellular adenosine triphosphate (ATP) concentration.

しかし、細胞濃度及び細胞活性の測定には、従来から手
分析法が主に採用されているため、測定に多くの時間を
要し、又操作が煩雑で人為的誤差な与えやすい等の問題
があった。特に、細胞濃度と細胞活性の両方を測定する
場合には、別々のサンプルでは両方の相関関係が得られ
ないので同一サンプルを用いて連続的に測定する必要が
あるが、細胞濃度や細胞活性は生命活動によって経時的
に変化するから、片方を測定している間に他方が変化し
てしまうと云う問題があった。
However, since manual analysis methods have traditionally been mainly used to measure cell concentration and cell activity, they require a lot of time, are complicated to operate, and are susceptible to human error. there were. In particular, when measuring both cell concentration and cell activity, it is necessary to measure them continuously using the same sample because it is not possible to obtain a correlation between the two using separate samples. Because they change over time due to life activities, there was a problem that while one was being measured, the other would change.

又、細胞活性の測定にはATP濃度の分析が有効であっ
て多く用いられている。この分析は、ルシフェリンとM
g2+の存在下でルシフェラーゼの触媒作用によってA
TPをアデノシンモノフォスフニー) (AMP)に分
解し、下記反応に伴なう発光量からATP濃度を測定す
るものである:g AMP+オルトルシフェリン+Co  +ppi+hν
しかし従来の手分析法では、容器に採取したサンプル液
に素早くルシフェリンとルシフェラーゼを含む発光試薬
とATP抽出液をほぼ同時に加え、容器ごと光度計にセ
ットするので、サンプル液の採取や発光試薬等の添加に
時間を要し、生命活動によって経時的に変動する細胞内
のATP濃度を正確に求めることが困難であった。更に
、上記従来の方法ではATP抽出液により細胞内から遊
離されたATPと細胞外のATPの合計濃度が求められ
ることになり、細胞内のATP濃度と細胞外のATP濃
度とを別々に簡単に測定することは困難であった。
Furthermore, analysis of ATP concentration is effective and widely used for measuring cell activity. This analysis shows that luciferin and M
A by catalysis of luciferase in the presence of g2+
This method decomposes TP into adenosine monophosphine (AMP) and measures the ATP concentration from the amount of light emitted by the following reaction: g AMP + orluciferin + Co + ppi + hν
However, in the conventional manual analysis method, a luminescent reagent containing luciferin and luciferase and an ATP extract are quickly added to the sample solution collected in a container almost simultaneously, and the whole container is placed in a photometer. Addition takes time, and it is difficult to accurately determine the intracellular ATP concentration, which fluctuates over time due to life activities. Furthermore, in the conventional method described above, the total concentration of ATP released from the inside of the cell and extracellular ATP is determined by the ATP extract, and it is easy to calculate the intracellular ATP concentration and the extracellular ATP concentration separately. It was difficult to measure.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明は、サンプル液である細胞懸濁液中の細胞濃度と
細胞活性とを、夫々濁度測定とATP濃度測定によりほ
ぼ同時に且つ自動的に測定する装置を供給すること、特
に細胞活性については細胞内のATP濃度と細胞外のA
TP濃度とを別々に測定できる装置を提供することを目
的とする。
The present invention provides an apparatus that almost simultaneously and automatically measures cell concentration and cell activity in a cell suspension, which is a sample liquid, by turbidity measurement and ATP concentration measurement, respectively. Intracellular ATP concentration and extracellular A
It is an object of the present invention to provide an apparatus that can measure the TP concentration and the TP concentration separately.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するため、本発明の細胞濃度と細胞活性
の同時自動測定装置では、流れ分析装置において、細胞
が懸濁したサンプル液をキャリア液に注入するサンプル
液供給路と、キャリア液に注入すれたサンプル液を混合
器を経て移送するサンプル流路と、ルシフェリンとルシ
フェラーゼを含む発光試薬をキャリア液に注入し混合器
を経て移送する試薬流路と、サンプル流路と試薬流路と
を合流し混合器を経て移送する検出流路と、検出流路に
設けた化学発光検出器と、前記サンプル液供給路、サン
プル流路又は検出流路の何れかに設けた吸光度検出器と
を具え、更に必要に応じてサンプル流路に混合器の手前
でATP抽出液を注入する抽出液供給路を具えたことを
特徴とする。
In order to achieve the above object, the automatic cell concentration and cell activity measurement device of the present invention has a flow analyzer that includes a sample liquid supply path for injecting a sample liquid in which cells are suspended into a carrier liquid, and a sample liquid supply path for injecting a sample liquid in which cells are suspended into a carrier liquid. A sample flow path that transfers the diluted sample liquid through a mixer, a reagent flow path that injects a luminescent reagent containing luciferin and luciferase into a carrier liquid and transfers it through the mixer, and a merging of the sample flow path and the reagent flow path. and a chemiluminescent detector provided in the detection channel, and an absorbance detector provided in any of the sample liquid supply channel, the sample channel, or the detection channel, Furthermore, the present invention is characterized in that an extract supply path is provided for injecting an ATP extract into the sample flow path before the mixer, if necessary.

〔作用〕[Effect]

本発明では、流れ分析法を採用して装置化することによ
り、サンプル液の迅速な採取、ATP抽出液や発光試薬
の速やかな注入と発光量の測定、及びこれらと平行した
濁度の測定を実現し、しかも必要に応じて細胞内及び細
胞外のATP濃度を別々に正確に測定するようにした。
In the present invention, by adopting a flow analysis method and implementing the device, it is possible to quickly collect sample liquid, quickly inject ATP extract and luminescence reagent, measure luminescence amount, and measure turbidity in parallel with these. In addition, intracellular and extracellular ATP concentrations can be measured separately and accurately as necessary.

本発明装置を第1図により説明すると、この測定装置は
、細胞が懸濁したサンプル液Sをキャリア液C1に注入
するサンプル液供給路1と、キャリア液C1に注入され
たサンプル液Sを混合器11を経て移送するサンプル流
路2と、サンプル流路2に混合器11の手前でATP抽
出抽出液性入する抽出液供給路3と、キャリア液C2に
ルシフェリンとルシフェラーゼを含む発光試薬Eを注入
し混合器12で混合して移送する試薬流路4と、サンプ
ル流路2と試薬流路4とを合流し混合器13を経て化学
発光検出器6及び吸光度検出器7に移送する検出流路5
とを具えている。
To explain the apparatus of the present invention with reference to FIG. 1, this measuring apparatus includes a sample liquid supply path 1 for injecting a sample liquid S in which cells are suspended into a carrier liquid C1, and a sample liquid S injected into the carrier liquid C1 to be mixed. A sample flow path 2 for transferring the sample through the mixer 11, an extract supply path 3 for introducing the ATP extract into the sample flow path 2 before the mixer 11, and a luminescent reagent E containing luciferin and luciferase in the carrier liquid C2. A reagent flow path 4 that is injected, mixed in a mixer 12 and transferred, and a detection flow that merges the sample flow path 2 and the reagent flow path 4 and is transferred to the chemiluminescence detector 6 and absorbance detector 7 via the mixer 13. Road 5
It is equipped with.

上記測定装置により細胞外のATP濃度と濁度を測定す
る場合、細胞が懸濁したサンプル液Sをポンプ15によ
りインジェクター9に供給し、インジェクター9を回転
して流路をキャリア液c1の流路に切り替えることによ
り、切取られたサンプル液Sはポンプ14により圧送さ
れるキャリア液C1に挟まれて送られ、混合器11で混
合される。
When measuring extracellular ATP concentration and turbidity using the above measurement device, the sample liquid S in which cells are suspended is supplied to the injector 9 by the pump 15, and the injector 9 is rotated to form a flow path for the carrier liquid c1. By switching to , the cut sample liquid S is sent sandwiched between the carrier liquid C1 pumped by the pump 14 and mixed in the mixer 11.

一方、発光試薬Eはポンプ18により別のインジェクタ
ー10に供給され、上記とF様にインジェクター10に
より切取られた発光試薬Eは、ポンプ17により圧送さ
れるキャリア液c2に挟まれて混合器12に送られ混合
される。混合器11を経たサンプル液Sを含むキャリア
液01と、混合器12からの発光試薬Eを含むキャリア
液C2とは合流して検出流路5を流れ、混合器13で混
合されて反応し、化学発光検出器6及び吸光度検出器7
を通過して排出される。化学発光検出器6では上記AT
Pの分解反応に伴なう発光量が検出され、吸光度検出器
7では混合器11.13で混合希釈されたサンプル液S
の吸光度が検出され、共に電気信号として処理装置8に
送られてデータ処理され、得られた値とブランク値の差
が細胞外ATP濃度及び濁度として表示又はプリントア
ウトされる。
On the other hand, the luminescent reagent E is supplied to another injector 10 by the pump 18, and the luminescent reagent E cut out by the injector 10 in the same way as above and F is sandwiched between the carrier liquid c2 pumped by the pump 17 and is transferred to the mixer 12. sent and mixed. The carrier liquid 01 containing the sample liquid S that has passed through the mixer 11 and the carrier liquid C2 containing the luminescent reagent E from the mixer 12 merge and flow through the detection channel 5, and are mixed in the mixer 13 and react. Chemiluminescence detector 6 and absorbance detector 7
It passes through and is discharged. In the chemiluminescence detector 6, the above AT
The amount of luminescence accompanying the decomposition reaction of P is detected, and the absorbance detector 7 detects the sample solution S mixed and diluted in the mixer 11.13.
The absorbance of is detected and both are sent as electrical signals to the processing device 8 for data processing, and the difference between the obtained value and the blank value is displayed or printed out as the extracellular ATP concentration and turbidity.

又、細胞内のATP濃度を測定する場合には、インジェ
クター9によりキャリア液C1に注入されたサンプル液
Sが混合器11に達する前に、ATP抽出抽出液界ンプ
16により抽出液供給路3からサンプル流路2に注入す
ることにより、細胞を破壊して細胞内のATPを遊離さ
せ、以下前記と同様に発光試薬Eとの反応による発光量
を測定して細胞内外の全ATP濃度を求める。この全A
TP濃度から前記の如く測定した細胞外ATP濃度を差
引けば細胞内ATP濃度が求められる。
In addition, when measuring the intracellular ATP concentration, before the sample liquid S injected into the carrier liquid C1 by the injector 9 reaches the mixer 11, it is extracted from the extract liquid supply path 3 by the ATP extraction liquid pump 16. By injecting the sample into the sample channel 2, the cells are destroyed to release ATP within the cells, and the amount of light emitted by the reaction with the luminescence reagent E is measured in the same manner as described above to determine the total ATP concentration inside and outside the cells. This whole A
The intracellular ATP concentration can be determined by subtracting the extracellular ATP concentration measured as described above from the TP concentration.

尚、この場合には濁度の測定は行なわない。In this case, turbidity is not measured.

このように本発明装置では、各ポンプとインジェクター
を測定対象に応じて組合せ、例えばポンプ15.18と
インジェクター9.10をタイミングをとって動作させ
及び/又は流路の長さや内径を調節することにより、サ
ンプルIsと発光試薬Eを検出流路5で合流させ反応さ
せることが出来るので、ブランク値、細胞外ATP濃度
、濁度、及び全ATP濃度と細胞内ATP−@=@+濃
度が短時間内(例えば5分以内)に連続的に測定される
In this way, in the device of the present invention, each pump and injector can be combined depending on the object to be measured, for example, the pump 15.18 and the injector 9.10 can be operated at the appropriate timing and/or the length and inner diameter of the flow path can be adjusted. As a result, the sample Is and the luminescent reagent E can be combined in the detection channel 5 and reacted, so that the blank value, extracellular ATP concentration, turbidity, total ATP concentration, and intracellular ATP−@=@+ concentration are short. It is measured continuously within a period of time (for example, within 5 minutes).

尚、濁度を測定する吸光度検出器7は、サンプル液Sの
濃度に応じて、サンプル液供給路1、サンプル流路2又
は検出流路5の何れかに設ければ良く、測定波長は通常
500〜700 nmである。
The absorbance detector 7 for measuring turbidity may be installed in any of the sample liquid supply path 1, sample flow path 2, or detection flow path 5 depending on the concentration of the sample liquid S, and the measurement wavelength is usually It is 500-700 nm.

〔実施例〕〔Example〕

実施例1 第1図の測定装置を使用し、ドライイースト懸濁液につ
いてATP濃度と濁度を測定した。
Example 1 The ATP concentration and turbidity of a dry yeast suspension were measured using the measuring device shown in FIG.

ドライイースト懸濁液は、ドライイーストを蒸留水に懸
濁し、希釈して各種の濃度に作成したサンプルを用いた
。キャリア液C1は1 mMのKDTAを加えたpH7
,75のHEPES緩衝液、キャリア液C2は1 mM
のEDTAと10mMのMg2+を加えたpH7,75
のHIIGPES緩衝液、発光試薬Eは0.2mMのル
シフェリンと1欧−のルシフェラーゼを加えたp H7
,75のHzPIICS緩衝液、ATP抽出抽出液界面
活性剤を用いた。
The dry yeast suspensions used were samples prepared by suspending dry yeast in distilled water and diluting it to various concentrations. Carrier liquid C1 was pH 7 with 1 mM KDTA added.
,75 HEPES buffer, carrier solution C2 is 1mM
pH 7,75 with EDTA and 10mM Mg2+
HIIGPES buffer, luminescence reagent E was pH 7 containing 0.2mM luciferin and 1% luciferase.
, 75 Hz PIICS buffer, ATP extraction extract surfactant.

尚、ATP濃度と濁度の測定操作は前記の通りであるが
、インジェクター9と10を連動させ、測定の確度を高
めるため同一サンプル液を2回連続して注入し、流路の
長さを調整することにより各サンプル液Sと発光試薬E
とを検出流路5でタイミングを合せて合流させて反応さ
せ、同一サンプルにつき2回連続して測定した。細胞外
ATP濃度と濁度の測定ではキャリア液C1の流速を1
.5ml/ min %キャリア液C2の流速を0.9
6 ml/m i nとし、又全ATP濃度の測定では
キャリア液C1の流速を0.5 ml/m i n s
キャリア液C2の流速を0.35m1/m i nとし
、ATP抽出抽出液界50−を注入し、吸光度は波長6
00 nmで測定した。
The ATP concentration and turbidity measurement procedure is as described above, but injectors 9 and 10 are linked to inject the same sample liquid twice in succession to increase the measurement accuracy, and the length of the flow path is By adjusting each sample solution S and luminescent reagent E
and were reacted by merging at the same timing in the detection channel 5, and the same sample was measured twice in succession. For the measurement of extracellular ATP concentration and turbidity, the flow rate of carrier liquid C1 was
.. 5ml/min % carrier liquid C2 flow rate 0.9
6 ml/min, and for the measurement of total ATP concentration, the flow rate of carrier liquid C1 was 0.5 ml/min.
The flow rate of the carrier liquid C2 was set to 0.35 m1/min, the ATP extraction liquid boundary 50- was injected, and the absorbance was set at wavelength 6.
Measured at 00 nm.

第2図は各2回連続測定した化学発光検出器6と吸光度
検出器7の出力の応答曲線であり、ビークA ハ10 
g/lのドライイースト懸濁液の全ATP濃度に、ビー
クBは同懸濁液の細胞外ATP濃度及びビークCは同懸
濁液の濁度に夫々対応し、ビークD、E、Fは5 g/
lのドライイースト懸濁液の全ATP濃度、細胞外AT
P濃度及び濁度に対応し、ビークGSH,工は2g1l
のドライイスト懸濁液の全ATP濃度、細胞外ATP濃
度及び濁度に対応するものであって、これらが各サンプ
ルについて約5分で測定できた。
Figure 2 shows the response curves of the outputs of the chemiluminescence detector 6 and the absorbance detector 7, which were measured twice consecutively.
Beak B corresponds to the total ATP concentration of the dry yeast suspension in g/l, Beak C corresponds to the extracellular ATP concentration of the same suspension, Beak C corresponds to the turbidity of the same suspension, and Beaks D, E, and F correspond to the total ATP concentration of the dry yeast suspension. 5g/
Total ATP concentration of 1 dry yeast suspension, extracellular AT
Corresponding to P concentration and turbidity, beak GSH, 2g/l
The total ATP concentration, the extracellular ATP concentration, and the turbidity of the Dryist suspension were determined for each sample in about 5 minutes.

第3図に上記の各測定で得られたドライイースト濃度と
、細胞内ATP濃度(曲線A)、細胞外ATP濃度(曲
線B)%及び濁度(曲線C)との関係を示した。
FIG. 3 shows the relationship between the dry yeast concentration obtained in each of the above measurements, intracellular ATP concentration (curve A), extracellular ATP concentration (curve B)%, and turbidity (curve C).

実施例2 第1図の測定装置を使用し、培養開始後一定時間ごとの
酵母培養液について、実施例1と同じ利足条件でA’T
P濃度と濁度を測定した。
Example 2 Using the measuring device shown in Figure 1, A'T was measured for the yeast culture solution at regular intervals after the start of culture under the same conditions as in Example 1.
P concentration and turbidity were measured.

尚、酵母の培養は、菌体としてS、 Cerevisi
aeを用い、培地としてグルコース4%、ポリペプトン
1%、イーストエキス0.5%、及びリン酸水素カリウ
ムと硫酸マグネシウム0.2%を純水に溶かした溶液(
pH6,0)を用いて行なった。
In addition, yeast culture is carried out using S. cerevisi as bacterial cells.
A solution of 4% glucose, 1% polypeptone, 0.5% yeast extract, and 0.2% potassium hydrogen phosphate and magnesium sulfate dissolved in pure water (
pH 6.0).

第4図に酵母の培養時間と、培養液の濁度(曲線A)1
生菌数(曲線B)、細胞内ATP濃度(曲線C)、及び
グルコース濃度(曲線D)の関係を示した。尚、生菌数
は培養液を減菌した蒸留水で適当な濃度に希釈し、上記
培地を用いた寒天培地に1−を分取して植菌し、30σ
で30時間以上培養して生成するコロニー数をコロニー
カウント法で求めた。グルコース濃度はグルツースミ極
を用いたグルコース計で測定した。
Figure 4 shows the yeast culture time and the turbidity of the culture solution (curve A)1.
The relationship between viable bacterial count (curve B), intracellular ATP concentration (curve C), and glucose concentration (curve D) is shown. In addition, the number of viable bacteria is determined by diluting the culture solution with sterilized distilled water to an appropriate concentration, and inoculating 1- into an agar medium using the above medium.
The number of colonies produced after culturing for 30 hours or more was determined by colony counting method. Glucose concentration was measured with a glucose meter using a Glutosum electrode.

第4図から判るように、グルコース濃度がゼロになり細
胞の増殖が停止するまでは、濁度、生菌数、細胞内AT
P濃度とも同じ傾向で増加する。
As can be seen from Figure 4, until the glucose concentration reaches zero and cell growth stops, turbidity, viable cell count, intracellular AT
The P concentration also increases with the same tendency.

増殖が停止して静止状態になると、濁度と生菌数はほぼ
一定のままであるが、細胞内ATP濃度は少しずつ低下
する。これは、濁度が細胞濃度を及び細胞内ATP濃度
が細胞活性を良く現わしていることを示している。
When the growth stops and the cell becomes stationary, the turbidity and the number of viable bacteria remain almost constant, but the intracellular ATP concentration gradually decreases. This indicates that turbidity well represents cell concentration and intracellular ATP concentration well represents cell activity.

実施例3 実施例2と同様に、培養開始後一定時間ごとの大腸菌培
養液のATP濃度と濁度を測定した。
Example 3 As in Example 2, the ATP concentration and turbidity of the E. coli culture solution were measured at regular intervals after the start of culture.

尚、大腸菌の培養は、菌体としてE、Co11を用い、
培地として肉エキス1%、ポリペプトン1%及びNaC
l0.2%を純水に溶かした溶液(pH7,2)を用い
て行なった。
In addition, E. coli was cultured using E and Co11 as bacterial cells.
Meat extract 1%, polypeptone 1% and NaC as medium
This was carried out using a solution (pH 7.2) in which 0.2% of 1 was dissolved in pure water.

第5図に大腸菌の培養時間と、培養液の濁度(曲線A)
、生菌数(曲線B)N及び細胞内ATP濃度(曲線C)
の関係を示した。尚、生菌数は実施例2に述べたコロニ
ーカウント法Gこよった。第5図においても、濁度が細
胞濃度を及び細胞内ATP濃度が細胞活性を良く現わす
ことが判る。
Figure 5 shows the culture time of E. coli and the turbidity of the culture solution (curve A).
, viable bacterial count (curve B) N and intracellular ATP concentration (curve C)
showed the relationship between The number of viable bacteria was determined by colony counting method G described in Example 2. It can be seen from FIG. 5 that the turbidity well represents the cell concentration and the intracellular ATP concentration well represents the cell activity.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、極めて短い時間内に、同一視できるサ
ンプル液について濁度と、細胞外ATP濃度、細胞内A
TP濃度及び全ATP濃度を別々に且つほぼ同時に、し
かも自動的に測定出来る。
According to the present invention, the turbidity, extracellular ATP concentration, and intracellular A
TP concentration and total ATP concentration can be measured separately, almost simultaneously, and automatically.

従って、本発明は、例えば発酵の工程’?r ’)アル
タイムに監視する場合等に非常に有効である。
Therefore, the present invention can be applied to, for example, a fermentation process. r') Very effective for real-time monitoring.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明装置の一具体例を示す概略構成図である
。第2図は実施例1でのATP濃度と濁度の出力の応答
曲線であり、第3図は実施例1しこよるドライイースト
培養液のドライイースト濃度と、細胞内ATP濃度(曲
線A)、細胞外ATP濃度(曲線B)、及び濁度(曲線
C)との関係を示したグラフである。第4図と第5図は
夫々実施例2と実施例3による酵母培養液と大腸菌培養
液の濁度(曲線A)、生菌数(曲線B)、細胞内ATP
濃度(曲線C)、及びグルコース濃度(曲線D)の関係
を示したグラフである。 1・・サンプル液供給路 2・・サンプル流路  3・・抽出液供給路4・・試薬
流路    5・・検出流路6・・化学発光検出器 7
・・吸光度検出器8・・処理装置    9.10・・
インジェクター11.12.13・・混合器 14.15.16.17.18・・ポンプ第1図 第2図 A 第3図 1 0 00 ドライイ スト濃度 (g/L) 0 ?0 0 時間 (分) 第4図 手続補正書(自発) 1゜ 事件の表示 平成 年 特 許 願 第261709 号 3、 補正をする者 事件との関係
FIG. 1 is a schematic diagram showing a specific example of the apparatus of the present invention. Figure 2 shows the response curve of ATP concentration and turbidity output in Example 1, and Figure 3 shows the dry yeast concentration of the dry yeast culture solution in Example 1 and the intracellular ATP concentration (curve A). , extracellular ATP concentration (curve B), and turbidity (curve C). Figures 4 and 5 show the turbidity (curve A), viable cell count (curve B), and intracellular ATP of the yeast culture solution and E. coli culture solution in Example 2 and Example 3, respectively.
It is a graph showing the relationship between concentration (curve C) and glucose concentration (curve D). 1. Sample liquid supply path 2. Sample flow path 3. Extract liquid supply path 4. Reagent flow path 5. Detection flow path 6. Chemiluminescence detector 7
・・Absorbance detector 8・・Processing device 9.10・・
Injector 11.12.13... Mixer 14.15.16.17.18... Pump Figure 1 Figure 2 A Figure 3 1 0 00 Dry Ist Concentration (g/L) 0 ? 0 0 Time (minutes) Figure 4 Procedural amendment (spontaneous) 1゜Indication of the case Heisei Patent Application No. 261709 3. Relationship with the person making the amendment case

Claims (2)

【特許請求の範囲】[Claims] (1)流れ分析装置において、細胞が懸濁したサンプル
液をキャリア液に注入するサンプル液供給路と、キャリ
ア液に注入されたサンプル液を混合器を経て移送するサ
ンプル流路と、ルシフエリンとルシフエラーゼを含む発
光試薬をキャリア液に注入し混合器を経て移送する試薬
流路と、サンプル流路と試薬流路とを合流し混合器を経
て移送する検出流路と、検出流路に設けた化学発光検出
器と、前記サンプル液供給路、サンプル流路又は検出流
路の何れかに設けた吸光度検出器とを具えたことを特徴
とする細胞濃度と細胞活性の同時自動測定装置。
(1) In the flow analyzer, there is a sample liquid supply path that injects a sample liquid in which cells are suspended into a carrier liquid, a sample flow path that transfers the sample liquid injected into the carrier liquid via a mixer, and luciferin and luciferase. A reagent flow path that injects a luminescent reagent containing a carrier liquid into a carrier liquid and transfers it through a mixer, a detection flow path that merges the sample flow path and the reagent flow path and transfers it through the mixer, and a chemical reagent provided in the detection flow path. A simultaneous automatic measurement device for cell concentration and cell activity, comprising a luminescence detector and an absorbance detector provided in any one of the sample liquid supply path, the sample flow path, or the detection flow path.
(2)請求項(1)の流れ分析装置において、サンプル
流路に混合器の手前でATP抽出液を注入する抽出液供
給路を更に具えたことを特徴とする細胞濃度と細胞活性
の同時自動測定装置。
(2) The flow analyzer according to claim (1), further comprising an extract supply path for injecting an ATP extract into the sample flow path before the mixer, and simultaneous automatic measurement of cell concentration and cell activity. measuring device.
JP26170989A 1989-10-06 1989-10-06 Simultaneous automatic measurement of cell concentration and cell activity Expired - Lifetime JP2824793B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26170989A JP2824793B2 (en) 1989-10-06 1989-10-06 Simultaneous automatic measurement of cell concentration and cell activity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26170989A JP2824793B2 (en) 1989-10-06 1989-10-06 Simultaneous automatic measurement of cell concentration and cell activity

Publications (2)

Publication Number Publication Date
JPH03123481A true JPH03123481A (en) 1991-05-27
JP2824793B2 JP2824793B2 (en) 1998-11-18

Family

ID=17365620

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26170989A Expired - Lifetime JP2824793B2 (en) 1989-10-06 1989-10-06 Simultaneous automatic measurement of cell concentration and cell activity

Country Status (1)

Country Link
JP (1) JP2824793B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005098022A1 (en) * 2004-04-06 2005-10-20 Bussan Nanotech Research Institute, Inc. Bacteria counting method and bacteria counter
WO2005097968A1 (en) * 2004-04-06 2005-10-20 Bussan Nanotech Research Institute, Inc. Microbe detector and method of microbe detection
WO2005001108A3 (en) * 2003-06-30 2009-03-12 Innovatis Ag Method and device for characterising a culture solution

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101148308B1 (en) * 2007-11-29 2012-05-25 연세대학교 산학협력단 Microorganism meter apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005001108A3 (en) * 2003-06-30 2009-03-12 Innovatis Ag Method and device for characterising a culture solution
WO2005098022A1 (en) * 2004-04-06 2005-10-20 Bussan Nanotech Research Institute, Inc. Bacteria counting method and bacteria counter
WO2005097968A1 (en) * 2004-04-06 2005-10-20 Bussan Nanotech Research Institute, Inc. Microbe detector and method of microbe detection

Also Published As

Publication number Publication date
JP2824793B2 (en) 1998-11-18

Similar Documents

Publication Publication Date Title
Rudd et al. Measurement of microbial oxidation of methane in lake water
Haas et al. Physiological alterations of vegetative microorganisms resulting form chlorination
US5292644A (en) Rapid process for detection coliform bacteria
Apstein et al. Improved automated lactate determination
EP0690923B1 (en) Rapid coliform detection system
US20070003997A1 (en) Method and apparatus for detecting bacteria
Levin et al. Methodology for application of adenosine triphosphate determination in waste water treatment
FI914039A0 (en) Method for controlling and / or monitoring biological processes
Hunter et al. A technique for the measurement of total ammonia in small volumes of seawater and haemolymph
DE60032354T2 (en) CELL ASSAY, PROCEDURE AND REAGENTS
EP0053865B1 (en) Method for measuring biomass viability
CN102288653A (en) Online biochemical oxygen demand (BOD) detector and detection method of same
JPH04505256A (en) Microorganism detection device
JPH03123481A (en) Apparatus for automatic simultaneous determination of cell concentration and cell activity
Lasko et al. On‐line monitoring of intracellular ATP concentration in Escherichia coli fermentations
Welsch et al. Kinetics of synthesis and utilization of adenosine triphosphate by intact cells of Rhodospirillum rubrum
JPH06125791A (en) Method of measuring number of bacteria in milk serum and substance containing the same and analyzing kit
Otto et al. The phosphate potential, adenylate energy charge and proton motive force in growing cells of Streptococcus cremoris
CN112119153B (en) Cell detection device and cell detection method
Rosalki A simple colorimetric method for the determination of serum alpha-hydroxybutyric dehydrogenase activity
JPH02249479A (en) Device for automatic measurement of atp concentration
Salla et al. Employment of bioluminescence for the quantification of adenosine phosphates in the human cornea
Lähdesmäki et al. Novel flow injection methods for drug-receptor interaction studies, based on probing cell metabolism
JP2890128B2 (en) Yeast viable cell count method
US5141869A (en) Automated bioluminescence microbial monitor