WO2005097968A1 - Microbe detector and method of microbe detection - Google Patents

Microbe detector and method of microbe detection Download PDF

Info

Publication number
WO2005097968A1
WO2005097968A1 PCT/JP2005/005372 JP2005005372W WO2005097968A1 WO 2005097968 A1 WO2005097968 A1 WO 2005097968A1 JP 2005005372 W JP2005005372 W JP 2005005372W WO 2005097968 A1 WO2005097968 A1 WO 2005097968A1
Authority
WO
WIPO (PCT)
Prior art keywords
solution
channel
well
bacteria
atp
Prior art date
Application number
PCT/JP2005/005372
Other languages
French (fr)
Japanese (ja)
Inventor
Tomonari Kogure
Kazuhiro Yamada
Hiraku Sasaki
Minoru Sakata
Akihiko Tokida
Original Assignee
Bussan Nanotech Research Institute, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bussan Nanotech Research Institute, Inc. filed Critical Bussan Nanotech Research Institute, Inc.
Publication of WO2005097968A1 publication Critical patent/WO2005097968A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/02Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms
    • C12Q1/04Determining presence or kind of microorganism; Use of selective media for testing antibiotics or bacteriocides; Compositions containing a chemical indicator therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N2021/7769Measurement method of reaction-produced change in sensor
    • G01N2021/7786Fluorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/02Food

Definitions

  • the present invention relates to a bacteria detection device and a bacteria detection method.
  • ATP in bacteria is extracted (Lysis step) using a surfactant or an electoporation method or the like, and the fluorescent light generated by removing enzymes such as luciferase therefrom is extracted.
  • a method of detecting the presence or absence of bacteria by receiving and measuring the light with a CCD or a photodiode for example, see Patent Document 1 below.
  • Patent Document 1 JP-A-2000-189197
  • the above-described method for detecting bacteria has a problem that several hours are required for detection where the reaction time is long. Such a problem is particularly serious in the food industry, which requires a bacteria detection test for many products, and for example, there has been a problem that fresh products cannot be shipped quickly.
  • a component such as avirase that removes free ATP, a component that inactivates avirase, a component such as luciferase that emits light by reacting with ATP, and bacterial flocs are dispersed. It is necessary to prepare components, components that break the cell wall of bacteria, and other necessary components separately in reagent bottles, etc.A prescribed amount is collected from each reagent bottle using a microsyringe, etc., and separated into sample tubes. The operation is extremely complicated. [0007] The present invention has been made in view of the above circumstances, and has as its object to provide a bacteria detection device and a bacteria detection method capable of easily detecting bacteria in a sufficiently short time.
  • the inventors of the present invention have conducted intensive studies to solve the above-mentioned problems, and as a result, it is not caused by the fact that the detection of bacteria is performed in a reaction vessel such as a force flask which requires a long time to detect bacteria as described above. I thought. In other words, the present inventors have found that in the above-described reaction vessel, the speed of the luminescence reaction is reduced due to insufficient contact probability between ATP in the bacterium and luciferase, and the detection of the bacterium takes a long time. I thought it might be. As a result of intensive studies, the present inventors have found that the above-mentioned problems can be solved by the following invention.
  • the present invention relates to a first well for containing a sample solution containing bacteria, a second well for containing a luminescent solution that emits light in the presence of ATP in bacteria, and a method for containing ATP in bacteria and a luminescent solution.
  • a microchannel chip having a light emitting section to be brought into contact, a first channel connecting the first well and the light emitting section and having a luminescent liquid introducing section, a microchannel chip having a second channel connecting the luminescent liquid introducing section and the second well, and a bacterial force Extraction means for extracting ATP in bacteria, light detection means for detecting light generated by contact of ATP in bacteria with luminescent liquid, and transfer of liquid contained in the first well to the light emitting part, and transfer to the second well Transfer means for transferring the contained liquid to the first channel, and wherein the channel width of the first channel is 1 mm or less (a first bacteria detection device).
  • the first bacteria detection device having such a structure does not require a sorting operation as in the related art, and has an effect of increasing convenience. That is, in the microchannel chip, since the first well containing the sample liquid and the light emitting section are connected by the first channel, the sample liquid can be sent to the light emitting section in a few seconds, and the second Since the channel is connected to the first channel, when the liquid contained in the first well is transferred to the light emitting unit by the transfer means, when the sample liquid is sent from the first well to the light emitting unit, the second liquid flows.
  • the luminescent liquid contained in the well can be sequentially sent to the first channel, and each can be mixed in the first channel.
  • the first bacteria detection device is provided with an extraction means for extracting bacterial force ATP in bacteria, it can extract ATP in bacteria contained in the sample solution and can extract ATP in the sample solution.
  • the reaction between the bacterial ATP and the luminescent solution can be performed efficiently.
  • the first bacteria detection device includes a transfer means for transferring the liquid in the well to the light emitting unit.
  • the liquid can be reliably guided to the first channel by the transfer means.
  • the channel width of the first channel is 1 mm or less, when the sample liquid and the luminescent liquid are mixed, diffusion takes place in a very short time, and bacterial power and ATP in the bacteria are extracted. Thereby, the reaction can be performed instantaneously. As a result, bacteria can be detected in a matter of seconds in the past, requiring at most one or two hours.
  • the second bacteria detection device is the same as the first bacteria detection device, wherein the first channel has an extract introduction portion into which an extract for extracting ATP in the bacterial force and bacteria is introduced.
  • the means includes a third well contained in the microchannel chip and containing the extract, and a third channel connecting the extract introducing section and the third well, and the transfer means has It is preferable that the liquid contained in the first well can be transferred to the light emitting unit, and the liquid contained in the third well can be transferred to the first channel.
  • the second bacterium detection device comprises a first well for containing a sample liquid containing bacteria, a third well for containing an extract for extracting bacterial force and ATP in bacteria, and a second ATP for bacteria.
  • a microchannel chip, light detecting means for detecting light generated by contact between ATP in bacteria and a luminescent liquid, and a liquid contained in a first well are transferred to a light emitting section, and contained in a second and third well.
  • Transfer means for transferring the liquid to the first channel Preferably, the channel width of the first channel is 1 mm or less.
  • the second bacteria detection device having such a structure does not require a sorting operation as in the conventional art, and has an effect of increasing convenience. That is, since the first well containing the sample liquid and the light emitting unit are connected by the first channel in the microchannel chip, the liquid contained in the first well is transferred to the light emitting unit by the transfer means. And sample fluid for several seconds Can be sent to the light emitting section. Also, at this time, since the second channel and the third channel are connected to the first channel, when the sample liquid is sent to the first well power emitting unit, the extract contained in the third well and the second well are connected. The luminescent liquid contained in the 2-well can be sequentially sent to the first channel, and each is mixed in the first channel. Thereby, the reaction between the test solution, the extract solution, and the luminescent solution can be efficiently performed. That is, the sample solution in the first well, the luminescent solution in the second well, and the extract in the third well can be mixed together by the transfer means.
  • the second bacteria detection device includes a transfer means for transferring the liquid in the well to the light emitting unit.
  • the transfer means can collectively and surely introduce the liquids of each pneumatic force into the first channel.
  • the channel width of the first channel is 1 mm or less, when the sample solution, the extract solution, and the luminescent solution are mixed, diffusion takes place in a very short time, and as a result, the reaction is instantaneously performed. It can be carried out. As a result, bacteria can be detected in seconds, which used to take up to one and a half hours.
  • the first channel is configured such that the first channel has an inactive portion for introducing a removing solution containing an ATP removing agent and an inactive ATP removing agent.
  • the apparatus further includes a fifth well for storing, a fourth channel connecting the removing solution introduction part to the fourth well, and a fifth channel connecting the deactivating liquid introduction part to the fifth well.
  • the removing liquid introduction section is provided upstream of the extraction liquid introduction section, and the inactivating liquid introduction section is downstream of the removal liquid introduction section and upstream of the extraction liquid introduction section.
  • the transfer means transfers the liquid contained in the fourth and fifth wells to the first well. Preferably, it can be transferred to a channel.
  • the “upstream side” refers to the first well side on the first channel
  • the “downstream side” refers to the light emitting unit side on the first channel.
  • the removing solution for removing free ATP is introduced from the fourth well into the first channel via the fourth channel and the removing solution introducing portion, whereby free ATP in the first channel is removed. Removed. For this reason, noise light due to free ATP can be removed and only light due to bacterial ATP can be detected, and the measurement accuracy of bacterial ATP can be improved.
  • the deactivating agent is introduced into the first channel via the fifth channel and the deactivating liquid introduction part, and the removing liquid is deactivated by the deactivating liquid.
  • the destruction of intracellular ATP by the liquid is sufficiently prevented. Therefore, intracellular ATP can be accurately determined.
  • the removing liquid introducing section is provided upstream of the extracting liquid introducing section, and the inactivating liquid introducing section is upstream of the extracting liquid introducing section and downstream of the removing liquid introducing section. Therefore, even if the amount of bacteria in the detection solution is very small, the error can be sufficiently suppressed even when the intracellular ATP measurement accuracy is high as described above.
  • the transfer means can also transfer the liquid contained in the fourth and fifth wells to the first channel. Therefore, the liquid contained in the first to fifth wells can be collectively and surely introduced into the first channel by the transfer means.
  • the temperature of at least one part downstream of the removal liquid introduction part is controlled to 50 ° C or more to inactivate the ATP removing agent. It is preferable to further include temperature control means for causing the temperature to be reduced.
  • the first channel further includes a removing solution introducing portion into which a removing solution containing an ATP removing agent is introduced, and the microchannel chip Force 4th well for containing the removing solution, 4th channel connecting the 4th well with the removing solution inlet, and control the temperature of the removing solution to 50 ° C or higher to inactivate the ATP remover
  • a temperature control unit for controlling the temperature in the first channel, wherein the removal liquid introduction unit is provided upstream of the extraction liquid introduction unit in the first channel. It is possible to control the temperature of the downstream side of the removal liquid introduction section and the upstream side of the extraction liquid introduction section, and the transfer means transfers the liquid contained in the fourth well to the first channel. It should be one that can be transported .
  • the extra removal is performed only by controlling the temperature without introducing the inert inert liquid into the first channel.
  • the removed liquid can be deactivated. Therefore, since the inactive dandelion liquid is not required, a well for storing the inactive danjiri liquid and a channel for sending the inactive danjiri liquid can be omitted, and the structure of the microchannel chip can be simplified.
  • the temperature control means controls the temperature of a portion on the downstream side of the removal liquid introduction portion and on the upstream side of the extraction liquid introduction portion (hereinafter, referred to as "temperature control portion"). By controlling the temperature in this manner, it is possible to obtain the same effect as in the case where the above-described inert irrigation solution is introduced into the first channel.
  • the liquid contained in the fourth well by the transfer means can be transferred to the first channel via the fourth channel and the removal liquid introducing section. Therefore, the liquid contained in the first to fourth wells can be introduced into the first channel collectively and surely by the transfer means.
  • a sixth channel connecting the amplifying liquid and the amplifying liquid introducing section is preferably provided downstream of the inactive irrigation liquid introducing section.
  • the first channel of the third bacterium detection device further has an amplifying solution introduction part into which an amplifying solution for amplifying ATP in bacteria is introduced
  • the channel chip further includes a sixth well for accommodating the amplification solution, and a sixth channel for connecting the sixth solution with the amplification solution introduction unit, wherein the amplification solution introduction unit is inactive in the first channel.
  • the transfer means is provided on the downstream side of the liquid inlet, and the transfer means can transfer the liquid contained in the sixth well to the first channel.
  • ATP amplification reagents include those disclosed in, for example, JP-A-2001-299390.
  • the liquid contained in the sixth well by the transfer means can also be transferred to the first channel via the sixth channel and the amplification liquid introduction unit. Therefore, the liquid contained in the first to sixth wells can be introduced into the first channel collectively and surely by the transfer means.
  • the seventh channel containing the decomposing solution for decomposing the microchannel chip force bacteria floc, the first channel decomposing solution introducing section and the seventh well are formed.
  • the apparatus further comprises a seventh channel for connection, and the decomposition liquid introduction section is provided upstream of the extract introduction section.
  • the first channel further includes a decomposition solution introducing section into which a decomposition solution for decomposing bacterial flocs is introduced.
  • the microchannel chip further includes a seventh well for containing the decomposed liquid, and a seventh channel for connecting the decomposed liquid introduction unit to the seventh well, wherein the first channel includes a decomposed liquid introduction unit. Is preferably provided upstream of the extraction liquid introduction section, and the transfer means is capable of transferring the liquid contained in the seventh well to the first channel. .
  • the decomposed liquid can be introduced into the first channel through the seventh channel through the seventh channel and the dispersion liquid introduction section, and the decomposed liquid can disperse the bacterial floc.
  • the contact efficiency between the bacteria and the extract can be increased, and the extraction reaction can be promoted.
  • the liquid contained in the seventh well by the transfer means can also be transferred to the first channel via the seventh channel and the dispersion liquid inlet. Therefore, at least the liquid contained in the first, third, and seventh wells can be collectively and surely introduced into the first channel by the transfer means.
  • the luminescent liquid introduction part may be provided on the downstream side of the first well with respect to the luminescent liquid introduction part, and the luminescence liquid introduction part may be located at a position closer to the extraction liquid introduction part than the extract liquid introduction part. It may be provided downstream of one well.
  • the seventh bacterium detection device may be configured such that any one of the second, third, and sixth wells is replaced by another well. May also be used.
  • the configuration of the bacteria detection device is extremely simple. It can be. Therefore, it is possible to provide the bacteria detection device at low cost.
  • the 2nd to 7th wells contain a luminescent solution, an extract solution, a removal solution, an inactivating solution, an amplification solution, and a decomposition solution corresponding to the well. It is preferable that they are accommodated.
  • the first channel is a decomposition solution for decomposing the amplification solution introduction portion into which the amplification solution for amplifying ATP in the bacteria is introduced and the bacterial floc.
  • the microchannel chip further includes a sixth well for containing the amplified solution, a seventh well for containing the decomposed solution, and a sixth well for the amplified solution. And a seventh channel connecting the decomposed liquid introduction section and the seventh well, wherein the decomposed liquid introduction section is located upstream of the extract introduction section in the first channel.
  • the amplification liquid introduction section is provided downstream of the inactivation liquid introduction section, and the second, third, fourth, fifth, and fifth wells are provided. 6 El and 7 Elka At least one Ueru, extracts corresponding to the Ueru, luminous solution, removing liquid, inactivating solution, the amplification solution, and decomposition liquid is accommodated, preferred that a shall.
  • the ninth bacterium detection device in the first to eighth bacterium detection devices is provided with control means for controlling the temperature of the liquid in the microchannel chip.
  • the reaction rate can be further increased by setting the temperature at an optimum value for the extract or the luminescent liquid, and further, the reaction can be stabilized by maintaining the temperature at that value. .
  • the extraction means includes a heating means for heating the first channel, and an electric field sign for applying an electric field to the first channel. It is preferable that the apparatus further comprises at least one or more of the adding means and the ultrasonic wave applying means for applying ultrasonic waves to the first channel.
  • the tenth bacterium detection device includes a first well for containing a sample solution containing bacteria, a second well for containing a luminescent solution that emits light in the presence of ATP in bacteria, and a bacterium.
  • a light-emitting part for contacting the ATP with the light-emitting liquid, a first channel for connecting the first well to the light-emitting part, and a second channel for connecting the light-emitting liquid introduction part of the first channel to the second well.
  • Applying the ultrasonic wave to the applying means and the first channel Preferably further comprises at least one or more means of sound wave applying means.
  • the tenth bacteria detection device having such a structure performs heating, electric field application, or ultrasonic application on at least a part of the first channel instead of having the third channel and the third well.
  • Means That is, since the first well for storing the sample liquid and the light emitting unit are connected by the first channel in the microchannel chip, the liquid contained in the first well is transferred to the light emitting unit by the transfer means. In addition, the sample liquid can be sent to the light emitting section in a few seconds. Since the first channel is provided with means for heating, applying an electric field, or applying an ultrasonic wave, when the sample liquid is sent from the first well to the light-emitting part, the bacterial force in the sample liquid also reduces the bacterial ATP. Can be extracted.
  • the luminescent liquid contained in the second well can be sequentially sent to the first channel and mixed with the sample liquid in the first channel. As a result, the reaction between bacterial ATP and the luminescent solution can be efficiently performed.
  • the tenth bacterium detection device has the heating, electric field application or ultrasonic application means as the extraction means, so that the bacterial force and the bacterial ATP can be extracted without using the extract. be able to. Note that there may be a plurality of means for heating, applying an electric field, or applying an ultrasonic wave.
  • the eleventh bacteria test apparatus is the same as the tenth bacteria test apparatus, wherein the first channel
  • the removal liquid introduction part into which the removal liquid containing the ATP removal agent is introduced, and the inert deodorization liquid introduction part into which the deactivation liquid containing the deactivator for inactivating the ATP removal agent is introduced are further provided.
  • the apparatus further comprises a fifth channel for connecting the inactive liquid introducing part and the fifth well, and in the first channel, the removing liquid introducing part is provided with a heating means, an electric field applying means, or an ultrasonic wave applying means.
  • Inactivated liquid introduction unit is provided downstream of the removal liquid introduction unit and provided upstream of the extraction unit, and transported Means transfer liquid contained in 4th and 5th wells to 1st channel Making it possible to Rukoto, preferred to be a shall U ,.
  • the deactivator is introduced into the first channel via the fifth channel and the fifth channel and the inert liquid introducing section, and the removing liquid is inerted by the inert liquid. As a result, destruction of intracellular ATP by the removing solution is sufficiently prevented. Therefore, intracellular ATP can be accurately determined.
  • the removing liquid introducing section is provided upstream of the extracting section, and the inactivating liquid introducing section is provided upstream of the extracting section and downstream of the removing liquid introducing section. Even if the amount of bacteria in the detection solution is very small, the error can be sufficiently suppressed even when the intracellular ATP measurement accuracy is high as described above.
  • the liquid stored in the fourth and fifth wells by the transfer means can also be transferred to the first channel. Therefore, the liquids contained in the first, second, fourth, and fifth wells can be collectively and surely introduced into the first channel by the transfer means.
  • the first channel is located between the removing liquid introduction part and the first channel. It is preferable to further include temperature control means for controlling the temperature of at least one part of the downstream side to 50 ° C. or higher to inactivate the ATP removing agent.
  • the first channel further includes a removal solution introduction part into which a removal solution containing an ATP removing agent is introduced
  • the chip has a fourth well for containing the removing solution, a fourth channel connecting the removing solution introduction section and the fourth well, and a control of the temperature of the removing solution to 50 ° C or higher to prevent the use of the ATP removing agent.
  • Temperature control means for activating, in the first channel, the removal liquid introduction section is upstream of the extraction section for extracting bacterial force ATP in bacteria by heating means, electric field application means or ultrasonic application means.
  • the temperature control unit the temperature of which is controlled by the temperature control means, is capable of controlling the temperature of the portion downstream of the removal liquid introduction unit and upstream of the extraction unit,
  • the transfer means removes the liquid stored in the fourth well. Preferably, it is possible to transfer to the first channel.
  • the liquid contained in the fourth well by the transfer means can also be transferred to the first channel via the fourth channel and the removal liquid introducing section. Therefore, the liquid contained in the first, second, and fourth wells can be collectively and surely introduced into the first channel by the transfer means.
  • the first channel further includes an amplification solution introduction section into which an amplification solution for amplifying ATP in bacteria is introduced.
  • the microchannel chip further includes a sixth well for containing the amplification solution, and a sixth channel connecting the sixth solution with the amplification solution introduction unit.
  • the amplification solution introduction unit is provided in the first channel. It is preferable that the liquid is provided downstream of the inert liquid inlet and that the transfer means is capable of transferring the liquid contained in the sixth well to the first channel. .
  • the liquid contained in the sixth well by the transfer means can be transferred to the first channel via the sixth channel and the amplification liquid introduction unit. Therefore, the liquid contained in the first, second, fourth, and sixth wells can be collectively and surely introduced into the first channel by the transfer means.
  • the seventh channel containing the digestion solution for decomposing the microbial chip force bacteria floc, the digestion solution introduction section of the first channel, and the seventh tube are provided.
  • the apparatus further comprises a seventh channel for connection, and the decomposition liquid introduction section is provided upstream of the luminescence liquid introduction section.
  • a fourteenth bacterium detection device further includes a decomposing solution introducing portion into which a decomposing solution for decomposing the first channel force bacterial floc is introduced
  • the channel chip further includes a seventh well for containing the decomposed liquid, and a seventh channel connecting the decomposed liquid introduction unit and the seventh well.
  • the decomposed liquid introduction unit includes a heating unit.
  • the transfer means is provided upstream of the extraction unit that extracts ATP in bacteria from bacteria by electric field application means or ultrasonic application means, and the transfer means transfers the liquid contained in the seventh well to the first channel. It is preferable that this is possible.
  • the decomposition solution can be introduced into the first channel through the seventh channel and the seventh channel and the dispersion liquid introduction section, and the bacterial floc can be dispersed by the decomposition solution.
  • the contact efficiency between the bacteria and the extract can be increased, and the extraction reaction can be promoted.
  • the liquid contained in the seventh well by the transfer means can be transferred to the first channel via the seventh channel and the dispersion liquid inlet. Therefore, at least the liquid contained in the first, second, and seventh wells can be collectively and reliably introduced into the first channel by the transfer means.
  • the second, fourth, and seventh wells contain a luminescent solution, a removing solution, an inactivating solution, an amplifying solution, and a decomposing solution corresponding to the well. Is preferred.
  • the first channel is the same as the eleventh bacteria detection device, wherein the first channel is connected to the amplification solution introduction section into which the amplification solution for amplifying ATP in the bacteria is introduced and the bacterial block.
  • the microchannel chip further includes a digestion solution inlet for introducing the digestion solution to be decomposed, and the microchannel chip has a sixth well for containing the amplification solution, a seventh well for containing the digestion solution, and an amplification solution introduction unit.
  • a sixth channel for connecting the sixth well and a seventh channel for connecting the decomposition solution introduction portion to the seventh well are further provided.
  • the decomposition solution introduction portion includes a heating means and an electric field application.
  • the amplification liquid introduction section is provided downstream of the inactive irrigation liquid introduction section.
  • 2nd and 4th At least one well selected from the group consisting of a well, a fifth well, a sixth well, and a seventh well, and the luminescent, removing, inactivating, amplifying, and decomposing solutions corresponding to that well. Is contained! It's preferable to be! /.
  • the sixteenth bacterium detection device is the same as the twelfth to fifteenth bacterium detection device, but further provided with a control means for controlling the temperature of the liquid in the microchannel chip.
  • the bacterial test of the present invention can be performed. It is possible to provide an optimum environment for the reaction performed in the discharge device. For example, the reaction rate can be further increased by setting the temperature at an optimum value for the light emitting liquid, and the reaction can be stabilized by maintaining the temperature at that value.
  • the present invention also provides a method for extracting bacterial ATP from bacteria from a sample solution containing bacteria in a channel of a microchannel chip having a channel having a channel width of 1 mm or less, in the presence of bacterial ATP.
  • This is a bacteria detection method (first bacteria detection method) in which a luminescent liquid is caused to emit light and the light emission is detected.
  • This first bacteria detection method can be effectively implemented by the above-described bacteria detection device. Since the luminescent solution reacts with bacterial ATP, when bacteria and luminescent solution are mixed before extracting bacterial ATP, the bacterial ATP is subsequently extracted from the bacteria and emits light at the same time. Since the liquid reacts with ATP in bacteria, the object of the present invention can be achieved without any problem.
  • the sample solution of the first bacteria detection method an extract solution for extracting intracellular ATP from bacteria, and a luminescent solution emitting light in the presence of intracellular ATP are provided. It is preferable to mix ATP and extract the ATP in the bacterium with the bacterial force using the extract.
  • a sample solution containing bacteria and an extract solution for extracting intracellular ATP from bacteria from bacteria in a channel of a microchannel chip having a channel having a channel width of 1 mm or less, a sample solution containing bacteria and an extract solution for extracting intracellular ATP from bacteria from bacteria.
  • a luminescent solution that emits light in the presence of bacterial ATP
  • extracts bacterial ATP from the bacteria with the extract emits the luminescent solution in the presence of bacterial ATP, and detects the luminescence.
  • the second bacteria detection method can be effectively implemented by the above-described bacteria detection device.
  • a method of mixing the sample solution and the extract solution and then mixing with the luminescent solution a method of mixing the sample solution and the luminescent solution in the microchannel chip and then mixing with the extract solution, and extraction Any method may be used in which the liquid and the luminescent liquid are mixed and then mixed with the sample liquid in the microchannel chip.
  • the object of the present invention can be achieved without any problem.
  • the extract of the second method for detecting bacteria is used for a specific cell. It is preferred that the extract be a specific extract that selectively extracts ATP.
  • the extract is the above-mentioned specific extract, for example, in a food test, only bacteria that may cause food poisoning (eg, Vibrio parahaemolyticus, Salmonella, Staphylococcus aureus, Bacillus cereus or Campylobacter) are selectively selected. Can be detected.
  • food poisoning eg, Vibrio parahaemolyticus, Salmonella, Staphylococcus aureus, Bacillus cereus or Campylobacter
  • the specific extract of the third bacteria detection method is preferably a phage or an antibiotic.
  • the specific extract is a phage II antibiotic
  • only bacteria that are susceptible to the phage II antibiotic are destroyed.
  • ATP in the bacterium can be obtained only from the desired bacteria. Can be extracted.
  • the sample solution in the second to fourth bacteria detection methods is mixed with a removing solution containing an ATP removing agent before being mixed with the extract solution and the luminescent solution. It is preferable that free ATP is removed from the sample solution using a removing solution, and further mixed with an inactivating solution containing an inactivating agent to inactivate the removing solution.
  • the noise light due to ATP can be removed, and the introduction of the inactive solution can prevent the removal solution from destroying ATP in bacteria. Therefore, measurement accuracy of ATP in bacteria can be improved.
  • the removing liquid and the inactivating liquid are introduced before the sample liquid and the extract liquid are mixed. By doing so, only unnecessary free ATP can be removed, thereby preventing the ATP in bacteria from being adversely affected.
  • the sample solution is mixed with a removal solution containing an ATP removing agent.
  • an amplification solution for amplifying intracellular ATP in the channel may be mixed.
  • the sample solution obtained in the fifth bacterium detection method is mixed with an amplification solution that inactivates the removal solution and then amplifies ATP in the bacterium.
  • ATP in the bacteria of the bacteria contained in the solution may be amplified.
  • the amplification solution is introduced after inactivating the removal solution. Then, only the ATP in the bacterium can be amplified by the amplification solution, and the measurement accuracy can be further improved.
  • a decomposition solution for decomposing bacterial flocs in the channel may be further mixed.
  • the sample liquid in the second to seventh bacterial detection methods is mixed with a decomposition solution for decomposing bacterial flocs before mixing the extract solution and the luminescent solution. Therefore, the sample solution may also break down the bacterial flocs by the digestion solution.
  • the decomposing solution is performed before extracting intracellular ATP from the bacteria. Then, the floc of bacteria can be dispersed by the decomposed solution, and the contact efficiency between the bacteria and the extract can be increased, so that the extraction reaction can be promoted.
  • the ATP in the bacterium is removed from the bacterium by applying at least one of heating, electric field application, and ultrasonic wave to the sample liquid in the first bacterium detection method. It is preferred to extract.
  • a sample liquid containing bacteria is subjected to heating, electric field application, and ultrasonic application. It is preferable to extract bacterial ATP in the bacterium by performing at least one of them, to cause the luminescent solution to emit luminescence in the presence of the ATP in the bacterium, and to detect the luminescence.
  • the bacterium detection device can be effectively implemented. That is, in the above invention, the sample solution is heated instead of the extract solution, and the electric field is applied. ATP can be extracted from the bacterium by performing any one of the above and applying ultrasonic waves.
  • the sample solution in the ninth bacteria detection method is mixed with a removal solution containing an ATP remover before heating, applying an electric field, or applying ultrasonic waves. It is preferable to remove free ATP from the sample solution using a removing solution, and further inactivate the removing solution by mixing with an inactivating solution containing an inactivating agent.
  • the sample solution is subjected to a removing solution containing an ATP removing agent before heating, applying an electric field or applying an ultrasonic wave to the sample solution in the ninth bacteria detection method.
  • the ATP remover can be removed by removing the ATP removal reagent by removing the sample fluid free ATP with the remover, and controlling the temperature of the mixture with the remover to 50 ° C or higher. .
  • an amplification solution for amplifying ATP in bacteria in the channel in the tenth bacteria detection method may be mixed.
  • the sample solution is combined with an amplification solution that amplifies ATP in bacteria.
  • the ATP in the bacteria of the bacteria contained in the sample solution may be amplified.
  • the amplification solution is introduced after inactivating the removal solution. Then, only the ATP in the bacterium can be amplified by the amplification solution, and the measurement accuracy can be further improved.
  • a decomposition solution for decomposing bacterial flocs in the channel in the ninth and twelfth bacterium detection methods may be further mixed. That is, in the thirteenth bacterium detection method, before heating, applying an electric field or applying an ultrasonic wave to the sample liquid in the ninth and twelfth bacterium detection methods, the sample liquid is subjected to bacterial flocculation. It may be mixed with a decomposition solution to be decomposed, and the decomposition solution may decompose bacterial flocs contained in the sample solution.
  • the digestion is performed before extracting intracellular ATP from the bacteria. Then, the floc of bacteria can be dispersed by the decomposed solution, and the contact efficiency between the bacteria and the extract can be increased, so that the extraction reaction can be promoted.
  • the present invention it is possible to provide a bacteria detection device and a bacteria detection method capable of easily detecting bacteria in a sufficiently short time.
  • FIG. 1 is a perspective view showing a microchannel chip which is a main part of a first embodiment of a bacterium detection device of the present invention.
  • FIG. 2 is a partial cross-sectional view along a thickness direction of a main body constituting the microchannel chip of FIG. 1.
  • FIG. 3 is a cross-sectional view showing first and second modes of a first channel, a second channel, and a third channel.
  • FIG. 4 is a schematic view showing a first embodiment of the bacteria detection device of the present invention.
  • FIG. 5 is a schematic view showing a second embodiment of the bacteria detection device of the present invention.
  • FIG. 6 is a schematic view showing a third embodiment of the bacteria detection device of the present invention.
  • FIG. 7 is a schematic diagram showing a fourth embodiment of the bacteria detection device of the present invention.
  • FIG. 8 is a schematic diagram showing a fifth embodiment of the bacteria detection device of the present invention.
  • FIG. 9 is a schematic view showing a sixth embodiment of the bacteria detection device of the present invention.
  • FIG. 10 is a schematic view showing a seventh embodiment of the bacteria detection device of the present invention.
  • FIG. 11 is a schematic view showing an eighth embodiment according to the bacteria detection device of the present invention. Explanation of symbols
  • FIG. 1 is a perspective view showing a microchannel chip, which is a main part of the first embodiment of the bacteria detection device of the present invention.
  • the bacteria detection device of the present embodiment has a microchannel chip 10
  • the microchannel chip 10 has a rectangular flat main body 10a and a cover 10b that covers the surface of the main body 10a.
  • a first well 1 and a reaction field (light emitting part) 8 are formed at both ends, and the first well 1 accommodates a sample liquid containing bacteria. ing.
  • the first well 1 and the reaction field 8 are connected by a first channel 11 formed on one surface of the main body 10a.
  • a third well 2 and a second well 3 are formed along the first channel 11 in the main body 10a, and the third well 2 has an extract solution for extracting bacteria and ATP in bacteria.
  • the second well 3 is designed to contain a luminescent solution that emits light in the presence of ATP in bacteria.
  • the third well 2 is connected to the extract introduction portion 31a of the first channel 11 by the third channel 12, and the second well 3 is connected to the reaction field 8 by the second channel.
  • the third channel 12 and the second channel 13 are both formed on one surface of the main body 10a.
  • the reaction field 8 is arranged downstream of the extract introduction part 31a. Therefore, when the sample liquid is sent to the reaction field 8 through the first channel 11, the extract is sent from the third well 2 to the third channel 12, and the light is emitted from the second well 3 to the second channel 13.
  • the liquid is sent.
  • the sent extract solution and luminescent solution are mixed with the detection solution in the first channel 11 to perform a desired reaction.
  • Reference numeral 8 also serves as a luminescent liquid introduction part 31b.
  • FIG. 2 is a partial cross-sectional view of the main body 10a along the thickness direction.
  • the cross-sectional shape of the first channel 11 is rectangular, and the channel width d of the first channel 11 is 1 mm or less.
  • the “channel width” means a length in a direction perpendicular to the thickness direction of the main body.
  • the cross-sectional shape of the first channel 11 is quadrangular, it refers to the horizontal length, and when it is trapezoidal or triangular, it refers to the longest length in the direction. In the case of a circular or semicircular shape, the length of the diameter is used.
  • the cross-sectional shapes of the third channel 12 and the second channel 13 are the same as those of the first channel 11, and the channel width is the same as that of the first channel 11.
  • the first level 1, the third level 2 and the second level 3 are holes formed along the direction perpendicular to the surface force so that the sample liquid, the extract liquid and the luminescent liquid can be accommodated.
  • a cavity 35 is formed in the main body 10a on the opposite side to the first well 1 with respect to the reaction field 8.
  • the cavity 35 has an air vent 36 extending to the edge of the main body 10a.
  • a light detecting means (not shown!) Is arranged adjacent to the reaction field 8.
  • the above-described cover 10b is provided so as to seal the third well 2, the second well 3, the first channel 11, the third channel 12, and the second channel 13.
  • the cover 10b is preferably transparent. In this case, it is convenient to visually check whether or not the liquid in each of the wells 1, 2, and 3 has been introduced into the first channel 11.
  • the main body 10a is covered with the cover 10b while the third well 2 contains the extract and the second well 3 contains the luminescent liquid.
  • the portion of the hollow portion 35 is pressed with a finger to release air from the space of the hollow portion 35 through the air vent hole 36 and close the air vent hole 36 by some method. If you lift your finger after dropping the sample liquid in the first well 1, the space in the cavity 35 becomes negative pressure, so the sample liquid in the first well 1, the extracted liquid in the third well 2, and the second well 3 The luminescent liquid is drawn into the cavity 35.
  • the sample The effluent is mixed at the extract inlet 31a, and bacterial ATP is extracted from the bacteria in the sample liquid. Then, the mixture and the luminescent solution are mixed at the luminescent solution inlet 3 lb, and the bacterial ATP is Reacts with the luminescent liquid to emit light. This light emission is detected by light detection means (not shown).
  • the sorting operation as in the related art is not required, and there is an effect that convenience is increased. That is, in the microchannel chip 10, the first well 1 containing the sample solution and the reaction field 8 are connected by the first channel 11, so that the sample solution is sent to the reaction field 8 in a few seconds. Since the third channel 12 and the second channel 13 are connected to the first channel 11, when the sample solution is sent from the first well 1 to the reaction chamber 8, it is stored in the third well 2. The extracted liquid and the luminescent liquid contained in the second well 3 can be sequentially sent to the first channel 11, and each is mixed in the first channel 11 to efficiently react with the sample liquid. Can do well.
  • the channel width d of the first channel 11 is 1 mm or less
  • the channel width d of the third and second channels 12 and 13 is 1 mm or less.
  • the channel width d is more preferably 0.1 to 500 m.
  • the main body 10a is hermetically sealed by the cover 10b, so that the invasion of bacteria from the outside is sufficiently suppressed. Therefore, it is extremely convenient because it does not require inspection in a clean environment or strict disinfection as in the past.
  • the light detecting means known means can be used, and for example, a CCD, a photodiode, or a photomultiplier tube can be used.
  • the light detecting means detects light generated by the reaction of ATP in bacteria with the luminescent solution in the reaction field 8. Therefore, the installation position of the light detection means is not particularly limited, but is preferably installed near the reaction field 8. In addition, it is also possible to install in the main body 10a of the microchannel chip 10.
  • bacteria contained in the sample liquid include, but are not particularly limited to, bacteria that may cause food poisoning (eg, Vibrio parahaemolyticus, Salmonella, Staphylococcus aureus, Bacillus cereus or Bacillus pylobacter).
  • the component contained in the extract may be any component capable of extracting ATP in bacteria, and may be lysozyme, a mixture of ethanol and ammonia, methanol, ethanol, a surfactant (benzetonium chloride, benzalco-chloride). Plum, Triton X-100, etc.), trichloroacetic acid, perchloric acid, phage, antibiotics and the like.
  • the component contained in the luminescent solution may be any component that emits light in the presence of ATP, and examples thereof include luciferase and luciferin.
  • sample liquid, extract liquid and luminescent liquid may be a suspension or emulsion as long as they are liquid.
  • FIGS. 3A and 3B are cross-sectional views showing the first, third, and second aspects of the first channel 11, the third channel 12, and the second channel 13.
  • FIG. 3A is cross-sectional views showing the first, third, and second aspects of the first channel 11, the third channel 12, and the second channel 13.
  • the channel 21a according to the second embodiment shown in Fig. 3A is a flow path formed by laminating two base materials. That is, a groove is provided in a lower portion of one base material 23a and an upper portion of the other base material 23b, and the channels 21a are formed by bonding.
  • the channel 21b according to the third embodiment shown in FIG. 3B is formed by laminating three base materials. That is, a channel 21b is formed by providing a through groove in the base material 24b as an intermediate layer, and laminating the base materials 24a and 24c on the upper and lower portions so as to sandwich the base material 24b.
  • the channel 21a and the channel 21b correspond to the first channel 11, the third channel 12, and the second channel 13, respectively.
  • These substrates 23a, 23b, 24a-24c can be arbitrarily determined, and may be glass such as quartz glass or Pyrex (registered trademark) glass, polymers such as PDMS, polycarbonate or polyimide, iron, stainless steel, and aluminum. Metal such as nickel, copper or the like, or silicon or the like can be used. When laminating, the respective substrates may be of the same type or different types.
  • the channel width of the first channel 11 is 1 mm or less, and the channel width of the third channel 12 and the second channel 13 is 1 mm or less.
  • the channel width is within the above range, when the sample solution, the extract solution, and the luminescent solution are mixed in the channel, the contact surface area per unit volume increases, and thus the reaction may be promoted. it can. That is, diffusion takes place in a very short time, and as a result, the reaction Can be performed instantaneously.
  • the channel width exceeds lmm, the diffusion control cannot be sufficiently reduced, so that the object of the present invention cannot be achieved. More preferably, the channel width is 0.1-500 / zm.
  • the microchannel chip 10 is configured such that the force of storing the extract in the third well 2 and the luminescent liquid in the second well 3 can be reversed. To use it.
  • the luminescent liquid is sent from the third well 2 through the third channel 12, and further, the second well 3 Similarly, when the extract is sent through the second channel 13, the sample liquid of the first well 1 is sent to the reaction field 8 through the first channel 11, and the third well 2 A mixed liquid of the extract and the luminescent liquid may be sent through the flow passage 12.
  • the extract is a solution for extracting ATP in bacteria, it does not react when mixed with a luminescent solution containing no bacteria, but the luminescent solution emits light in the presence of ATP. This is because the reaction solution does not contain ATP and does not react even when mixed with the extract.
  • the ATP in bacteria can be extracted from the sample liquid and emit light at the same time.
  • the extract solution and the luminescent solution are mixed and then mixed with the sample solution, the number of wells and the number of channels can be reduced, and the bacteria detection device can be simplified.
  • FIG. 4 to FIG. 10 are schematic diagrams showing a bacterium detection device according to the eleventh embodiment
  • FIG. 11 is a schematic diagram showing an bacterium detection device according to an eighth embodiment of the present invention.
  • FIG. 5 is a schematic view showing a second embodiment of the bacteria detection device according to the present invention.
  • FIG. 5 shows a mode in which the first channel 11 of the microchannel chip 10 according to the first embodiment is branched into the first channel 11 and the channel l ib, one of which is similar to the first embodiment, while the other is
  • the fuel cell system includes a well 2b, a well 3b, and a reaction field 8, and the well 2b and the channel l ib are connected by a channel 12b, and the well 3b and a channel l ib are connected by a channel 13b.
  • the bottle 2b contains a specific extract for extracting bacterial ATP from a specific bacterium
  • the bottle 3b contains a luminescent solution for emitting bacterial ATP. Therefore, on the one hand, it is possible to detect bacteria contained in the sample solution, and on the other hand, it is possible to detect specific bacteria contained in the sample solution. it can.
  • FIG. 6 is a schematic diagram showing a third embodiment of the bacteria detection device according to the present invention.
  • FIG. 6 shows a mode in which the first channel 11 of the microchannel chip according to the first embodiment is branched into the first channel 11 and the channel 11c, one of which is similar to that of the first embodiment, and the other of which is a well 3c.
  • a reaction field 8 is provided, and the cell 3c and the channel 11c are connected by a channel 13c.
  • Lulu 3c contains a luminescent solution that emits ATP in bacteria. Therefore, on the one hand, bacteria contained in the sample solution can be detected, and on the other hand, free ATP contained in the sample solution can be detected, and the measurement accuracy can be improved.
  • FIG. 7 is a schematic diagram showing a fourth embodiment of the bacteria detection device according to the present invention.
  • FIG. 7 shows the microchannel chip according to the first embodiment, which is provided with a fourth well 4 and a fifth well 5, and the fourth well 4 has a removing liquid force for removing free ATP.
  • the fourth well 4 is the most upstream and is connected by the first channel 11 and the fourth channel 14, and the fifth well 5 is located downstream of the fourth well 4 and upstream of the third well 2.
  • 11 and 5th channel 15 are connected. Therefore, when the sample solution is sent to the reaction field 8 through the first channel 11 and the removing solution is sent through the fourth channel 14 and the fourth channel 14, the sample solution is released, which reduces the measurement accuracy.
  • ATP can be removed, and when the inactive solution is sent from the fifth well 5 through the fifth channel 15, the excess removing solution can be inactivated. That is, free ATP can be removed and ATP in bacteria can be accurately detected, so that measurement
  • Examples of the components contained in the removing solution include adenosine phosphate deaminase, avirase, alkaline phosphatase, acid phosphatase, hexokinase, and adenosine triphosphatase.
  • Examples of the components contained in the inert solution include coformycin, EDTA, dithiothreitol, ammonium sulfate, HEPES, MES, and Tricine.
  • FIG. 8 is a schematic diagram showing a fifth embodiment of the bacteria detection device according to the present invention.
  • FIG. 8 includes a sixth well 6 in addition to the microchannel chip according to the first embodiment, and the sixth well 6 contains an amplification solution for amplifying ATP in bacteria.
  • the sixth well 6 is connected upstream of the third well 2 by the first channel 11 and the sixth channel 16. Therefore, When a body fluid is sent to the reaction field 8 through the first channel 11 and the amplification solution is sent from the sixth well 6 through the sixth channel 16, the amount of ATP in bacteria can be increased. In other words, even a minute amount of bacteria or bacteria having poor nutritional status can be made to remarkably emit light, and since these bacteria can be detected, measurement accuracy can be improved.
  • the order of sending the third well 2 extract and the second well 3 luminescent solution may be different.
  • the components contained in the amplification solution are not particularly limited !, but are adenylate kinase, polyphosphate kinase, polyphosphate, adenosine monophosphate, pyruvate orthophosphate dikinase, phosphoenolpyruvate, and pyrroline. Acids and magnesium ions are exemplified.
  • FIG. 9 is a schematic diagram showing a sixth embodiment of the bacteria detection device according to the present invention.
  • FIG. 9 shows a microchannel chip provided with fourth and fourth wells 4 and 5 according to the fourth embodiment and sixth well 6 according to the fifth embodiment. Therefore, since ATP in bacteria can be amplified at the same time as free ATP can be removed, measurement accuracy can be improved. Care must be taken in the order of the flow. That is, in order not to amplify the free ATP, it is necessary to remove the free ATP, inactivate the removing solution, and then send the amplification solution, the extract solution, and the luminescent solution.
  • FIG. 10 is a schematic view showing a seventh embodiment of the bacteria detection device according to the present invention.
  • FIG. 10 includes a seventh well 7 in addition to the microchannel chip according to the first embodiment, and the seventh well 7 contains a decomposition solution for decomposing bacterial flocs. Further, the seventh well 7 is connected to the first channel 11 and the seventh channel 17 on the upstream side of the third well 2. Therefore, when the sample solution is sent to the reaction field 8 through the first channel 11 and the digestion solution is sent through the seventh channel 7 to the seventh channel 17, the bacterial floc can be decomposed. Since the bacterial flocs can be dispersed, the contact efficiency between the bacteria and the extract can be increased, and the extraction reaction can be promoted.
  • the components contained in the decomposition solution are not particularly limited !, but include Tris-Hcl, HEPES, PBS, MES, Tricine and the like.
  • FIG. 11 is a schematic diagram showing an eighth embodiment of the bacteria detection device according to the present invention.
  • Figure 11 shows When the sample liquid is introduced into the first well 1 containing the sample liquid, the first to fifth paths A to E are sent and the individual liquids can be individually detected.
  • the introduced sample solution removes insoluble components through a filter 30 and then mixes with a removing solution to remove free ATP, and further mixes with an inactivating solution to inactivate excess removing solution. .
  • the floc of the bacteria is dispersed with the decomposition solution. The mixture thus obtained is branched to the first to fifth paths A to E.
  • the ATP in the bacterium is extracted and amplified by the amplifying solution and the extract, the luminescence is emitted by the luminescent solution, and the bacterium can be detected by the light detecting means 8a.
  • the bacterial ATP of the specific bacterium A is extracted and amplified by the amplifying solution and the specific extract A, and the luminescence is emitted by the luminescent solution.
  • the third route C it is possible to extract and amplify ATP in the bacterium of the specific bacterium B with the amplification solution and the specific extract B, emit the luminescence with the luminescent solution, and detect the bacterium B with the light detection means 8a.
  • the bacteria detection device of the present invention is not limited to the above embodiment.
  • a negative pressure portion is formed in the hollow portion 35 by pressing the cover 10b with a finger, whereby the liquid from each well is introduced into the first channel 11.
  • the cover 10b, the cavity 35, and the air vent 36 constitute the transfer means, but the bacteria detection device of the present invention may use a valve, a pump, or the like as the transfer means. Even in such a case, it is possible to collectively and surely and easily introduce the liquids of each pneumatic force into the first channel. It is also useful to provide a check valve. These can be installed in a microchannel chip.
  • the bacteria detection device of the present invention includes a heating means for heating the first channel 11, an electric field applying means for applying an electric field to the first channel 11, and an ultrasonic wave application for applying an ultrasonic wave to the first channel 11. It is preferable to provide at least one or more of the means.
  • the bacteria detection device When the bacteria detection device is provided with these means, ATP in bacteria can be extracted from bacteria by these means instead of the extract. Therefore, since the third well is not required, the structure of the device can be further simplified. These can be applied not only to the extraction reaction, but also to the reaction for emitting light. Also, a plurality of these means can be installed in parallel, and can be installed in a microchannel chip.
  • the first channel may further include temperature control means for controlling the temperature of at least one portion downstream of the removing solution introduction portion to 50 ° C or more to inactivate the ATP removing agent.
  • temperature control means for controlling the temperature of at least one portion downstream of the removing solution introduction portion to 50 ° C or more to inactivate the ATP removing agent.
  • the extraction liquid and the luminescent liquid are stored in the third and second wells, respectively. It is preferable that the liquid is stored. If the extract solution and the luminescent solution are stored in advance, bacteria can be detected simply by introducing the sample solution into the first well, and measurement with high detection accuracy can be easily performed regardless of the environment. Furthermore, a removing solution, an inactivating solution, an amplifying solution, and a decomposing solution can be stored in advance as necessary.
  • the temperature control means can be provided so as to sandwich the microchannel chip from above and below with a heater block, and a temperature sensor is electrically connected to the heater block. Then, the temperature of the heater block is controlled based on the temperature obtained by the temperature sensor.
  • the reaction rate can be further increased by setting the temperature at an optimum value for the extract, the luminescent liquid, etc., and furthermore, the reaction can be stabilized by maintaining the temperature at that value. it can.
  • the microchannel chip is preferably frozen and stored by a freezer (temperature control means) or the like. If stored frozen, bacteria can be stored for a long period of time without multiplying or inactivating bacteria. Also, frozen microchannel chips can be used by thawing.
  • the bacteria detection device and the bacteria detection method of the present invention can easily detect bacteria in a sufficiently short time, they can be particularly applied to the food industry and the like when a bacteria detection test is required for many commodities.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Wood Science & Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Plasma & Fusion (AREA)
  • Biophysics (AREA)
  • Toxicology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Microbiology (AREA)
  • Genetics & Genomics (AREA)
  • Optics & Photonics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

A method of microbe detection, comprising, in microchannel chip (10) having channel (11) of ≤1 mm width (d), mixing a microbe-containing analyte solution with a luminescence solution capable of emitting light in the presence of microbial ATP in the channel (11); extracting microbial ATP from the microbe of the analyte solution by extraction means and causing the luminescence solution to emit light in the presence of the microbial ATP; and detecting the light emitted. Thus, there can be provided a method of microbe detection and microbe detector by which microbe detection can be performed easily within a satisfactorily short period of time.

Description

明 細 書  Specification
細菌検出装置及び細菌検出方法  Bacteria detection device and bacteria detection method
技術分野  Technical field
[0001] 本発明は、細菌検出装置及び細菌検出方法に関する。  The present invention relates to a bacteria detection device and a bacteria detection method.
背景技術  Background art
[0002] 細菌の検出方法として、細菌内の ATPを界面活性剤やエレクト口ポレーシヨン法な どを用いて抽出(Lysis工程)し、これにルシフェラーゼ等の酵素をカ卩えることにより発 生する蛍光を、 CCDやフォトダイオードなどで受光して計測することにより細菌の有 無を検出する方法が知られている (例えば下記特許文献 1参照)。  [0002] As a method for detecting bacteria, ATP in bacteria is extracted (Lysis step) using a surfactant or an electoporation method or the like, and the fluorescent light generated by removing enzymes such as luciferase therefrom is extracted. There is known a method of detecting the presence or absence of bacteria by receiving and measuring the light with a CCD or a photodiode (for example, see Patent Document 1 below).
[0003] 従来は、この一連の反応を、試験管などの中で進行させて 、た。この方法は細菌の 検出方法としては、一般的な細菌検出法である培養法に比べ、培地を作成する必要 が無く手軽で、且つ迅速に検出結果を得られるという利点を有する。  [0003] Conventionally, this series of reactions has been performed in a test tube or the like. This method has an advantage that the detection result can be obtained easily and quickly without the necessity of preparing a medium, as compared with a culture method which is a general method for detecting bacteria.
特許文献 1:特開 2000-189197号公報  Patent Document 1: JP-A-2000-189197
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0004] し力しながら、前述した特許文献 1に記載の細菌検出方法は、以下に示す課題を 有していた。 [0004] However, the method for detecting bacteria described in Patent Document 1 described above has the following problems.
[0005] 即ち上記細菌検出方法では、反応時間が長ぐ検出に数時間を必要とするという 問題がある。このような問題は特に多くの商品に対し細菌検出試験を要する食品業 界等にお 、ては深刻な問題であり、例えば新鮮な商品を迅速に出荷することができ ないという不具合があった。  [0005] In other words, the above-described method for detecting bacteria has a problem that several hours are required for detection where the reaction time is long. Such a problem is particularly serious in the food industry, which requires a bacteria detection test for many products, and for example, there has been a problem that fresh products cannot be shipped quickly.
[0006] また、上記細菌検出方法では、遊離 ATPを除去するアビラーゼなどの成分、アビラ ーゼを不活性化する成分、 ATPと反応して発光するルシフェラーゼなどの成分、細 菌のフロックを分散する成分、細菌の細胞壁を壊す成分、その他必要な成分などを 別に試薬瓶などに用意する必要があり、それぞれの試薬瓶から、マイクロシリンジな どを用いて規定量を分取し、サンプル管内に別々に滴下する必要があり、作業が極 めて煩雑である。 [0007] 本発明は、上記事情に鑑みてなされたものであり、細菌を十分に短時間で簡単に 検出できる細菌検出装置及び細菌検出方法を提供することを目的とする。 [0006] Further, in the above bacterial detection method, a component such as avirase that removes free ATP, a component that inactivates avirase, a component such as luciferase that emits light by reacting with ATP, and bacterial flocs are dispersed. It is necessary to prepare components, components that break the cell wall of bacteria, and other necessary components separately in reagent bottles, etc.A prescribed amount is collected from each reagent bottle using a microsyringe, etc., and separated into sample tubes. The operation is extremely complicated. [0007] The present invention has been made in view of the above circumstances, and has as its object to provide a bacteria detection device and a bacteria detection method capable of easily detecting bacteria in a sufficiently short time.
課題を解決するための手段  Means for solving the problem
[0008] 本発明者らは、上記課題を解決するため鋭意検討した結果、上記のように細菌の 検出に長時間が力かるの力 フラスコ等の反応容器で行われることに起因するので はないかと考えた。即ち本発明者らは、上記のような反応容器では、細菌内 ATPとル シフェラーゼとの接触確率が不十分であることにより発光反応のスピードが遅くなり、 細菌の検出に長時間が力かるのではないかと考えた。そして、本発明者らは鋭意研 究を重ねた結果、以下の発明により上記課題を解決し得ることを見出した。  [0008] The inventors of the present invention have conducted intensive studies to solve the above-mentioned problems, and as a result, it is not caused by the fact that the detection of bacteria is performed in a reaction vessel such as a force flask which requires a long time to detect bacteria as described above. I thought. In other words, the present inventors have found that in the above-described reaction vessel, the speed of the luminescence reaction is reduced due to insufficient contact probability between ATP in the bacterium and luciferase, and the detection of the bacterium takes a long time. I thought it might be. As a result of intensive studies, the present inventors have found that the above-mentioned problems can be solved by the following invention.
[0009] 即ち本発明は、細菌を含む検体液を収容するための第 1ゥエル、細菌内 ATPの存 在下で発光する発光液を収容するための第 2ゥエル、細菌内 ATPと発光液とを接触 させる発光部、第 1ゥエルと発光部とを接続し、発光液導入部を有する第 1チャネル、 発光液導入部と第 2ゥエルとを接続する第 2チャネルを有するマイクロチャネルチップ と、細菌力 細菌内 ATPを抽出させる抽出手段と、細菌内 ATPと発光液との接触に より生じる光を検出する光検出手段と、第 1ゥエルに収容される液体を発光部に移送 させ、第 2ゥヱルに収容される液体を第 1チャネルに移送させるための移送手段と、を 備えており、且つ第 1チャネルのチャネル幅が lmm以下である細菌検出装置 (第 1 の細菌検出装置)である。  [0009] That is, the present invention relates to a first well for containing a sample solution containing bacteria, a second well for containing a luminescent solution that emits light in the presence of ATP in bacteria, and a method for containing ATP in bacteria and a luminescent solution. A microchannel chip having a light emitting section to be brought into contact, a first channel connecting the first well and the light emitting section and having a luminescent liquid introducing section, a microchannel chip having a second channel connecting the luminescent liquid introducing section and the second well, and a bacterial force Extraction means for extracting ATP in bacteria, light detection means for detecting light generated by contact of ATP in bacteria with luminescent liquid, and transfer of liquid contained in the first well to the light emitting part, and transfer to the second well Transfer means for transferring the contained liquid to the first channel, and wherein the channel width of the first channel is 1 mm or less (a first bacteria detection device).
[0010] このような構造を有する第 1の細菌検出装置は、従来技術のような分取作業が不要 となり、利便性が増すという効果を有する。すなわち、マイクロチャネルチップ内にお いて、検体液を収容する第 1ゥエルと発光部とが第 1チャネルで接続されているため、 検体液を数秒で発光部に送流することができ、第 2チャネルが第 1チャネルに接続さ れているため、移送手段により第 1ゥエルに収容される液体を発光部に移送させると、 検体液が第 1ゥエルから発光部に送流される際に、第 2ゥエルに収容される発光液を 順次第 1チャネルに送流することができ、それぞれを第 1チャネル内で混合させること ができる。  [0010] The first bacteria detection device having such a structure does not require a sorting operation as in the related art, and has an effect of increasing convenience. That is, in the microchannel chip, since the first well containing the sample liquid and the light emitting section are connected by the first channel, the sample liquid can be sent to the light emitting section in a few seconds, and the second Since the channel is connected to the first channel, when the liquid contained in the first well is transferred to the light emitting unit by the transfer means, when the sample liquid is sent from the first well to the light emitting unit, the second liquid flows. The luminescent liquid contained in the well can be sequentially sent to the first channel, and each can be mixed in the first channel.
[0011] また、上記第 1の細菌検出装置は、細菌力 細菌内 ATPを抽出させる抽出手段を 備えているため、検体液に含まれる細菌内 ATPを抽出することができ、検体液に含 まれる細菌内 ATPと発光液との反応を効率よく行うことができる。 [0011] In addition, since the first bacteria detection device is provided with an extraction means for extracting bacterial force ATP in bacteria, it can extract ATP in bacteria contained in the sample solution and can extract ATP in the sample solution. The reaction between the bacterial ATP and the luminescent solution can be performed efficiently.
[0012] また、上記第 1の細菌検出装置は、ゥエル中の液体を発光部に移送させる移送手 段を備える。この場合、移送手段により、ゥヱルカもの液体を確実に第 1チャネルに導 人することができる。 [0012] Further, the first bacteria detection device includes a transfer means for transferring the liquid in the well to the light emitting unit. In this case, the liquid can be reliably guided to the first channel by the transfer means.
[0013] 更に、第 1チャネルのチャネル幅が lmm以下であるため、検体液及び発光液が混 合すると、拡散が極めて短時間で行われることになり、細菌力 細菌内 ATPが抽出さ れることにより、反応を瞬時に行うことができる。その結果、従来は最速でも 1一 2時間 要して 、た細菌の検出を数秒で行うことができるようになる。  [0013] Furthermore, since the channel width of the first channel is 1 mm or less, when the sample liquid and the luminescent liquid are mixed, diffusion takes place in a very short time, and bacterial power and ATP in the bacteria are extracted. Thereby, the reaction can be performed instantaneously. As a result, bacteria can be detected in a matter of seconds in the past, requiring at most one or two hours.
[0014] また、第 2の細菌検出装置は、上記第 1の細菌検出装置において、第 1チャネルが 、細菌力 細菌内 ATPを抽出させる抽出液が導入される抽出液導入部を有し、抽出 手段が、マイクロチャネルチップに含まれ、且つ抽出液を収容するための第 3ゥエルと 、抽出液導入部と第 3ゥエルとを接続する第 3チャネルと、を備えており、且つ移送手 段力 第 1ゥエルに収容される液体を発光部に移送させ、第 3ゥエルに収容される液 体を第 1チャネルに移送させることが可能となっているものであることが好ましい。  [0014] Further, the second bacteria detection device is the same as the first bacteria detection device, wherein the first channel has an extract introduction portion into which an extract for extracting ATP in the bacterial force and bacteria is introduced. The means includes a third well contained in the microchannel chip and containing the extract, and a third channel connecting the extract introducing section and the third well, and the transfer means has It is preferable that the liquid contained in the first well can be transferred to the light emitting unit, and the liquid contained in the third well can be transferred to the first channel.
[0015] すなわち、上記第 2の細菌検出装置は、細菌を含む検体液を収容するための第 1 ゥエル、細菌力 細菌内 ATPを抽出させる抽出液を収容するための第 3ゥエル、細菌 内 ATPの存在下で発光する発光液を収容するための第 2ゥエル、細菌内 ATPと発 光液とを接触させる発光部、第 1ゥエルと発光部とを接続する第 1チャネル、第 1チヤ ネルの抽出液導入部と第 3ゥエルとを接続する第 3チャネル、及び、第 1チャネルの抽 出液導入部よりも下流側の発光液導入部と第 2ゥエルとを接続する第 2チャネルを有 するマイクロチャネルチップと、細菌内 ATPと発光液との接触により生じる光を検出 する光検出手段と、第 1ゥエルに収容される液体を発光部に移送させ、第 2、第 3ゥ ルに収容される液体を第 1チャネルに移送させるための移送手段とを備えており、且 つ、第 1チャネルのチャネル幅が lmm以下であることが好ましい。  [0015] That is, the second bacterium detection device comprises a first well for containing a sample liquid containing bacteria, a third well for containing an extract for extracting bacterial force and ATP in bacteria, and a second ATP for bacteria. A second well for containing a luminescent solution that emits light in the presence of a luminescent solution, a light emitting unit that makes ATP in bacteria contact with the luminescent solution, a first channel that connects the first well and the light emitting unit, and a first channel. It has a third channel connecting the extraction liquid introduction part and the third well, and a second channel connecting the luminescence liquid introduction part downstream of the extraction liquid introduction part of the first channel and the second well. A microchannel chip, light detecting means for detecting light generated by contact between ATP in bacteria and a luminescent liquid, and a liquid contained in a first well are transferred to a light emitting section, and contained in a second and third well. Transfer means for transferring the liquid to the first channel. Preferably, the channel width of the first channel is 1 mm or less.
[0016] このような構造を有する第 2の細菌検出装置は、従来技術のような分取作業が不要 となり、利便性が増すという効果を有する。すなわち、マイクロチャネルチップ内にお いて、検体液を収容する第 1ゥエルと発光部とが第 1チャネルで接続されているため、 移送手段により第 1ゥエルに収容される液体を発光部に移送させると、検体液を数秒 で発光部に送流することができる。また、このとき、第 2チャネル及び第 3チャネルが 第 1チャネルに接続されているため、検体液が第 1ゥエル力 発光部に送流される際 に、第 3ゥエルに収容される抽出液と第 2ゥエルに収容される発光液とを順次第 1チヤ ネルに送流することができ、それぞれが第 1チャネル内で混合される。これにより、検 体液と抽出液及び発光液との反応を効率よく行うことができる。すなわち、移送手段 により第 1ゥヱル内の検体液、第 2ゥヱル内の発光液及び第 3ゥエル内の抽出液を一 括して混合させることがでさる。 [0016] The second bacteria detection device having such a structure does not require a sorting operation as in the conventional art, and has an effect of increasing convenience. That is, since the first well containing the sample liquid and the light emitting unit are connected by the first channel in the microchannel chip, the liquid contained in the first well is transferred to the light emitting unit by the transfer means. And sample fluid for several seconds Can be sent to the light emitting section. Also, at this time, since the second channel and the third channel are connected to the first channel, when the sample liquid is sent to the first well power emitting unit, the extract contained in the third well and the second well are connected. The luminescent liquid contained in the 2-well can be sequentially sent to the first channel, and each is mixed in the first channel. Thereby, the reaction between the test solution, the extract solution, and the luminescent solution can be efficiently performed. That is, the sample solution in the first well, the luminescent solution in the second well, and the extract in the third well can be mixed together by the transfer means.
[0017] また、上記第 2の細菌検出装置は、ゥエル中の液体を発光部に移送させる移送手 段を備える。この場合、移送手段により、各ゥエル力もの液体を一括して且つ確実に 第 1チャネルに導入することができる。  [0017] Further, the second bacteria detection device includes a transfer means for transferring the liquid in the well to the light emitting unit. In this case, the transfer means can collectively and surely introduce the liquids of each pneumatic force into the first channel.
[0018] 更に、第 1チャネルのチャネル幅が lmm以下であるため、検体液と抽出液及び発 光液が混合すると、拡散が極めて短時間で行われることになり、この結果、反応を瞬 時に行うことができる。その結果、従来は最速でも 1一 2時間要していた細菌の検出を 数秒で行うことができるようになる。  [0018] Furthermore, since the channel width of the first channel is 1 mm or less, when the sample solution, the extract solution, and the luminescent solution are mixed, diffusion takes place in a very short time, and as a result, the reaction is instantaneously performed. It can be carried out. As a result, bacteria can be detected in seconds, which used to take up to one and a half hours.
[0019] また、第 3の細菌検出装置は、上記第 2の細菌検査装置において、第 1チャネルが 、ATP除去剤を含む除去液が導入される除去液導入部及び ATP除去剤を不活性 ィ匕させる不活性化剤を含む不活性ィ匕液が導入される不活性ィ匕液導入部を更に有し 、マイクロチャネルチップ力 除去液を収容するための第 4ゥエルと、不活性化液を収 容するための第 5ゥエルと、除去液導入部と第 4ゥエルとを接続する第 4チャネルと、 不活性化液導入部と第 5ゥエルとを接続する第 5チャネルと、を更に備えており、第 1 チャネルにおいて、除去液導入部が抽出液導入部よりも上流側に設けられており、 不活性化液導入部が除去液導入部の下流側であって抽出液導入部の上流側に設 けられており、且つ、移送手段が第 4及び第 5ゥエルに収容される液体を第 1チャネル に移送することが可能となっているものであることが好ましい。ここで、「上流側」とは、 上記第 1チャネル上の第 1ゥエル側をいい、「下流側」とは、第 1チャネル上の発光部 側をいう。  [0019] Further, in the third bacterium detection device, in the second bacterium testing device, the first channel is configured such that the first channel has an inactive portion for introducing a removing solution containing an ATP removing agent and an inactive ATP removing agent. A dehydrating liquid introducing portion into which an inactivating liquid containing an inactivating agent to be deactivated is introduced, and a fourth well for containing a microchannel chip force removing liquid; The apparatus further includes a fifth well for storing, a fourth channel connecting the removing solution introduction part to the fourth well, and a fifth channel connecting the deactivating liquid introduction part to the fifth well. In the first channel, the removing liquid introduction section is provided upstream of the extraction liquid introduction section, and the inactivating liquid introduction section is downstream of the removal liquid introduction section and upstream of the extraction liquid introduction section. And the transfer means transfers the liquid contained in the fourth and fifth wells to the first well. Preferably, it can be transferred to a channel. Here, the “upstream side” refers to the first well side on the first channel, and the “downstream side” refers to the light emitting unit side on the first channel.
[0020] この場合、遊離 ATPを除去させる除去液が、第 4ゥエルから第 4チャネル及び除去 液導入部を経て第 1チャネルに導入されることにより、第 1チャネル内の遊離 ATPが 除去される。このため、遊離 ATPによるノイズ光を除去して細菌内 ATPによる光のみ を検出することができ、細菌内 ATPの測定精度を高めることができる。 [0020] In this case, the removing solution for removing free ATP is introduced from the fourth well into the first channel via the fourth channel and the removing solution introducing portion, whereby free ATP in the first channel is removed. Removed. For this reason, noise light due to free ATP can be removed and only light due to bacterial ATP can be detected, and the measurement accuracy of bacterial ATP can be improved.
[0021] 更に、除去液が第 1チャネルに導入されていつまでも残存していると、細菌内 ATP が除去剤により破壊されるおそれがある。この発明によれば、不活性化剤が第 5チヤ ネル及び不活性ィ匕液導入部を経て第 1チャネルに導入され、除去液が不活性ィ匕液 により不活性ィ匕されるため、除去液による細胞内 ATPの破壊が十分に防止される。こ のため、細胞内 ATPを的確に求めることができる。  [0021] Furthermore, if the removing solution is introduced into the first channel and remains forever, ATP in bacteria may be destroyed by the removing agent. According to the present invention, the deactivating agent is introduced into the first channel via the fifth channel and the deactivating liquid introduction part, and the removing liquid is deactivated by the deactivating liquid. The destruction of intracellular ATP by the liquid is sufficiently prevented. Therefore, intracellular ATP can be accurately determined.
[0022] また、除去液導入部が抽出液導入部よりも上流側に設けられ、不活性化液導入部 が抽出液導入部よりも上流側であって、除去液導入部よりも下流側に設けられて 、る ため、検出液内の細菌の量が微量であっても、上記のように細胞内 ATPの測定精度 が高い場合にも、誤差を十分に小さく抑えることができる。  [0022] Further, the removing liquid introducing section is provided upstream of the extracting liquid introducing section, and the inactivating liquid introducing section is upstream of the extracting liquid introducing section and downstream of the removing liquid introducing section. Therefore, even if the amount of bacteria in the detection solution is very small, the error can be sufficiently suppressed even when the intracellular ATP measurement accuracy is high as described above.
[0023] 更に、この場合において、移送手段が第 4及び第 5ゥエルに収容される液体も第 1 チャネル移送することが可能となっている。したがって、第 1一第 5ゥエルに収容され る液体は、この移送手段により、各ゥエルからの液体を一括して且つ確実に第 1チヤ ネルに導入することができる。  Further, in this case, the transfer means can also transfer the liquid contained in the fourth and fifth wells to the first channel. Therefore, the liquid contained in the first to fifth wells can be collectively and surely introduced into the first channel by the transfer means.
[0024] 更にまた、上記第 2の細菌検出装置の第 1チャネルにおいて、除去液導入部より下 流側の少なくとも 1部の温度を 50°C以上に制御して ATP除去剤を不活性ィ匕させる温 度制御手段を更に備えることが好まし 、。  [0024] Furthermore, in the first channel of the second bacterium detection device, the temperature of at least one part downstream of the removal liquid introduction part is controlled to 50 ° C or more to inactivate the ATP removing agent. It is preferable to further include temperature control means for causing the temperature to be reduced.
[0025] すなわち、第 4の細菌検出装置は、上記第 2の細菌検出装置において、第 1チヤネ ルが、 ATP除去剤を含む除去液が導入される除去液導入部を更に有し、マイクロチ ャネルチップ力 除去液を収容するための第 4ゥエルと、除去液導入部と第 4ゥエルと を接続する第 4チャネルと、除去液を温度 50°C以上に制御して ATP除去剤を不活 性化させる温度制御手段と、を更に備えており、第 1チャネルにおいて、除去液導入 部が抽出液導入部よりも上流側に設けられており、温度制御手段によって温度が制 御される温度制御部が除去液導入部の下流側であって抽出液導入部の上流側の部 分の温度を制御することが可能であり、且つ、移送手段が第 4ゥエルに収容される液 体を第 1チャネルに移送することが可能となっているものであることが好ましい。  [0025] That is, in the fourth bacterium detecting device, in the second bacterium detecting device, the first channel further includes a removing solution introducing portion into which a removing solution containing an ATP removing agent is introduced, and the microchannel chip Force 4th well for containing the removing solution, 4th channel connecting the 4th well with the removing solution inlet, and control the temperature of the removing solution to 50 ° C or higher to inactivate the ATP remover And a temperature control unit for controlling the temperature in the first channel, wherein the removal liquid introduction unit is provided upstream of the extraction liquid introduction unit in the first channel. It is possible to control the temperature of the downstream side of the removal liquid introduction section and the upstream side of the extraction liquid introduction section, and the transfer means transfers the liquid contained in the fourth well to the first channel. It should be one that can be transported .
[0026] この場合、不活性ィ匕液を第 1チャネルに導入せず温度を制御するだけで余分な除 去液を不活性ィ匕することができる。従って、不活性ィ匕液が不要となるため、不活性ィ匕 液を収容するためのゥエルや不活性ィ匕液を送流するためのチャネルを省くことができ 、マイクロチャネルチップの構造を簡素にすることができる。 [0026] In this case, the extra removal is performed only by controlling the temperature without introducing the inert inert liquid into the first channel. The removed liquid can be deactivated. Therefore, since the inactive dandelion liquid is not required, a well for storing the inactive danjiri liquid and a channel for sending the inactive danjiri liquid can be omitted, and the structure of the microchannel chip can be simplified. Can be
[0027] また、この温度制御手段は除去液導入部の下流側であって抽出液導入部の上流 側の部分 (以下「温度制御部」という。)の温度制御を行うことが好ましい。このように 温度制御することによって上述した不活性ィ匕液を第 1チャネルに導入した場合と同様 の効果を得ることができる。  [0027] Further, it is preferable that the temperature control means controls the temperature of a portion on the downstream side of the removal liquid introduction portion and on the upstream side of the extraction liquid introduction portion (hereinafter, referred to as "temperature control portion"). By controlling the temperature in this manner, it is possible to obtain the same effect as in the case where the above-described inert irrigation solution is introduced into the first channel.
[0028] 更に、移送手段により第 4ゥエルに収容される液体も第 4チャネル及び除去液導入 部を経て第 1チャネルに移送することが可能となっている。したがって、第 1一第 4ゥェ ルに収容される液体は、この移送手段により、各ゥヱルカ の液体を一括して且つ確 実に第 1チャネルに導入することができる。  [0028] Furthermore, the liquid contained in the fourth well by the transfer means can be transferred to the first channel via the fourth channel and the removal liquid introducing section. Therefore, the liquid contained in the first to fourth wells can be introduced into the first channel collectively and surely by the transfer means.
[0029] ここで、上記第 3の細菌検出装置のマイクロチャネルチップ力 細菌内 ATPを増幅 させる増幅液を収容するための第 6ゥエルと、第 1チャネルの増幅液導入部と第 6ゥェ ルとを接続する第 6チャネルとを更に備えており、増幅液導入部が不活性ィ匕液導入 部よりも下流側に設けられていることが好ましい。  Here, the sixth channel for accommodating the amplification solution for amplifying ATP in bacteria, the microchannel chip force of the third bacteria detection device, the amplification solution introduction section for the first channel, and the sixth well And a sixth channel connecting the amplifying liquid and the amplifying liquid introducing section is preferably provided downstream of the inactive irrigation liquid introducing section.
[0030] すなわち、第 5の細菌検出装置は、上記第 3の細菌検出装置の第 1チャネルが、細 菌内 ATPを増幅させる増幅液が導入される増幅液導入部を更に有し、マイクロチヤ ネルチップが、増幅液を収容するための第 6ゥエルと、増幅液導入部と第 6ゥエルとを 接続する第 6チャネルと、を更に備えており、第 1チャネルにおいて、増幅液導入部 が不活性ィヒ液導入部の下流側に設けられおり、且つ、移送手段が第 6ゥエルに収容 される液体を第 1チャネルに移送することが可能となっているものであることが好まし い。  That is, in the fifth bacterium detection device, the first channel of the third bacterium detection device further has an amplifying solution introduction part into which an amplifying solution for amplifying ATP in bacteria is introduced, and The channel chip further includes a sixth well for accommodating the amplification solution, and a sixth channel for connecting the sixth solution with the amplification solution introduction unit, wherein the amplification solution introduction unit is inactive in the first channel. It is preferable that the transfer means is provided on the downstream side of the liquid inlet, and the transfer means can transfer the liquid contained in the sixth well to the first channel.
[0031] この場合、遊離 ATPは除去液によって十分に除去され、遊離 ATPは増幅されない ので、測定精度を更に高めることができる。更に、第 6チャネル力 増幅液が第 6チヤ ネル及び増幅液導入部を経て第 1チャネルに導入されるため、発光し難い細菌(更 に微量の細菌や栄養状態が優れない細菌)であっても、増幅液により増幅されるため 、検出することが可能となる。 ATP増幅試薬としては例えば特開 2001— 299390号 公報で開示されて ヽるものが有る。 [0032] また、移送手段により第 6ゥエルに収容される液体も第 6チャネル及び増幅液導入 部を経て第 1チャネルに移送することが可能となっている。したがって、第 1一第 6ゥェ ルに収容される液体は、この移送手段により、各ゥヱルカ の液体を一括して且つ確 実に第 1チャネルに導入することができる。 [0031] In this case, free ATP is sufficiently removed by the removing solution, and free ATP is not amplified, so that the measurement accuracy can be further improved. Further, since the sixth channel power amplification solution is introduced into the first channel via the sixth channel and the amplification solution introduction part, it is difficult for bacteria to emit light (further minute bacteria or bacteria with poor nutritional status). Can also be detected because it is amplified by the amplification solution. ATP amplification reagents include those disclosed in, for example, JP-A-2001-299390. [0032] Further, the liquid contained in the sixth well by the transfer means can also be transferred to the first channel via the sixth channel and the amplification liquid introduction unit. Therefore, the liquid contained in the first to sixth wells can be introduced into the first channel collectively and surely by the transfer means.
[0033] 上記第 2— 5の細菌検出装置において、マイクロチャネルチップ力 細菌のフロック を分解させる分解液を収容する第 7ゥエルと、第 1チャネルの分解液導入部と第 7ゥェ ルとを接続する第 7チャネルとを更に備えており、分解液導入部が、抽出液導入部よ りも上流側に設けられて 、ることが好ま 、。  [0033] In the bacterium detection device according to the above No. 2-5, the seventh channel containing the decomposing solution for decomposing the microchannel chip force bacteria floc, the first channel decomposing solution introducing section and the seventh well are formed. Preferably, the apparatus further comprises a seventh channel for connection, and the decomposition liquid introduction section is provided upstream of the extract introduction section.
[0034] すなわち、第 6の細菌検出装置は、上記第 2— 5の細菌検出装置において、第 1チ ャネルが、細菌のフロックを分解させる分解液が導入される分解液導入部を更に有し 、マイクロチャネルチップが、分解液を収容する第 7ゥエルと、分解液導入部と第 7ゥェ ルとを接続する第 7チャネルと、を更に備えており、第 1チャネルにおいて、分解液導 入部が抽出液導入部よりも上流側に設けられており、且つ、移送手段が第 7ゥエルに 収容される液体を第 1チャネルに移送することが可能となっているものであることが好 ましい。  [0034] That is, in the sixth bacterium detection apparatus, in the bacterium detection apparatus according to the above-mentioned 2-5, the first channel further includes a decomposition solution introducing section into which a decomposition solution for decomposing bacterial flocs is introduced. The microchannel chip further includes a seventh well for containing the decomposed liquid, and a seventh channel for connecting the decomposed liquid introduction unit to the seventh well, wherein the first channel includes a decomposed liquid introduction unit. Is preferably provided upstream of the extraction liquid introduction section, and the transfer means is capable of transferring the liquid contained in the seventh well to the first channel. .
[0035] この場合、分解液を第 7ゥェルカゝら第 7チャネル及び分散液導入部を経て第 1チヤ ネルに導入することができ、分解液により細菌のフロックを分散させることができる。こ れにより、細菌と抽出液の接触効率が上がり、抽出反応を促進することができる。  [0035] In this case, the decomposed liquid can be introduced into the first channel through the seventh channel through the seventh channel and the dispersion liquid introduction section, and the decomposed liquid can disperse the bacterial floc. As a result, the contact efficiency between the bacteria and the extract can be increased, and the extraction reaction can be promoted.
[0036] また、移送手段により第 7ゥエルに収容される液体も第 7チャネル及び分散液導入 部を経て第 1チャネルに移送することが可能となっている。したがって、少なくとも第 1 一第 3、第 7ゥエルに収容される液体は、この移送手段により、各ゥエルからの液体を 一括して且つ確実に第 1チャネルに導入することができる。  [0036] Further, the liquid contained in the seventh well by the transfer means can also be transferred to the first channel via the seventh channel and the dispersion liquid inlet. Therefore, at least the liquid contained in the first, third, and seventh wells can be collectively and surely introduced into the first channel by the transfer means.
[0037] なお、上記細菌検出装置においては、抽出液導入部が発光液導入部よりも第 1ゥ エルの下流側に設けられていてもよぐ発光液導入部が抽出液導入部よりも第 1ゥェ ルの下流側に設けられて 、てもよ 、。  [0037] In the above-mentioned bacteria detection device, the luminescent liquid introduction part may be provided on the downstream side of the first well with respect to the luminescent liquid introduction part, and the luminescence liquid introduction part may be located at a position closer to the extraction liquid introduction part than the extract liquid introduction part. It may be provided downstream of one well.
[0038] また、第 7の細菌検出装置は、上記第 5の細菌検出装置のマイクロチャネルチップ において、第 2ゥエル、第 3ゥエル、及び第 6ゥエルのうちのいずれか一つのゥエルが 他のゥエルを兼ねていてもよい。この場合、細菌検出装置の構成を極めて簡単なもの とすることができる。従って、細菌検出装置を安価で提供することも可能となる。 [0038] Further, in the microbial channel chip of the fifth bacterium detection device, the seventh bacterium detection device may be configured such that any one of the second, third, and sixth wells is replaced by another well. May also be used. In this case, the configuration of the bacteria detection device is extremely simple. It can be. Therefore, it is possible to provide the bacteria detection device at low cost.
[0039] また、第 8の細菌検出装置にぉ 、ては、第 2—第 7ゥエルがそのゥエルに対応する 発光液、抽出液、除去液、不活性化液、増幅液、及び分解液を収容していることが 好ましい。  [0039] Further, in the eighth bacteria detection device, the 2nd to 7th wells contain a luminescent solution, an extract solution, a removal solution, an inactivating solution, an amplification solution, and a decomposition solution corresponding to the well. It is preferable that they are accommodated.
[0040] すなわち、第 8の細菌検出装置は、第 3の細菌検出装置において、第 1チャネルが 、細菌内 ATPを増幅させる増幅液が導入される増幅液導入部及び細菌のフロックを 分解させる分解液が導入される分解液導入部を更に有し、マイクロチャネルチップが 、増幅液を収容するための第 6ゥエルと、分解液を収容する第 7ゥエルと、増幅液導入 部と第 6ゥエルとを接続する第 6チャネルと、分解液導入部と第 7ゥエルとを接続する 第 7チャネルと、を更に備えており、第 1チャネルにおいて、分解液導入部が抽出液 導入部よりも上流側に設けられており、第 1チャネルにおいて、増幅液導入部が不活 性ィ匕液導入部の下流側に設けられおり、且つ、第 2ゥエル、第 3ゥエル、第 4ゥエル、 第 5ゥエル、第 6ゥエル、及び第 7ゥェルカ なる群より選ばれる少なくとも 1つのゥエル に、そのゥエルに対応する抽出液、発光液、除去液、不活性化液、増幅液、及び分 解液が収容されて 、るものであることが好ま 、。  [0040] That is, in the eighth bacterium detection device, in the third bacterium detection device, the first channel is a decomposition solution for decomposing the amplification solution introduction portion into which the amplification solution for amplifying ATP in the bacteria is introduced and the bacterial floc. The microchannel chip further includes a sixth well for containing the amplified solution, a seventh well for containing the decomposed solution, and a sixth well for the amplified solution. And a seventh channel connecting the decomposed liquid introduction section and the seventh well, wherein the decomposed liquid introduction section is located upstream of the extract introduction section in the first channel. In the first channel, the amplification liquid introduction section is provided downstream of the inactivation liquid introduction section, and the second, third, fourth, fifth, and fifth wells are provided. 6 El and 7 Elka At least one Ueru, extracts corresponding to the Ueru, luminous solution, removing liquid, inactivating solution, the amplification solution, and decomposition liquid is accommodated, preferred that a shall.
[0041] 予めこれらの液を収容していれば、検体液を導入することのみで細菌検出を行うこ とができ、環境を選ばず、簡便に検出精度の高い測定ができる。なお、これらのゥェ ルは、検出する細菌の特性や検出値の精度に応じて必要とする液のみを収容するこ とができ、不必要なゥエルであれば当然そのゥエルを省くことも可能である。  [0041] If these liquids are stored in advance, bacteria can be detected only by introducing a sample liquid, and measurement with high detection accuracy can be easily performed regardless of the environment. These wells can contain only the necessary liquids according to the characteristics of the bacteria to be detected and the accuracy of the detected values, and if the wells are unnecessary, the wells can of course be omitted. It is.
[0042] ここで、第 9の細菌検出装置は、上記第 1一第 8の細菌検出装置において、マイクロ チャネルチップ内の液体の温度を制御する制御手段を備えるものであることが好まし い。  Here, it is preferable that the ninth bacterium detection device in the first to eighth bacterium detection devices is provided with control means for controlling the temperature of the liquid in the microchannel chip.
[0043] マイクロチャネルチップ内の液体の温度を制御することによって、第 9の細菌検出装 置内で行われる反応に最適な環境を提供することができる。例えば、温度を抽出液 や発光液にとって最適な値とすることによって、反応速度を更に高めることができ、更 には、温度をその値で維持することによって、反応を安定ィ匕することができる。  [0043] By controlling the temperature of the liquid in the microchannel chip, it is possible to provide an optimal environment for the reaction performed in the ninth bacterium detection device. For example, the reaction rate can be further increased by setting the temperature at an optimum value for the extract or the luminescent liquid, and further, the reaction can be stabilized by maintaining the temperature at that value. .
[0044] また、本発明の第 10の細菌検出装置は、上記第 1の細菌検出装置において、抽出 手段が、第 1チャネルを加熱する加熱手段、第 1チャネルに電界を印加する電界印 加手段、及び第 1チャネルに超音波を印加する超音波印加手段のうちの少なくとも 1 種以上の手段を備えるものであることが好まし 、。 [0044] Further, in a tenth bacterium detection apparatus according to the present invention, in the first bacterium detection apparatus, the extraction means includes a heating means for heating the first channel, and an electric field sign for applying an electric field to the first channel. It is preferable that the apparatus further comprises at least one or more of the adding means and the ultrasonic wave applying means for applying ultrasonic waves to the first channel.
[0045] すなわち、第 10の細菌検出装置は、細菌を含む検体液を収容するための第 1ゥェ ル、細菌内 ATPの存在下で発光する発光液を収容するための第 2ゥエル、細菌内 A TPと発光液とを接触させる発光部、第 1ゥエルと発光部とを接続する第 1チャネル、 及び、第 1チャネルの発光液導入部と第 2ゥエルとを接続する第 2チャネルを有する マイクロチャネルチップと、細菌内 ATPと発光液との接触により生じる光を検出する 光検出手段と、第 1ゥエルに収容される液体を発光部に移送させ、第 2ゥ ルに収容 される液体を第 1チャネルに移送させるための移送手段とを備えており、且つ、第 1チ ャネルのチャネル幅が lmm以下であり、第 1チャネルを加熱する加熱手段、第 1チヤ ネルに電界を印加する電界印加手段、及び第 1チャネルに超音波を印加する超音 波印加手段のうちの少なくとも 1種以上の手段を更に備えることが好ましい。  [0045] That is, the tenth bacterium detection device includes a first well for containing a sample solution containing bacteria, a second well for containing a luminescent solution that emits light in the presence of ATP in bacteria, and a bacterium. A light-emitting part for contacting the ATP with the light-emitting liquid, a first channel for connecting the first well to the light-emitting part, and a second channel for connecting the light-emitting liquid introduction part of the first channel to the second well. A microchannel chip, a light detecting means for detecting light generated by contact between the ATP in the bacteria and the luminescent liquid, and a liquid contained in the first well being transported to the light emitting section, and a liquid contained in the second well being removed. A transfer means for transferring the first channel; and a heating means for heating the first channel, wherein the channel width of the first channel is lmm or less, and an electric field for applying an electric field to the first channel. Applying the ultrasonic wave to the applying means and the first channel Preferably further comprises at least one or more means of sound wave applying means.
[0046] このような構造を有する第 10の細菌検出装置は、第 3チャネル及び第 3ゥエルを持 つ代わりに、第 1チャネルの少なくとも一部に対して加熱、電界印加又は超音波印加 を行う手段を備えている。すなわち、マイクロチャネルチップ内において、検体液を収 容する第 1ゥエルと発光部とが第 1チャネルで接続されているため、移送手段により第 1ゥエルに収容される液体を発光部に移送させると、検体液を数秒で発光部に送流 することができる。また、加熱、電界印加又は超音波印加を行う手段が第 1チャネル に備えられているため、検体液が第 1ゥエルから発光部に送流される際に、検体液中 の細菌力も細菌内 ATPを抽出することができる。そして、第 2チャネルが第 1チャネル に接続されているため、第 2ゥエルに収容される発光液を順次第 1チャネルに送流す ることができ、第 1チャネル内で該検体液と混合されることにより、細菌内 ATPと発光 液との反応を効率よく行うことができる。  The tenth bacteria detection device having such a structure performs heating, electric field application, or ultrasonic application on at least a part of the first channel instead of having the third channel and the third well. Means. That is, since the first well for storing the sample liquid and the light emitting unit are connected by the first channel in the microchannel chip, the liquid contained in the first well is transferred to the light emitting unit by the transfer means. In addition, the sample liquid can be sent to the light emitting section in a few seconds. Since the first channel is provided with means for heating, applying an electric field, or applying an ultrasonic wave, when the sample liquid is sent from the first well to the light-emitting part, the bacterial force in the sample liquid also reduces the bacterial ATP. Can be extracted. Since the second channel is connected to the first channel, the luminescent liquid contained in the second well can be sequentially sent to the first channel and mixed with the sample liquid in the first channel. As a result, the reaction between bacterial ATP and the luminescent solution can be efficiently performed.
[0047] したがって、上記第 10の細菌検出装置は、抽出手段として上記加熱、電界印加又 は超音波印加の手段を備えることによって、抽出液を用いなくても細菌力も細菌内 A TPを抽出させることができる。なお、加熱、電界印加又は超音波印加の手段は複数 あってもよい。 [0047] Therefore, the tenth bacterium detection device has the heating, electric field application or ultrasonic application means as the extraction means, so that the bacterial force and the bacterial ATP can be extracted without using the extract. be able to. Note that there may be a plurality of means for heating, applying an electric field, or applying an ultrasonic wave.
[0048] また、第 11の細菌検査装置は、上記第 10の細菌検出装置において、第 1チャネル 力 ATP除去剤を含む除去液が導入される除去液導入部及び ATP除去剤を不活 性化させる不活性化剤を含む不活性ィ匕液が導入される不活性ィ匕液導入部を更に有 し、マイクロチャネルチップ力 除去液を収容するための第 4ゥエルと、不活性化液を 収容するための第 5ゥエルと、除去液導入部と第 4ゥエルとを接続する第 4チャネルと 、不活性ィ匕液導入部と第 5ゥエルとを接続する第 5チャネルと、を更に備えており、第 1チャネルにおいて、除去液導入部が加熱手段、電界印加手段又は超音波印加手 段によって細菌力 細菌内 ATPを抽出する抽出部よりも上流側に設けられており、 不活性化液導入部が除去液導入部の下流側であって抽出部の上流側に設けられて おり、且つ、移送手段が第 4及び第 5ゥエルに収容される液体を第 1チャネルに移送 することが可能となって 、るものであることが好ま U、。 [0048] Further, the eleventh bacteria test apparatus is the same as the tenth bacteria test apparatus, wherein the first channel The removal liquid introduction part into which the removal liquid containing the ATP removal agent is introduced, and the inert deodorization liquid introduction part into which the deactivation liquid containing the deactivator for inactivating the ATP removal agent is introduced are further provided. A fourth channel for accommodating the microchannel chip force removing solution, a fifth channel for accommodating the inactivating liquid, and a fourth channel for connecting the removing solution introduction section to the fourth reservoir. The apparatus further comprises a fifth channel for connecting the inactive liquid introducing part and the fifth well, and in the first channel, the removing liquid introducing part is provided with a heating means, an electric field applying means, or an ultrasonic wave applying means. Power Provided upstream of the extraction unit for extracting ATP in bacteria, Inactivated liquid introduction unit is provided downstream of the removal liquid introduction unit and provided upstream of the extraction unit, and transported Means transfer liquid contained in 4th and 5th wells to 1st channel Making it possible to Rukoto, preferred to be a shall U ,.
[0049] この場合、遊離 ATPを除去させる除去液が、第 4ゥェルカゝら第 4チャネル及び除去 液導入部を経て第 1チャネルに導入されると、遊離 ATPが除去液によって除去され る。このため、遊離 ATPによるノイズ光を除去して細菌内 ATPによる光のみを検出す ることができ、細菌内 ATPの測定精度を高めることができる。  [0049] In this case, when the removing solution for removing free ATP is introduced into the first channel through the fourth channel and the removing solution introducing portion, the free ATP is removed by the removing solution. For this reason, noise light due to free ATP can be removed and only light due to intracellular ATP can be detected, and the measurement accuracy of intracellular ATP can be improved.
[0050] 更に、除去液が第 1チャネルに導入されていつまでも残存していると、細菌内 ATP が除去剤により破壊されるおそれがある。この発明によれば、不活性化剤が第 5ゥェ ルカゝら第 5チャネル及び不活性ィ匕液導入部を経て第 1チャネルに導入され、除去液 が不活性ィ匕液により不活性ィ匕されるため、除去液による細胞内 ATPの破壊が十分に 防止される。このため、細胞内 ATPを的確に求めることができる。  [0050] Furthermore, if the removing solution is introduced into the first channel and remains forever, ATP in bacteria may be destroyed by the removing agent. According to the present invention, the deactivator is introduced into the first channel via the fifth channel and the fifth channel and the inert liquid introducing section, and the removing liquid is inerted by the inert liquid. As a result, destruction of intracellular ATP by the removing solution is sufficiently prevented. Therefore, intracellular ATP can be accurately determined.
[0051] また、除去液導入部が抽出部よりも上流側に設けられ、不活性化液導入部が抽出 部よりも上流側であって除去液導入部よりも下流側に設けられているため、検出液内 の細菌の量が微量であっても、上記のように細胞内 ATPの測定精度が高い場合にも 、誤差を十分に小さく抑えることができる。  [0051] Further, since the removing liquid introducing section is provided upstream of the extracting section, and the inactivating liquid introducing section is provided upstream of the extracting section and downstream of the removing liquid introducing section. Even if the amount of bacteria in the detection solution is very small, the error can be sufficiently suppressed even when the intracellular ATP measurement accuracy is high as described above.
[0052] 更に、移送手段により第 4及び第 5ゥエルに収容される液体も第 1チャネルに移送す ることが可能となっている。したがって、第 1、第 2、第 4及び第 5ゥエルに収容される液 体は、この移送手段により、各ゥエルからの液体を一括して且つ確実に第 1チャネル に導入することができる。  [0052] Further, the liquid stored in the fourth and fifth wells by the transfer means can also be transferred to the first channel. Therefore, the liquids contained in the first, second, fourth, and fifth wells can be collectively and surely introduced into the first channel by the transfer means.
[0053] 更にまた、上記第 10の細菌検出装置において、第 1チャネルが、除去液導入部よ り下流側の少なくとも 1部の温度を 50°C以上に制御して ATP除去剤を不活性ィ匕させ る温度制御手段を更に備えることが好ましい。 [0053] Further, in the tenth bacterium detection device, the first channel is located between the removing liquid introduction part and the first channel. It is preferable to further include temperature control means for controlling the temperature of at least one part of the downstream side to 50 ° C. or higher to inactivate the ATP removing agent.
[0054] すなわち、第 12の細菌検出装置は、上記第 10の細菌検出装置において、第 1チヤ ネルが、 ATP除去剤を含む除去液が導入される除去液導入部を更に有し、マイクロ チャネルチップが、除去液を収容するための第 4ゥエルと、除去液導入部と第 4ゥエル とを接続する第 4チャネルと、除去液を温度を 50°C以上に制御して ATP除去剤を不 活性化させる温度制御手段と、を更に備えており、第 1チャネルにおいて、除去液導 入部が加熱手段、電界印加手段又は超音波印加手段によって細菌力 細菌内 AT Pを抽出する抽出部よりも上流側に設けられており、温度制御手段によって温度が制 御される温度制御部が除去液導入部の下流側であって抽出部の上流側の部分の温 度を制御することが可能であり、且つ、移送手段が第 4ゥエルに収容される液体を第 1 チャネルに移送することが可能となって 、るものであることが好まし 、。  That is, in the twelfth bacterium detection device, in the twelfth bacterium detection device described above, the first channel further includes a removal solution introduction part into which a removal solution containing an ATP removing agent is introduced, The chip has a fourth well for containing the removing solution, a fourth channel connecting the removing solution introduction section and the fourth well, and a control of the temperature of the removing solution to 50 ° C or higher to prevent the use of the ATP removing agent. Temperature control means for activating, in the first channel, the removal liquid introduction section is upstream of the extraction section for extracting bacterial force ATP in bacteria by heating means, electric field application means or ultrasonic application means. The temperature control unit, the temperature of which is controlled by the temperature control means, is capable of controlling the temperature of the portion downstream of the removal liquid introduction unit and upstream of the extraction unit, In addition, the transfer means removes the liquid stored in the fourth well. Preferably, it is possible to transfer to the first channel.
[0055] この場合、不活性ィ匕液を第 1チャネルに導入せず温度を制御するだけで余分な除 去液を不活性ィ匕することができる。従って、不活性ィ匕液が不要となるため、不活性ィ匕 液を収容するためのゥエルや不活性ィ匕液を送流するためのチャネルを省くことができ 、マイクロチャネルチップの構造を簡素にすることができる。  [0055] In this case, it is possible to inactivate the excess removing liquid only by controlling the temperature without introducing the inactivating liquid into the first channel. Therefore, since the inactive dandelion liquid is not required, a well for storing the inactive danjiri liquid and a channel for sending the inactive danjiri liquid can be omitted, and the structure of the microchannel chip can be simplified. Can be
[0056] また、この温度制御手段を温度制御部に設けると、温度制御することによって上述 した不活性ィ匕液を第 1チャネルに導入した場合と同様の効果を得ることができる。  When this temperature control unit is provided in the temperature control unit, the same effect as in the case where the above-described inert inert liquid is introduced into the first channel can be obtained by controlling the temperature.
[0057] 更に、移送手段により第 4ゥエルに収容される液体も第 4チャネル及び除去液導入 部を経て第 1チャネルに移送することが可能となっている。したがって、第 1、第 2、第 4ゥエルに収容される液体は、この移送手段により、各ゥエル力 の液体を一括して且 つ確実に第 1チャネルに導入することができる。  Further, the liquid contained in the fourth well by the transfer means can also be transferred to the first channel via the fourth channel and the removal liquid introducing section. Therefore, the liquid contained in the first, second, and fourth wells can be collectively and surely introduced into the first channel by the transfer means.
[0058] ここで、上記第 11の細菌検出装置において、マイクロチャネルチップ力 細菌内 A TPを増幅させる増幅液を収容するための第 6ゥエルと、第 1チャネルの増幅液導入 部と第 6ゥエルとを接続する第 6チャネルとを更に備えており、増幅液導入部が不活 性ィ匕液導入部よりも下流側に設けられていることが好ましい。  Here, in the eleventh bacterium detection device, the sixth channel for accommodating the amplification solution for amplifying the microchannel chip force ATP in the bacterium, the first channel amplification solution introduction section and the sixth channel And a sixth channel connecting the amplifying liquid and the amplifying liquid introducing section is preferably provided downstream of the inactivating liquid introducing section.
[0059] すなわち、第 13の細菌検出装置は、上記第 11の細菌検出装置において、第 1チヤ ネルが、細菌内 ATPを増幅させる増幅液が導入される増幅液導入部を更に有し、マ イクロチャネルチップが、増幅液を収容するための第 6ゥエルと、増幅液導入部と第 6 ゥエルとを接続する第 6チャネルと、を更に備えており、第 1チャネルにおいて、増幅 液導入部が不活性ィヒ液導入部の下流側に設けられおり、且つ、移送手段が第 6ゥェ ルに収容される液体を第 1チャネルに移送することが可能となっているものであること が好ましい。 [0059] That is, in the thirteenth bacterium detection device, in the twelfth bacterium detection device, the first channel further includes an amplification solution introduction section into which an amplification solution for amplifying ATP in bacteria is introduced. The microchannel chip further includes a sixth well for containing the amplification solution, and a sixth channel connecting the sixth solution with the amplification solution introduction unit. In the first channel, the amplification solution introduction unit is provided. It is preferable that the liquid is provided downstream of the inert liquid inlet and that the transfer means is capable of transferring the liquid contained in the sixth well to the first channel. .
[0060] この場合、遊離 ATPは除去液によって十分に除去され、遊離 ATPは増幅されな ヽ ので、測定精度を更に高めることができる。更に、第 6チャネル力 増幅液が第 6チヤ ネル及び増幅液導入部を経て第 1チャネルに導入されるため、発光し難い細菌(更 に微量の細菌や栄養状態が優れない細菌)であっても、増幅液により増幅されるため 、検出することが可能となる。  [0060] In this case, free ATP is sufficiently removed by the removing solution, and free ATP is not amplified, so that the measurement accuracy can be further improved. Further, since the sixth channel power amplification solution is introduced into the first channel via the sixth channel and the amplification solution introduction part, it is difficult for bacteria to emit light (further minute bacteria or bacteria with poor nutritional status). Can also be detected because it is amplified by the amplification solution.
[0061] また、移送手段により第 6ゥエルに収容される液体も第 6チャネル及び増幅液導入 部を経て第 1チャネルに移送することが可能となっている。したがって、第 1、第 2、第 4一第 6ゥエルに収容される液体は、この移送手段により、各ゥエル力 の液体を一括 して且つ確実に第 1チャネルに導入することができる。  [0061] In addition, the liquid contained in the sixth well by the transfer means can be transferred to the first channel via the sixth channel and the amplification liquid introduction unit. Therefore, the liquid contained in the first, second, fourth, and sixth wells can be collectively and surely introduced into the first channel by the transfer means.
[0062] 上記第 10— 13の細菌検出装置において、マイクロチャネルチップ力 細菌のフロ ックを分解させる分解液を収容する第 7ゥエルと、第 1チャネルの分解液導入部と第 7 ゥエルとを接続する第 7チャネルとを更に備えており、分解液導入部が、発光液導入 部よりも上流側に設けられて 、ることが好ま 、。  [0062] In the bacterium detection apparatus of Nos. 10-13, the seventh channel containing the digestion solution for decomposing the microbial chip force bacteria floc, the digestion solution introduction section of the first channel, and the seventh tube are provided. Preferably, the apparatus further comprises a seventh channel for connection, and the decomposition liquid introduction section is provided upstream of the luminescence liquid introduction section.
[0063] すなわち、第 14の細菌検出装置は、上記第 10— 13の細菌検出装置において、第 1チャネル力 細菌のフロックを分解させる分解液が導入される分解液導入部を更に 有し、マイクロチャネルチップが、分解液を収容する第 7ゥエルと、分解液導入部と第 7ゥエルとを接続する第 7チャネルと、を更に備えており、第 1チャネルにおいて、分解 液導入部が加熱手段、電界印加手段又は超音波印加手段によって細菌から細菌内 ATPを抽出する抽出部よりも上流側に設けられており、且つ、移送手段が第 7ゥエル に収容される液体を第 1チャネルに移送することが可能となっているものであることが 好ましい。  That is, a fourteenth bacterium detection device according to the tenth to thirteenth bacterium detection device, further includes a decomposing solution introducing portion into which a decomposing solution for decomposing the first channel force bacterial floc is introduced, The channel chip further includes a seventh well for containing the decomposed liquid, and a seventh channel connecting the decomposed liquid introduction unit and the seventh well. In the first channel, the decomposed liquid introduction unit includes a heating unit. The transfer means is provided upstream of the extraction unit that extracts ATP in bacteria from bacteria by electric field application means or ultrasonic application means, and the transfer means transfers the liquid contained in the seventh well to the first channel. It is preferable that this is possible.
[0064] この場合、分解液を第 7チャネル力ゝら第 7チャネル及び分散液導入部を経て第 1チ ャネルに導入することができ、分解液により細菌のフロックを分散させることができる。 これにより、細菌と抽出液の接触効率が上がり、抽出反応を促進することができる。 In this case, the decomposition solution can be introduced into the first channel through the seventh channel and the seventh channel and the dispersion liquid introduction section, and the bacterial floc can be dispersed by the decomposition solution. Thereby, the contact efficiency between the bacteria and the extract can be increased, and the extraction reaction can be promoted.
[0065] また、移送手段により第 7ゥエルに収容される液体も第 7チャネル及び分散液導入 部を経て第 1チャネルに移送することが可能となっている。したがって、少なくとも第 1 、第 2、第 7ゥエルに収容される液体は、この移送手段により、各ゥエルからの液体を 一括して且つ確実に第 1チャネルに導入することができる。  [0065] Further, the liquid contained in the seventh well by the transfer means can be transferred to the first channel via the seventh channel and the dispersion liquid inlet. Therefore, at least the liquid contained in the first, second, and seventh wells can be collectively and reliably introduced into the first channel by the transfer means.
[0066] また、第 15の細菌検出装置においては、第 2、第 4一第 7ゥエルがそのゥエルに対 応する発光液、除去液、不活性化液、増幅液、及び分解液を収容していることが好ま しい。  [0066] In the fifteenth bacteria detection device, the second, fourth, and seventh wells contain a luminescent solution, a removing solution, an inactivating solution, an amplifying solution, and a decomposing solution corresponding to the well. Is preferred.
[0067] すなわち、第 15の細菌検出装置は、上記第 11の細菌検出装置において、第 1チヤ ネルが、細菌内 ATPを増幅させる増幅液が導入される増幅液導入部及び細菌のフ ロックを分解させる分解液が導入される分解液導入部を更に有し、マイクロチャネル チップが、増幅液を収容するための第 6ゥエルと、分解液を収容する第 7ゥエルと、増 幅液導入部と第 6ゥエルとを接続する第 6チャネルと、分解液導入部と第 7ゥエルとを 接続する第 7チャネルと、を更に備えており、第 1チャネルにおいて、分解液導入部 が加熱手段、電界印加手段又は超音波印加手段によって細菌力 細菌内 ATPを抽 出する抽出部よりも上流側に設けられており、第 1チャネルにおいて、増幅液導入部 が不活性ィ匕液導入部の下流側に設けられおり、且つ、第 2ゥエル、第 4ゥエル、第 5ゥ エル、第 6ゥエル、及び第 7ゥェルカもなる群より選ばれる少なくとも 1つのゥエルに、そ のゥエルに対応する発光液、除去液、不活性化液、増幅液、及び分解液が収容され て!、るものであることが好まし!/、。  That is, in the fifteenth bacteria detection device, the first channel is the same as the eleventh bacteria detection device, wherein the first channel is connected to the amplification solution introduction section into which the amplification solution for amplifying ATP in the bacteria is introduced and the bacterial block. The microchannel chip further includes a digestion solution inlet for introducing the digestion solution to be decomposed, and the microchannel chip has a sixth well for containing the amplification solution, a seventh well for containing the digestion solution, and an amplification solution introduction unit. A sixth channel for connecting the sixth well and a seventh channel for connecting the decomposition solution introduction portion to the seventh well are further provided. In the first channel, the decomposition solution introduction portion includes a heating means and an electric field application. Is provided upstream of the extractor for extracting ATP in bacterial force by means or ultrasonic application means, and in the first channel, the amplification liquid introduction section is provided downstream of the inactive irrigation liquid introduction section. And 2nd and 4th At least one well selected from the group consisting of a well, a fifth well, a sixth well, and a seventh well, and the luminescent, removing, inactivating, amplifying, and decomposing solutions corresponding to that well. Is contained! It's preferable to be! /.
[0068] 予めこれらの液を収容していれば、検体液を導入することのみで細菌検出を行うこ とができ、環境を選ばず、簡便に検出精度の高い測定ができる。なお、これらのゥェ ルは、検出する細菌の特性や検出値の精度に応じて必要とする液を収容することが 好ましぐ不必要なゥエルであれば当然そのゥ ルを省くことも可能である。  [0068] If these liquids are stored in advance, bacteria can be detected only by introducing a sample liquid, and measurement with high detection accuracy can be easily performed regardless of the environment. It should be noted that these wells can be omitted if it is not necessary to contain the necessary liquid according to the characteristics of the bacteria to be detected and the accuracy of the detected value. It is.
[0069] ここで、第 16の細菌検出装置は、上記第 10— 15の細菌検出装置において、マイク ロチャネルチップ内の液体の温度を制御する制御手段を備えるものであることが好ま しい。  [0069] Here, it is preferable that the sixteenth bacterium detection device is the same as the twelfth to fifteenth bacterium detection device, but further provided with a control means for controlling the temperature of the liquid in the microchannel chip.
[0070] マイクロチャネルチップ内の液体の温度を制御することによって、本発明の細菌検 出装置内で行われる反応に最適な環境を提供することができる。例えば、温度を発 光液にとって最適な値とすることによって、反応速度を更に高めることができ、更には 、温度をその値で維持することによって、反応を安定ィ匕することができる。 [0070] By controlling the temperature of the liquid in the microchannel chip, the bacterial test of the present invention can be performed. It is possible to provide an optimum environment for the reaction performed in the discharge device. For example, the reaction rate can be further increased by setting the temperature at an optimum value for the light emitting liquid, and the reaction can be stabilized by maintaining the temperature at that value.
[0071] また本発明は、チャネル幅が lmm以下であるチャネルを有するマイクロチャネルチ ップのチャネル内で、細菌を含む検体液から、細菌の細菌内 ATPを抽出し、細菌内 ATPの存在下、発光液を発光させ、該発光を検出する細菌検出方法 (第 1の細菌検 出方法)である。  [0071] The present invention also provides a method for extracting bacterial ATP from bacteria from a sample solution containing bacteria in a channel of a microchannel chip having a channel having a channel width of 1 mm or less, in the presence of bacterial ATP. This is a bacteria detection method (first bacteria detection method) in which a luminescent liquid is caused to emit light and the light emission is detected.
[0072] この第 1の細菌検出方法は、上記細菌検出装置で有効に実施することができる。な お、発光液は細菌内 ATPと反応するため、細菌内 ATPを抽出する前の細菌と発光 液とを混合させた場合には、その後に細菌から細菌内 ATPが抽出されると同時に発 光液が細菌内 ATPと反応するため問題なく本発明の目的を達成することができる。  [0072] This first bacteria detection method can be effectively implemented by the above-described bacteria detection device. Since the luminescent solution reacts with bacterial ATP, when bacteria and luminescent solution are mixed before extracting bacterial ATP, the bacterial ATP is subsequently extracted from the bacteria and emits light at the same time. Since the liquid reacts with ATP in bacteria, the object of the present invention can be achieved without any problem.
[0073] さらに、第 2の細菌検出方法においては、上記第 1の細菌検出方法の検体液と、細 菌から細菌内 ATPを抽出させる抽出液と、細菌内 ATPの存在下に発光する発光液 とを混合し、抽出液により細菌力も細菌内 ATPを抽出することが好ましい。  [0073] Further, in the second bacteria detection method, the sample solution of the first bacteria detection method, an extract solution for extracting intracellular ATP from bacteria, and a luminescent solution emitting light in the presence of intracellular ATP are provided. It is preferable to mix ATP and extract the ATP in the bacterium with the bacterial force using the extract.
[0074] すなわち、第 2の細菌検出方法においては、チャネル幅が lmm以下であるチヤネ ルを有するマイクロチャネルチップのチャネル内で、細菌を含む検体液と、細菌から 細菌内 ATPを抽出させる抽出液と、細菌内 ATPの存在下に発光する発光液とを混 合し、抽出液により細菌から細菌内 ATPを抽出し、細菌内 ATPの存在下、発光液を 発光させ、該発光を検出することが好ましい。  That is, in the second bacteria detection method, in a channel of a microchannel chip having a channel having a channel width of 1 mm or less, a sample solution containing bacteria and an extract solution for extracting intracellular ATP from bacteria from bacteria. Mixed with a luminescent solution that emits light in the presence of bacterial ATP, extracts bacterial ATP from the bacteria with the extract, emits the luminescent solution in the presence of bacterial ATP, and detects the luminescence. Is preferred.
[0075] この第 2の細菌検出方法は、上記細菌検出装置で有効に実施することができる。な お、チャネル内では、検体液と抽出液とを混合させた後に発光液と混合させる方法、 マイクロチャネルチップ内で検体液と発光液とを混合させた後に抽出液と混合させる 方法、及び抽出液と発光液とを混合させた後にマイクロチャネルチップ内で検体液と 混合させる方法のいずれであってもよい。なお、発光液は細菌内 ATPと反応するた め、細菌内 ATPを抽出する前の細菌と発光液とを混合させた場合には、その後に細 菌と発光液に抽出液を混合すると、細菌内 ATPが抽出されると同時に発光液が細菌 内 ATPと反応するため問題なく本発明の目的を達成することができる。  [0075] The second bacteria detection method can be effectively implemented by the above-described bacteria detection device. In the channel, a method of mixing the sample solution and the extract solution and then mixing with the luminescent solution, a method of mixing the sample solution and the luminescent solution in the microchannel chip and then mixing with the extract solution, and extraction Any method may be used in which the liquid and the luminescent liquid are mixed and then mixed with the sample liquid in the microchannel chip. Since the luminescent solution reacts with ATP in bacteria, if bacteria and luminescent solution are mixed before extracting ATP in bacteria, then if the extract is mixed with bacteria and luminescent solution, bacterial Since the luminescent solution reacts with the ATP in the bacterium at the same time that the ATP is extracted, the object of the present invention can be achieved without any problem.
[0076] 第 3の細菌検出方法においては、上記第 2の細菌検出方法の抽出液が特定の細 菌のみ力 選択的に ATPを抽出する特定抽出液であることが好ましい。 [0076] In the third method for detecting bacteria, the extract of the second method for detecting bacteria is used for a specific cell. It is preferred that the extract be a specific extract that selectively extracts ATP.
[0077] 細菌には多くの種類があり、特定の細菌のみを選択的に検出することが望まれる場 合がある。したがって、抽出液が上記特定抽出液であれば、例えば、食品の検査に おいて、食中毒を引き起こすおそれのある細菌(例えば腸炎ビブリオ、サルモネラ菌 、黄色ブドウ球菌、セレウス菌又はカンピロバクター菌)のみを選択的に検出すること ができる。 [0077] There are many types of bacteria, and it may be desired to selectively detect only specific bacteria. Therefore, if the extract is the above-mentioned specific extract, for example, in a food test, only bacteria that may cause food poisoning (eg, Vibrio parahaemolyticus, Salmonella, Staphylococcus aureus, Bacillus cereus or Campylobacter) are selectively selected. Can be detected.
[0078] 第 4の細菌検出方法においては、上記第 3の細菌検出方法の特定抽出液がファー ジ又は抗生物質であることが好ま 、。  [0078] In the fourth bacteria detection method, the specific extract of the third bacteria detection method is preferably a phage or an antibiotic.
[0079] 特定抽出液がファージゃ抗生物質であると、ファージゃ抗生物質に感受性のある 細菌のみ破壊されるので、ファージゃ抗生物質を選択することで、所望の細菌からの み細菌内 ATPを抽出することができる。 [0079] If the specific extract is a phage II antibiotic, only bacteria that are susceptible to the phage II antibiotic are destroyed. By selecting the phage II antibiotic, ATP in the bacterium can be obtained only from the desired bacteria. Can be extracted.
[0080] また、第 5の細菌検出方法においては、上記第 2— 4の細菌検出方法における検体 液を、抽出液と発光液に混合させる前に、 ATP除去剤を含む除去液と混合して、除 去液により検体液から遊離 ATPを除去し、更に不活性化剤を含む不活性化液と混 合して、除去液を不活性化させることが好ましい。 [0080] In the fifth bacteria detection method, the sample solution in the second to fourth bacteria detection methods is mixed with a removing solution containing an ATP removing agent before being mixed with the extract solution and the luminescent solution. It is preferable that free ATP is removed from the sample solution using a removing solution, and further mixed with an inactivating solution containing an inactivating agent to inactivate the removing solution.
[0081] このように遊離 ATPを除去させる除去液を導入することにより、上述したように遊離[0081] As described above, by introducing the removing solution for removing free ATP,
ATPによるノイズ光を除去することができ、更に、不活性ィ匕液を導入することで、除去 液が細菌内 ATPを破壊することを防止することができる。したがって、細菌内 ATPの 測定精度を高めることができる。 The noise light due to ATP can be removed, and the introduction of the inactive solution can prevent the removal solution from destroying ATP in bacteria. Therefore, measurement accuracy of ATP in bacteria can be improved.
[0082] また、除去液及び不活性化液は検体液と抽出液を混合する前に導入する。そうす ると不要な遊離 ATPのみを除去することができ、細菌内 ATPに悪影響を及ぼすこと ち防止することがでさる。 [0082] The removing liquid and the inactivating liquid are introduced before the sample liquid and the extract liquid are mixed. By doing so, only unnecessary free ATP can be removed, thereby preventing the ATP in bacteria from being adversely affected.
[0083] ここで、上記第 2— 4の細菌検出方法における不活性ィ匕液の代わりに温度を 50°C 以上に制御して ATP除去剤を不活性ィ匕させることも可能である。 Here, it is also possible to inactivate the ATP removing agent by controlling the temperature to 50 ° C. or higher in place of the inactive liquid in the above-mentioned method for detecting bacteria 2-4.
[0084] すなわち、第 6の細菌検出方法においては、上記第 2— 4の細菌検出方法における 抽出液と発光液に混合させる前に、検体液を、 ATP除去剤を含む除去液と混合してThat is, in the sixth bacteria detection method, before mixing the extract solution and the luminescent solution in the above-described second to fourth bacteria detection methods, the sample solution is mixed with a removal solution containing an ATP removing agent.
、除去液により検体液力 遊離 ATPを除去し、更に除去液との混合液の温度を 50°C 以上に制御して ATP除去剤を不活性ィ匕させることも可能である。 [0085] この場合、予め不活性化液を準備する必要が無ぐ温度管理のみで余分な ATP除 去剤を不活性ィ匕させることができるため、容易に細菌内 ATPの測定精度を高めるこ とでさる。 Alternatively, it is possible to remove the ATP removing agent by removing the sample fluid free ATP with the removing solution and controlling the temperature of the mixed solution with the removing solution to 50 ° C. or more. [0085] In this case, since it is not necessary to prepare an inactivating solution in advance, it is possible to inactivate the excess ATP removing agent only by controlling the temperature, so that the measurement accuracy of ATP in bacteria can be easily increased. And monkey.
[0086] また、上記第 5の細菌検出方法において、チャネル内で細菌内 ATPを増幅させる 増幅液を混合させてもよい。  [0086] In the fifth bacterial detection method, an amplification solution for amplifying intracellular ATP in the channel may be mixed.
[0087] すなわち、第 7の細菌検出方法においては、上記第 5の細菌検出方法における検 体液を、除去液を不活性ィ匕させた後に細菌内 ATPを増幅させる増幅液と混合して、 検体液に含まれる細菌の細菌内 ATPを増幅させてもよい。 [0087] That is, in the seventh bacterium detection method, the sample solution obtained in the fifth bacterium detection method is mixed with an amplification solution that inactivates the removal solution and then amplifies ATP in the bacterium. ATP in the bacteria of the bacteria contained in the solution may be amplified.
[0088] このとき、増幅液は除去液を不活性ィ匕させた後に導入する。そうすると、増幅液によ り細菌内 ATPのみを増幅することができ、測定精度を更に高めることができる。 [0088] At this time, the amplification solution is introduced after inactivating the removal solution. Then, only the ATP in the bacterium can be amplified by the amplification solution, and the measurement accuracy can be further improved.
[0089] また、上記第 2— 7の細菌検出方法において、チャネル内で細菌のフロックを分解 させる分解液を更に混合させてもょ ヽ。 [0089] In the second to seventh bacteria detection methods, a decomposition solution for decomposing bacterial flocs in the channel may be further mixed.
[0090] すなわち、第 8の細菌検出方法においては、上記第 2— 7の細菌検出方法における 検体液を、抽出液と発光液に混合させる前に、細菌のフロックを分解させる分解液と 混合して、分解液により検体液力も細菌のフロックを分解させてもょ 、。 That is, in the eighth bacterial detection method, the sample liquid in the second to seventh bacterial detection methods is mixed with a decomposition solution for decomposing bacterial flocs before mixing the extract solution and the luminescent solution. Therefore, the sample solution may also break down the bacterial flocs by the digestion solution.
[0091] このとき、分解液は細菌から細菌内 ATPを抽出する前に行う。そうすると、分解液に より細菌のフロックを分散させることができ、更に細菌と抽出液の接触効率が上がるこ ととなるため抽出反応を促進することができる。 [0091] At this time, the decomposing solution is performed before extracting intracellular ATP from the bacteria. Then, the floc of bacteria can be dispersed by the decomposed solution, and the contact efficiency between the bacteria and the extract can be increased, so that the extraction reaction can be promoted.
[0092] また、第 9の細菌検出方法においては、上記第 1の細菌検出方法における検体液 に加熱、電界印加および超音波印加のいずれ力 1つ以上を行うことにより細菌から細 菌内 ATPを抽出することが好ましい。 [0092] In the ninth bacterium detection method, the ATP in the bacterium is removed from the bacterium by applying at least one of heating, electric field application, and ultrasonic wave to the sample liquid in the first bacterium detection method. It is preferred to extract.
[0093] すなわち、第 9の細菌検出方法においては、チャネル幅が lmm以下であるチヤネ ルを有するマイクロチャネルチップのチャネル内で、細菌を含む検体液に、加熱、電 界印加および超音波印加のいずれか 1つ以上を行うことにより細菌力 細菌内 ATP を抽出し、細菌内 ATPの存在下、発光液を発光させ、該発光を検出させることが好 ましい。 That is, in the ninth bacterium detection method, in a channel of a microchannel chip having a channel having a channel width of 1 mm or less, a sample liquid containing bacteria is subjected to heating, electric field application, and ultrasonic application. It is preferable to extract bacterial ATP in the bacterium by performing at least one of them, to cause the luminescent solution to emit luminescence in the presence of the ATP in the bacterium, and to detect the luminescence.
[0094] この第 9の細菌検出方法においては、上記細菌検出装置で有効に実施することが できる。すなわち、上記発明においては、抽出液に代えて検体液を加熱、電界印加 および超音波印加のいずれか 1つを行うことによって細菌から細菌内 ATPを抽出さ せることができる。 [0094] In the ninth bacterium detection method, the bacterium detection device can be effectively implemented. That is, in the above invention, the sample solution is heated instead of the extract solution, and the electric field is applied. ATP can be extracted from the bacterium by performing any one of the above and applying ultrasonic waves.
[0095] また、第 10の細菌検出方法においては、上記第 9の細菌検出方法における検体液 を、加熱、電界印加又は超音波印加を行う前に、 ATP除去剤を含む除去液と混合し て、除去液により検体液から遊離 ATPを除去し、更に不活性化剤を含む不活性化液 と混合して、除去液を不活性化させることが好ましい。  [0095] In the tenth bacteria detection method, the sample solution in the ninth bacteria detection method is mixed with a removal solution containing an ATP remover before heating, applying an electric field, or applying ultrasonic waves. It is preferable to remove free ATP from the sample solution using a removing solution, and further inactivate the removing solution by mixing with an inactivating solution containing an inactivating agent.
[0096] このように遊離 ATPを除去させる除去液を導入することにより、上述したように遊離 ATPによるノイズ光を除去することができ、更に、不活性ィ匕液を導入することで、除去 液が細菌内 ATPを破壊することを防止することができる。したがって、細菌内 ATPの 測定精度を高めることができる。  [0096] By introducing the removing solution for removing free ATP as described above, noise light due to free ATP can be removed as described above, and further, by introducing an inactive solution, the removing solution can be removed. Can destroy ATP in bacteria. Therefore, measurement accuracy of ATP in bacteria can be improved.
[0097] ここで、上記第 9の細菌検出方法における不活性ィ匕液の代わりに温度を 50°C以上 に制御して ATP除去剤を不活性ィ匕させることも可能である。  [0097] Here, it is also possible to inactivate the ATP-removing agent by controlling the temperature to 50 ° C or higher instead of the inactivator in the ninth bacterium detection method.
[0098] すなわち、第 11の細菌検出方法おいては、上記第 9の細菌検出方法における検 体液に加熱、電界印加又は超音波印加を行う前に、検体液を、 ATP除去剤を含む 除去液と混合して、除去液により検体液力 遊離 ATPを除去し、更に除去液との混 合液の温度を 50°C以上に制御して ATP除去剤を不活性ィ匕させることも可能である。  [0098] That is, in the eleventh bacteria detection method, the sample solution is subjected to a removing solution containing an ATP removing agent before heating, applying an electric field or applying an ultrasonic wave to the sample solution in the ninth bacteria detection method. The ATP remover can be removed by removing the ATP removal reagent by removing the sample fluid free ATP with the remover, and controlling the temperature of the mixture with the remover to 50 ° C or higher. .
[0099] この場合、予め不活性化液を準備する必要が無ぐ温度管理のみで余分な ATP除 去剤を不活性ィ匕させることができるため、容易に細菌内 ATPの測定精度を高めるこ とでさる。  [0099] In this case, since it is not necessary to prepare an inactivating solution in advance, the excess ATP remover can be inactivated by temperature control alone, so that the measurement accuracy of ATP in bacteria can be easily increased. And monkey.
[0100] また、上記第 10の細菌検出方法におけるチャネル内で細菌内 ATPを増幅させる 増幅液を混合させてもよい。  [0100] Further, an amplification solution for amplifying ATP in bacteria in the channel in the tenth bacteria detection method may be mixed.
[0101] すなわち、第 12の細菌検出方法においては、上記第 10の細菌検出方法における 検体液中の除去液を不活性化させた後に、検体液を、細菌内 ATPを増幅させる増 幅液と混合して、検体液に含まれる細菌の細菌内 ATPを増幅させてもょ 、。 [0101] That is, in the twelfth bacterium detection method, after inactivating the removal solution in the sample solution in the tenth bacterium detection method, the sample solution is combined with an amplification solution that amplifies ATP in bacteria. By mixing, the ATP in the bacteria of the bacteria contained in the sample solution may be amplified.
[0102] このとき、増幅液は除去液を不活性ィ匕させた後に導入する。そうすると、増幅液によ り細菌内 ATPのみを増幅することができ、測定精度を更に高めることができる。 [0102] At this time, the amplification solution is introduced after inactivating the removal solution. Then, only the ATP in the bacterium can be amplified by the amplification solution, and the measurement accuracy can be further improved.
[0103] また、上記第 9一 12の細菌検出方法におけるチャネル内で細菌のフロックを分解さ せる分解液を更に混合させてもょ ヽ。 [0104] すなわち、第 13の細菌検出方法においては、上記第 9一 12の細菌検出方法にお ける検体液に加熱、電界印加又は超音波印加を行う前に、検体液を、細菌のフロック を分解させる分解液と混合して、分解液により検体液に含まれる細菌のフロックを分 解させてもよい。 [0103] Further, a decomposition solution for decomposing bacterial flocs in the channel in the ninth and twelfth bacterium detection methods may be further mixed. That is, in the thirteenth bacterium detection method, before heating, applying an electric field or applying an ultrasonic wave to the sample liquid in the ninth and twelfth bacterium detection methods, the sample liquid is subjected to bacterial flocculation. It may be mixed with a decomposition solution to be decomposed, and the decomposition solution may decompose bacterial flocs contained in the sample solution.
[0105] このとき、分解液は細菌から細菌内 ATPを抽出する前に行う。そうすると、分解液に より細菌のフロックを分散させることができ、更に細菌と抽出液の接触効率が上がるこ ととなるため抽出反応を促進することができる。  [0105] At this time, the digestion is performed before extracting intracellular ATP from the bacteria. Then, the floc of bacteria can be dispersed by the decomposed solution, and the contact efficiency between the bacteria and the extract can be increased, so that the extraction reaction can be promoted.
発明の効果  The invention's effect
[0106] 本発明によれば、細菌を十分に短時間で簡単に検出できる細菌検出装置及び細 菌検出方法を提供することができる。  According to the present invention, it is possible to provide a bacteria detection device and a bacteria detection method capable of easily detecting bacteria in a sufficiently short time.
図面の簡単な説明  Brief Description of Drawings
[0107] [図 1]本発明の細菌検出装置の第 1実施形態の主要部であるマイクロチャネルチップ を示す斜視図である。  FIG. 1 is a perspective view showing a microchannel chip which is a main part of a first embodiment of a bacterium detection device of the present invention.
[図 2]図 1のマイクロチャネルチップを構成する本体部の厚さ方向に沿った部分断面 図である。  FIG. 2 is a partial cross-sectional view along a thickness direction of a main body constituting the microchannel chip of FIG. 1.
[図 3]図 3は、第 1チャネル、第 2チャネル及び第 3チャネルの第 1及び第 2の態様を示 す断面図である。  FIG. 3 is a cross-sectional view showing first and second modes of a first channel, a second channel, and a third channel.
[図 4]図 4は、本発明の細菌検出装置の第 1実施形態を示す概略図である。  FIG. 4 is a schematic view showing a first embodiment of the bacteria detection device of the present invention.
[図 5]図 5は、本発明の細菌検出装置の第 2実施形態を示す概略図である。  FIG. 5 is a schematic view showing a second embodiment of the bacteria detection device of the present invention.
[図 6]図 6は、本発明の細菌検出装置の第 3実施形態を示す概略図である。  FIG. 6 is a schematic view showing a third embodiment of the bacteria detection device of the present invention.
[図 7]図 7は、本発明の細菌検出装置の第 4実施形態を示す概略図である。  FIG. 7 is a schematic diagram showing a fourth embodiment of the bacteria detection device of the present invention.
[図 8]図 8は、本発明の細菌検出装置の第 5実施形態を示す概略図である。  FIG. 8 is a schematic diagram showing a fifth embodiment of the bacteria detection device of the present invention.
[図 9]図 9は、本発明の細菌検出装置の第 6実施形態を示す概略図である。  FIG. 9 is a schematic view showing a sixth embodiment of the bacteria detection device of the present invention.
[図 10]図 10は、本発明の細菌検出装置の第 7実施形態を示す概略図である。  FIG. 10 is a schematic view showing a seventh embodiment of the bacteria detection device of the present invention.
[図 11]図 11は、本発明の細菌検出装置に係る第 8実施形態を示す概略図である。 符号の説明  FIG. 11 is a schematic view showing an eighth embodiment according to the bacteria detection device of the present invention. Explanation of symbols
[0108] 1· ··第 1ゥエル、 2, 2b…第 3ゥエル、 3, 3b, 3c…第 2ゥエル、 4· ··第 4ゥエル、 5· ··第 [0108] 1 ··· 1st Lell, 2, 2b… 3rd Lell, 3, 3b, 3c… 2nd Lell, 4 ··· 4th Lell, 5 ···
5ゥエル、 6…第 6ゥエル、 7…第 7ゥエル、 8…反応場 (発光部)、 8a…光検出手段、 1 0· · ·マイクロチャネルチップ、 10a…本体部、 10b…カノく一、 11, l ib, 11c, l lh- - - 第 1チャネル、 12, 12b…第 3チャネル、 13, 13b, 13c…第 2チャネル、 14, 14h- - - 第 4チャネル、 15, 15h…第 5チャネル、 16· · ·第 6チャネル、 17, 17h…第 7チャネル 、 21a, 21b…チャネル、 23a, 23b, 24a— 24c…基材、 30· · ·フィルタ、 31a…抽出 液導入部、 3 lb…発光液導入部、 31c…除去液導入部、 3 Id…不活性ィ匕液導入部 、 31e…増幅液導入部、 31f…分解液導入部、 35· · ·空洞部、 36· · ·空気抜き孔、 (1· · · チヤネノレ幅。 5 ゥ, 6… 6th, 7… 7 ゥ, 8… Reaction field (light emitting part), 8a… Light detection means, 1 0 · · · Microchannel chip, 10a ... body, 10b ... canopy, 11, lib, 11c, l lh---1st channel, 12, 12b ... 3rd channel, 13, 13b, 13c ... 2nd channel, 14, 14h---4th channel, 15, 15h… 5th channel, 16 ··· 6th channel, 17, 17h… 7th channel, 21a, 21b… channels, 23a, 23b, 24a— 24c ... substrate, 30 · · · filter, 31a ... extraction liquid introduction part, 3 lb ... luminescence liquid introduction part, 31c ... removal liquid introduction part, 3 Id ... inert deodorant liquid introduction part, 31e ... amplification liquid introduction part, 31f: Decomposed liquid introduction part, 35 · · · cavity, 36 · · · air vent hole, (1 · · · width of channel.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0109] 以下、図面を参照して本発明に係る細菌検出装置の好適な実施形態について詳 細に説明する。 Hereinafter, preferred embodiments of the bacteria detection device according to the present invention will be described in detail with reference to the drawings.
[0110] 図 1は、本発明の細菌検出装置の第 1実施形態の主要部であるマイクロチャネルチ ップを示す斜視図である。図 1に示すように、本実施形態の細菌検出装置は、マイク ロチャネルチップ 10を有しており、マイクロチャネルチップ 10は矩形平板状の本体部 10aと、本体部 10aの表面を覆うカバー 10bとを有している。本体部 10aの一面には、 両端部にそれぞれ第 1ゥエル 1と、反応場 (発光部) 8とが形成されており、第 1ゥエル 1には細菌を含む検体液が収容されるようになっている。また、第 1ゥエル 1と反応場 8 とは、本体部 10aの一面に形成される第 1チャネル 11で接続されており、第 1ゥエル 1 に検体液を導入することによって、検体液が第 1ゥエル 1から第 1チャネル 11を経て 反応場 8に送流されるようになって!/、る。  FIG. 1 is a perspective view showing a microchannel chip, which is a main part of the first embodiment of the bacteria detection device of the present invention. As shown in FIG. 1, the bacteria detection device of the present embodiment has a microchannel chip 10, and the microchannel chip 10 has a rectangular flat main body 10a and a cover 10b that covers the surface of the main body 10a. And On one surface of the main body 10a, a first well 1 and a reaction field (light emitting part) 8 are formed at both ends, and the first well 1 accommodates a sample liquid containing bacteria. ing. The first well 1 and the reaction field 8 are connected by a first channel 11 formed on one surface of the main body 10a. By introducing the sample liquid into the first well 1, the first well 1ゥ It is now sent from the well 1 to the reaction field 8 via the first channel 11!
[0111] 更に本体部 10aには、第 3ゥエル 2と、第 2ゥエル 3とが第 1チャネル 11に沿って形成 されており、第 3ゥエル 2には細菌力も細菌内 ATPを抽出させる抽出液が、第 2ゥエル 3には、細菌内 ATPの存在下に発光する発光液が収容されるようになっている。  [0111] Further, a third well 2 and a second well 3 are formed along the first channel 11 in the main body 10a, and the third well 2 has an extract solution for extracting bacteria and ATP in bacteria. However, the second well 3 is designed to contain a luminescent solution that emits light in the presence of ATP in bacteria.
[0112] また、第 3ゥエル 2は第 1チャネル 11の抽出液導入部 31aと第 3チャネル 12によって 接続され、第 2ゥエル 3は、反応場 8と第 2チャネルによって接続されている。第 3チヤ ネル 12及び第 2チャネル 13は、いずれも本体部 10aの一面上に形成されている。そ して、反応場 8は、抽出液導入部 31aよりも下流側に配置されている。従って、検体 液が第 1チャネル 11を通じて反応場 8に送流される際に、第 3ゥエル 2から第 3チヤネ ル 12を通じて抽出液が送流され、更に第 2ゥヱル 3から第 2チャネル 13を通じて発光 液が送流される。送流された抽出液及び発光液は第 1チャネル 11内で検出液と混合 されて所望の反応が行われる。なお、本実施形態の細菌検出装置において、反応場[0112] The third well 2 is connected to the extract introduction portion 31a of the first channel 11 by the third channel 12, and the second well 3 is connected to the reaction field 8 by the second channel. The third channel 12 and the second channel 13 are both formed on one surface of the main body 10a. Then, the reaction field 8 is arranged downstream of the extract introduction part 31a. Therefore, when the sample liquid is sent to the reaction field 8 through the first channel 11, the extract is sent from the third well 2 to the third channel 12, and the light is emitted from the second well 3 to the second channel 13. The liquid is sent. The sent extract solution and luminescent solution are mixed with the detection solution in the first channel 11 to perform a desired reaction. In the bacteria detection device of the present embodiment, the reaction field
8は発光液導入部 31bを兼ねている。 Reference numeral 8 also serves as a luminescent liquid introduction part 31b.
[0113] 図 2は、本体部 10aの厚さ方向に沿った部分断面図である。図 2において、第 1チヤ ネル 11の断面形状は四角形であり、第 1チャネル 11のチャネル幅 dは、 1mm以下で ある。なお、「チャネル幅」とは、本体部の厚さ方向に対して垂直の方向の長さをいう 。第 1チャネル 11の断面形状が四角形の場合は横の長さをいい、台形や三角形の 場合は方向に対して最も長い長さをいう。また、円形や半円形の場合は直径の長さ、 楕円形の場合は方向に対して最も長い径の長さをいう。なお、図示しないが、第 3チ ャネル 12及び第 2チャネル 13の断面形状も第 1チャネル 11と同様であり、チャネル 幅も第 1チャネル 11と同様である。  [0113] FIG. 2 is a partial cross-sectional view of the main body 10a along the thickness direction. In FIG. 2, the cross-sectional shape of the first channel 11 is rectangular, and the channel width d of the first channel 11 is 1 mm or less. The “channel width” means a length in a direction perpendicular to the thickness direction of the main body. When the cross-sectional shape of the first channel 11 is quadrangular, it refers to the horizontal length, and when it is trapezoidal or triangular, it refers to the longest length in the direction. In the case of a circular or semicircular shape, the length of the diameter is used. Although not shown, the cross-sectional shapes of the third channel 12 and the second channel 13 are the same as those of the first channel 11, and the channel width is the same as that of the first channel 11.
[0114] これらの第 1ゥヱル 1、第 3ゥエル 2及び第 2ゥヱル 3は検体液、抽出液及び発光液を 収容できるように表面力 垂直方向に沿って形成された孔である。  [0114] The first level 1, the third level 2 and the second level 3 are holes formed along the direction perpendicular to the surface force so that the sample liquid, the extract liquid and the luminescent liquid can be accommodated.
[0115] 更に、本体部 10aには、反応場 8に対して第 1ゥエル 1と反対側に配置される空洞部 35が形成されている。そして、空洞部 35には、本体部 10aの縁部まで延びる空気抜 き孔 36が形成されている。  [0115] Further, a cavity 35 is formed in the main body 10a on the opposite side to the first well 1 with respect to the reaction field 8. The cavity 35 has an air vent 36 extending to the edge of the main body 10a.
[0116] また上記マイクロチャネルチップ 10においては、反応場 8に隣接して光検出手段( 図示しな!、)が配置されて 、る。  [0116] Further, in the microchannel chip 10, a light detecting means (not shown!) Is arranged adjacent to the reaction field 8.
[0117] 更に、上述したカバー 10bは、第 3ゥエル 2、第 2ゥエル 3、第 1チャネル 11、第 3チヤ ネル 12及び第 2チャネル 13を密閉するように設けられている。またカバー 10bは、透 光性であることが好ましい。この場合、各ゥエル 1, 2, 3内の液体が第 1チャネル 11に 導入されかどうかを目視で確認することができ、便利である。  [0117] Furthermore, the above-described cover 10b is provided so as to seal the third well 2, the second well 3, the first channel 11, the third channel 12, and the second channel 13. The cover 10b is preferably transparent. In this case, it is convenient to visually check whether or not the liquid in each of the wells 1, 2, and 3 has been introduced into the first channel 11.
[0118] このように構成された細菌検出装置においては、第 3ゥエル 2に抽出液を、第 2ゥェ ル 3に発光液を収容して本体部 10aをカバー 10bで覆う。カバー 10bにお 、て空洞 部 35の部分を指で押圧し、空洞部 35の空間から空気抜き孔 36を通して空気を逃が し、何らかの方法で空気抜き穴 36を塞ぐ。第 1ゥエル 1に検体液を垂らした後に指を 離すと、空洞部 35の空間が負圧となるため、第 1ゥエル 1の検体液、第 3ゥエル 2の抽 出液、第 2ゥエル 3の発光液が空洞部 35に引き込まれる。その結果、まず検体液と抽 出液が抽出液導入部 31aで混合されて、検体液中の細菌から細菌内 ATPが抽出さ れ、次にその混合液と発光液が発光液導入部 3 lbで混合されて、細菌内 ATPが発 光液と反応し発光する。この発光が、図示しない光検出手段で検出される。 [0118] In the bacterium detection apparatus thus configured, the main body 10a is covered with the cover 10b while the third well 2 contains the extract and the second well 3 contains the luminescent liquid. In the cover 10b, the portion of the hollow portion 35 is pressed with a finger to release air from the space of the hollow portion 35 through the air vent hole 36 and close the air vent hole 36 by some method. If you lift your finger after dropping the sample liquid in the first well 1, the space in the cavity 35 becomes negative pressure, so the sample liquid in the first well 1, the extracted liquid in the third well 2, and the second well 3 The luminescent liquid is drawn into the cavity 35. As a result, the sample The effluent is mixed at the extract inlet 31a, and bacterial ATP is extracted from the bacteria in the sample liquid.Then, the mixture and the luminescent solution are mixed at the luminescent solution inlet 3 lb, and the bacterial ATP is Reacts with the luminescent liquid to emit light. This light emission is detected by light detection means (not shown).
[0119] このような構造を有する細菌検出装置によれば、従来技術のような分取作業が不要 となり、利便性が増すという効果を有する。すなわち、マイクロチャネルチップ 10内に おいて、検体液を収容する第 1ゥエル 1と反応場 8とが第 1チャネル 11で接続されて いるため、検体液を数秒で反応場 8に送流することができ、第 3チャネル 12及び第 2 チャネル 13が第 1チャネル 11に接続されているため、検体液が第 1ゥエル 1から反応 場 8に送流される際に、第 3ゥ ル 2に収容される抽出液と第 2ゥエル 3に収容される 発光液とを順次第 1チャネル 11に送流することができ、それぞれが第 1チャネル 11内 で混合されることにより、検体液との反応を効率よく行うことができる。  [0119] According to the bacterium detection device having such a structure, the sorting operation as in the related art is not required, and there is an effect that convenience is increased. That is, in the microchannel chip 10, the first well 1 containing the sample solution and the reaction field 8 are connected by the first channel 11, so that the sample solution is sent to the reaction field 8 in a few seconds. Since the third channel 12 and the second channel 13 are connected to the first channel 11, when the sample solution is sent from the first well 1 to the reaction chamber 8, it is stored in the third well 2. The extracted liquid and the luminescent liquid contained in the second well 3 can be sequentially sent to the first channel 11, and each is mixed in the first channel 11 to efficiently react with the sample liquid. Can do well.
[0120] 更に、第 1チャネル 11のチャネル幅 dが lmm以下であり、第 3及び第 2チャネル 12 、 13のチャネル幅 dが lmm以下であることが好ましい。この場合、検体液と抽出液及 び発光液が混合すると、拡散が極めて短時間で行われることになり、この結果、反応 を瞬時に行うことができる。その結果、従来は最速でも 1一 2時間要していた細菌の検 出を数秒で行うことができるようになる。また、チャネル幅 dが 0. 1— 500 mであると 更に好ましい。  Further, it is preferable that the channel width d of the first channel 11 is 1 mm or less, and the channel width d of the third and second channels 12 and 13 is 1 mm or less. In this case, when the sample liquid, the extract liquid, and the luminescent liquid are mixed, the diffusion is performed in an extremely short time, and as a result, the reaction can be performed instantaneously. As a result, bacteria can be detected in seconds, which used to take at most 12 hours at the maximum. Further, the channel width d is more preferably 0.1 to 500 m.
[0121] また上記マイクロチャネルチップ 10では、本体部 10aがカバー 10bで密閉されてい るため、外部からの細菌の進入が十分に抑制される。従って、従来のようにクリーン環 境中での検査や厳密な消毒等が不要であるため、極めて利便性に優れる。  [0121] In the microchannel chip 10, the main body 10a is hermetically sealed by the cover 10b, so that the invasion of bacteria from the outside is sufficiently suppressed. Therefore, it is extremely convenient because it does not require inspection in a clean environment or strict disinfection as in the past.
[0122] 上記光検出手段は、公知のものを用いることができ、例えば CCD、フォトダイオード や光電子増倍管を使用することができる。光検出手段は、反応場 8にて細菌内 ATP が発光液と反応することによって生じる光を検出する。したがって、光検出手段の設 置位置は特に限定はしないが、反応場 8の近くに設置することが好ましい。なお、マ イクロチャネルチップ 10の本体部 10a内に設置することも可能である。  [0122] As the light detecting means, known means can be used, and for example, a CCD, a photodiode, or a photomultiplier tube can be used. The light detecting means detects light generated by the reaction of ATP in bacteria with the luminescent solution in the reaction field 8. Therefore, the installation position of the light detection means is not particularly limited, but is preferably installed near the reaction field 8. In addition, it is also possible to install in the main body 10a of the microchannel chip 10.
[0123] 検体液に含まれる細菌としては、特に限定されないが食中毒を引き起こすおそれ のある細菌(例えば腸炎ビブリオ、サルモネラ菌、黄色ブドウ球菌、セレウス菌又は力 ンピロバクター菌)等が挙げられる。 [0124] また、抽出液に含まれる成分としては、細菌内 ATPを抽出できるものであれば良く 、リゾチーム、エタノールとアンモニアの混合液、メタノール、エタノール、界面活性剤 (塩化べンゼトニゥム、塩化ベンザルコ-ゥム、トリトン X-100等)、トリクロル酢酸、過 塩素酸、ファージ、抗生物質等が挙げられる。 [0123] Examples of the bacteria contained in the sample liquid include, but are not particularly limited to, bacteria that may cause food poisoning (eg, Vibrio parahaemolyticus, Salmonella, Staphylococcus aureus, Bacillus cereus or Bacillus pylobacter). [0124] The component contained in the extract may be any component capable of extracting ATP in bacteria, and may be lysozyme, a mixture of ethanol and ammonia, methanol, ethanol, a surfactant (benzetonium chloride, benzalco-chloride). Plum, Triton X-100, etc.), trichloroacetic acid, perchloric acid, phage, antibiotics and the like.
[0125] 更に、発光液に含まれる成分としては、 ATPの存在下に発光するものであればよく 、例えばルシフェラーゼ及びルシフェリンが挙げられる。  [0125] Further, the component contained in the luminescent solution may be any component that emits light in the presence of ATP, and examples thereof include luciferase and luciferin.
[0126] なお、これらの検体液、抽出液及び発光液は液状であればよぐサスペンションや ェマルジヨンであってもよ 、。  [0126] Note that these sample liquid, extract liquid and luminescent liquid may be a suspension or emulsion as long as they are liquid.
[0127] 図 3の(a)及び (b)は、第 1チャネル 11、第 3チャネル 12及び第 2チャネル 13の第 2 一第 3の態様を示す断面図である。  FIGS. 3A and 3B are cross-sectional views showing the first, third, and second aspects of the first channel 11, the third channel 12, and the second channel 13. FIG.
[0128] 図 3の(a)に示す、第 2の態様のチャネル 21aは、二つの基材を積層して形成され る流路である。すなわち、一方の基材 23aの下部と、他方の基材 23bの上部とにそれ ぞれ溝を設け、貼り合わせることによってチャネル 21aが形成される。図 3の (b)に示 す、第 3の態様のチャネル 21bは、三つの基材を積層して形成されたものである。す なわち、中間層である基材 24bに貫通溝を設け、その上部と下部に、基材 24bを挟 持するように基材 24a及び 24cを積層してチャネル 21bが形成される。なお、チヤネ ル 21a及びチャネル 21bはそれぞれ第 1チャネル 11、第 3チャネル 12、第 2チャネル 13に相当するものである。  [0128] The channel 21a according to the second embodiment shown in Fig. 3A is a flow path formed by laminating two base materials. That is, a groove is provided in a lower portion of one base material 23a and an upper portion of the other base material 23b, and the channels 21a are formed by bonding. The channel 21b according to the third embodiment shown in FIG. 3B is formed by laminating three base materials. That is, a channel 21b is formed by providing a through groove in the base material 24b as an intermediate layer, and laminating the base materials 24a and 24c on the upper and lower portions so as to sandwich the base material 24b. The channel 21a and the channel 21b correspond to the first channel 11, the third channel 12, and the second channel 13, respectively.
[0129] これらの基材 23a, 23b, 24a— 24cは任意に定めることができ、石英ガラス又はパ ィレックス(登録商標)ガラス等のガラス、 PDMS、ポリカーボネート又はポリイミド等の ポリマー、鉄、ステンレス、アルミニウム、ニッケル又は銅等のメタル、又はシリコン等を 使用することができ、積層する場合のそれぞれの基材は、同一の種類であっても異な つた種類であってもよい。  [0129] These substrates 23a, 23b, 24a-24c can be arbitrarily determined, and may be glass such as quartz glass or Pyrex (registered trademark) glass, polymers such as PDMS, polycarbonate or polyimide, iron, stainless steel, and aluminum. Metal such as nickel, copper or the like, or silicon or the like can be used. When laminating, the respective substrates may be of the same type or different types.
[0130] また、第 1チャネル 11のチャネル幅は lmm以下であり、第 3チャネル 12及び第 2チ ャネル 13のチャネル幅は lmm以下であることが好ましい。  It is preferable that the channel width of the first channel 11 is 1 mm or less, and the channel width of the third channel 12 and the second channel 13 is 1 mm or less.
[0131] チャネル幅が上記の範囲であると、このチャネル内で検体液、抽出液及び発光液 が混合した場合には、単位体積あたりの接触表面積が増加するため、反応を促進す ることができる。すなわち拡散が極めて短時間で行われることになり、この結果、反応 を瞬時に行うことができる。一方チャネル幅が lmmを超えると十分に拡散律速を低 減することができないので、本発明の目的を達成することができない。更に好ましくは チャネル幅が 0. 1— 500 /z mのときである。 [0131] When the channel width is within the above range, when the sample solution, the extract solution, and the luminescent solution are mixed in the channel, the contact surface area per unit volume increases, and thus the reaction may be promoted. it can. That is, diffusion takes place in a very short time, and as a result, the reaction Can be performed instantaneously. On the other hand, if the channel width exceeds lmm, the diffusion control cannot be sufficiently reduced, so that the object of the present invention cannot be achieved. More preferably, the channel width is 0.1-500 / zm.
[0132] また、第 1実施形態に係るマイクロチャネルチップ 10は、第 3ゥヱル 2に抽出液を、 第 2ゥエル 3に発光液を収容させている力 これらは逆にすることもでき、混合して使 用することちでさる。 [0132] Further, the microchannel chip 10 according to the first embodiment is configured such that the force of storing the extract in the third well 2 and the luminescent liquid in the second well 3 can be reversed. To use it.
[0133] すなわち、第 1ゥエル 1の検体液が第 1チャネル 11を通じて反応場 8に送流される際 に、第 3ゥエル 2から第 3チャネル 12を通じて発光液が送流され、更に第 2ゥエル 3か ら第 2チャネル 13を通じて抽出液が送流されてもよぐ同様に第 1ゥエル 1の検体液が 第 1チャネル 11を通じて反応場 8に送流される際に、第 3ゥエル 2から第 3チャネル 12 を通じて抽出液及び発光液の混合液が送流されてもよい。  That is, when the sample liquid in the first well 1 is sent to the reaction field 8 through the first channel 11, the luminescent liquid is sent from the third well 2 through the third channel 12, and further, the second well 3 Similarly, when the extract is sent through the second channel 13, the sample liquid of the first well 1 is sent to the reaction field 8 through the first channel 11, and the third well 2 A mixed liquid of the extract and the luminescent liquid may be sent through the flow passage 12.
[0134] これは抽出液が細菌内 ATPを抽出するための液であるため、細菌を含まない発光 液と混合しても反応することは無ぐ一方で発光液は ATPの存在下に発光するため の液であるため、 ATPを含まな 、抽出液と混合しても反応することはな 、からである 。また、検体液と発光液とを混合させた後、抽出液と混合させると、検体液から細菌 内 ATPが抽出されると同時に発光させることができる。また、抽出液と発光液とを混 合してから検体液と混合させるとゥエルの数やチャネルの数を減らすことができ、細菌 検出装置を簡略化できる。  [0134] Since the extract is a solution for extracting ATP in bacteria, it does not react when mixed with a luminescent solution containing no bacteria, but the luminescent solution emits light in the presence of ATP. This is because the reaction solution does not contain ATP and does not react even when mixed with the extract. In addition, when the sample liquid and the luminescent liquid are mixed and then mixed with the extract, the ATP in bacteria can be extracted from the sample liquid and emit light at the same time. When the extract solution and the luminescent solution are mixed and then mixed with the sample solution, the number of wells and the number of channels can be reduced, and the bacteria detection device can be simplified.
[0135] 図 4一図 10は、上記第 1一 7実施形態に係る細菌検出装置を示す概略図、及び図 11は本発明の細菌検出装置に係る第 8実施形態を示す概略図である。  FIG. 4 to FIG. 10 are schematic diagrams showing a bacterium detection device according to the eleventh embodiment, and FIG. 11 is a schematic diagram showing an bacterium detection device according to an eighth embodiment of the present invention.
[0136] 図 5は本発明に係る細菌検出装置の第 2実施形態を示す概略図である。図 5は、第 1実施形態に係るマイクロチャネルチップ 10の第 1チャネル 11が第 1チャネル 11とチ ャネル l ibに枝分かれした態様であり、一方は第 1実施形態と同様であるが、他方は ゥエル 2bとゥヱル 3bと反応場 8とを備え、ゥヱル 2bとチャネル l ibとはチャネル 12bで 接続され、ゥエル 3bとチャネル l ibとはチャネル 13bで接続されている。ゥエル 2bに は特定の細菌から細菌内 ATPを抽出させる特定抽出液が、ゥ ル 3bには細菌内 A TPを発光させる発光液が収容されている。したがって、一方では検体液に含まれる 細菌を検出することができ、他方では検体液に含まれる特定の細菌を検出することが できる。 FIG. 5 is a schematic view showing a second embodiment of the bacteria detection device according to the present invention. FIG. 5 shows a mode in which the first channel 11 of the microchannel chip 10 according to the first embodiment is branched into the first channel 11 and the channel l ib, one of which is similar to the first embodiment, while the other is The fuel cell system includes a well 2b, a well 3b, and a reaction field 8, and the well 2b and the channel l ib are connected by a channel 12b, and the well 3b and a channel l ib are connected by a channel 13b. The bottle 2b contains a specific extract for extracting bacterial ATP from a specific bacterium, and the bottle 3b contains a luminescent solution for emitting bacterial ATP. Therefore, on the one hand, it is possible to detect bacteria contained in the sample solution, and on the other hand, it is possible to detect specific bacteria contained in the sample solution. it can.
[0137] 図 6は本発明に係る細菌検出装置の第 3実施形態を示す概略図である。図 6は、第 1実施形態に係るマイクロチャネルチップの第 1チャネル 11が第 1チャネル 11とチヤ ネル 11cに枝分かれした態様で、一方は第 1実施形態と同様であるが、他方はゥエル 3cと反応場 8とを備え、ゥヱル 3cとチャネル 11cとはチャネル 13cで接続されている。 ゥエル 3cには細菌内 ATPを発光させる発光液が収容されている。したがって、一方 では検体液に含まれる細菌を検出することができ、他方では検体液に含まれる遊離 ATPを検出することができ、測定精度を高めることができる。  FIG. 6 is a schematic diagram showing a third embodiment of the bacteria detection device according to the present invention. FIG. 6 shows a mode in which the first channel 11 of the microchannel chip according to the first embodiment is branched into the first channel 11 and the channel 11c, one of which is similar to that of the first embodiment, and the other of which is a well 3c. A reaction field 8 is provided, and the cell 3c and the channel 11c are connected by a channel 13c. Lulu 3c contains a luminescent solution that emits ATP in bacteria. Therefore, on the one hand, bacteria contained in the sample solution can be detected, and on the other hand, free ATP contained in the sample solution can be detected, and the measurement accuracy can be improved.
[0138] 図 7は本発明に係る細菌検出装置の第 4実施形態を示す概略図である。図 7は、第 1実施形態に係るマイクロチャネルチップにカ卩え、第 4ゥエル 4と、第 5ゥエル 5とを備え 、第 4ゥエル 4には遊離 ATPを除去させる除去液力 第 5ゥエル 5には除去液を不活 性ィ匕させる不活性ィ匕液が収容されている。また、第 4ゥエル 4は最上流で第 1チャネル 11と第 4チャネル 14で接続され、第 5ゥエル 5は第 4ゥエル 4よりも下流側で且つ第 3 ゥエル 2よりも上流側で第 1チャネル 11と第 5チャネル 15で接続されている。したがつ て、検体液が第 1チャネル 11を通じて反応場 8に送流される際に、第 4ゥ ル 4力ゝら第 4チャネル 14を通じて除去液が送流されると、測定精度を低下させる遊離 ATPを除 去することができ、更に第 5ゥエル 5から第 5チャネル 15を通じて不活性ィ匕液が送流さ れると、余分な除去液を不活性化させることができる。すなわち、遊離 ATPを除去し 正確な細菌内 ATPを検出することができるため、測定精度を高めることができる。  FIG. 7 is a schematic diagram showing a fourth embodiment of the bacteria detection device according to the present invention. FIG. 7 shows the microchannel chip according to the first embodiment, which is provided with a fourth well 4 and a fifth well 5, and the fourth well 4 has a removing liquid force for removing free ATP. Contains an inert liquid for inactivating the removing liquid. The fourth well 4 is the most upstream and is connected by the first channel 11 and the fourth channel 14, and the fifth well 5 is located downstream of the fourth well 4 and upstream of the third well 2. 11 and 5th channel 15 are connected. Therefore, when the sample solution is sent to the reaction field 8 through the first channel 11 and the removing solution is sent through the fourth channel 14 and the fourth channel 14, the sample solution is released, which reduces the measurement accuracy. ATP can be removed, and when the inactive solution is sent from the fifth well 5 through the fifth channel 15, the excess removing solution can be inactivated. That is, free ATP can be removed and ATP in bacteria can be accurately detected, so that measurement accuracy can be improved.
[0139] 除去液に含まれる成分としては、アデノシンリン酸デァミナーゼ、アビラーゼ、アル カリホスファターゼ、酸性ホスファターゼ、へキソキナーゼ及びアデノシントリホスファタ ーゼ等が挙げられる。  [0139] Examples of the components contained in the removing solution include adenosine phosphate deaminase, avirase, alkaline phosphatase, acid phosphatase, hexokinase, and adenosine triphosphatase.
[0140] また、不活性ィ匕液に含まれる成分としては、例えばコホルマイシン、 EDTA、ジチォ スレイトール、硫酸アンモ-ゥム、 HEPES、 MES、 Tricine等が挙げられる。  [0140] Examples of the components contained in the inert solution include coformycin, EDTA, dithiothreitol, ammonium sulfate, HEPES, MES, and Tricine.
[0141] 図 8は本発明に係る細菌検出装置の第 5実施形態を示す概略図である。図 8は、第 1実施形態に係るマイクロチャネルチップに加え、第 6ゥエル 6を備え、第 6ゥエル 6に は細菌内 ATPを増幅させる増幅液が収容されている。また、第 6ゥエル 6は第 3ゥエル 2よりも上流側で第 1チャネル 11と第 6チャネル 16で接続されている。したがって、検 体液が第 1チャネル 11を通じて反応場 8に送流される際に、第 6ゥエル 6から第 6チヤ ネル 16を通じて増幅液が送流されると、細菌内 ATPを増量することができる。すなわ ち、微量の細菌や栄養状態に優れない細菌であっても顕著に発光させることができ、 これらの細菌を検出することができるため、測定精度を高めることができる。 FIG. 8 is a schematic diagram showing a fifth embodiment of the bacteria detection device according to the present invention. FIG. 8 includes a sixth well 6 in addition to the microchannel chip according to the first embodiment, and the sixth well 6 contains an amplification solution for amplifying ATP in bacteria. The sixth well 6 is connected upstream of the third well 2 by the first channel 11 and the sixth channel 16. Therefore, When a body fluid is sent to the reaction field 8 through the first channel 11 and the amplification solution is sent from the sixth well 6 through the sixth channel 16, the amount of ATP in bacteria can be increased. In other words, even a minute amount of bacteria or bacteria having poor nutritional status can be made to remarkably emit light, and since these bacteria can be detected, measurement accuracy can be improved.
[0142] なお、第 5実施形態に係る第 6ゥエル 6の増幅液については、第 3ゥエル 2の抽出液 や第 2ゥエル 3の発光液との送流順序が異なってもよい。  [0142] In the sixth well 6 according to the fifth embodiment, the order of sending the third well 2 extract and the second well 3 luminescent solution may be different.
[0143] また、増幅液に含まれる成分としては、特に限定されな!、がアデニル酸キナーゼ、 ポリリン酸キナーゼ、ポリリン酸、アデノシンモノリン酸、ピルべートオルトホスフェート ジキナーゼ、ホスホェノールピルビン酸、ピロリン酸、マグネシウムイオン等が挙げら れる。  [0143] The components contained in the amplification solution are not particularly limited !, but are adenylate kinase, polyphosphate kinase, polyphosphate, adenosine monophosphate, pyruvate orthophosphate dikinase, phosphoenolpyruvate, and pyrroline. Acids and magnesium ions are exemplified.
[0144] 図 9は本発明に係る細菌検出装置の第 6実施形態を示す概略図である。図 9は、第 4実施形態に係る第 4ゥエル 4及び第 5ゥエル 5と第 5実施形態に係る第 6ゥエル 6を備 えたマイクロチャネルチップである。したがって、遊離 ATPを除去することができると 同時に細菌内 ATPを増幅させることができるため、測定精度を高めることができる。 なお、送流順序には留意を要する。すなわち、遊離 ATPを増幅させないためにも、 遊離 ATPを除去し、除去液を不活性化させた後に増幅液、抽出液及び発光液を送 流する必要がある。  FIG. 9 is a schematic diagram showing a sixth embodiment of the bacteria detection device according to the present invention. FIG. 9 shows a microchannel chip provided with fourth and fourth wells 4 and 5 according to the fourth embodiment and sixth well 6 according to the fifth embodiment. Therefore, since ATP in bacteria can be amplified at the same time as free ATP can be removed, measurement accuracy can be improved. Care must be taken in the order of the flow. That is, in order not to amplify the free ATP, it is necessary to remove the free ATP, inactivate the removing solution, and then send the amplification solution, the extract solution, and the luminescent solution.
[0145] 図 10は本発明に係る細菌検出装置の第 7実施形態を示す概略図である。図 10は 、第 1実施形態に係るマイクロチャネルチップに加え、第 7ゥエル 7を備え、第 7ゥエル 7には細菌のフロックを分解させる分解液が収容されている。また、第 7ゥエル 7は第 3 ゥエル 2よりも上流側で第 1チャネル 11と第 7チャネル 17で接続されている。したがつ て、検体液が第 1チャネル 11を通じて反応場 8に送流される際に、第 7ゥ ル 7から第 7チャネル 17を通じて分解液が送流されると、細菌のフロックを分解することができ、 細菌のフロックを分散することができるため、細菌と抽出液の接触効率が上がり、抽 出反応を促進させることができる。  FIG. 10 is a schematic view showing a seventh embodiment of the bacteria detection device according to the present invention. FIG. 10 includes a seventh well 7 in addition to the microchannel chip according to the first embodiment, and the seventh well 7 contains a decomposition solution for decomposing bacterial flocs. Further, the seventh well 7 is connected to the first channel 11 and the seventh channel 17 on the upstream side of the third well 2. Therefore, when the sample solution is sent to the reaction field 8 through the first channel 11 and the digestion solution is sent through the seventh channel 7 to the seventh channel 17, the bacterial floc can be decomposed. Since the bacterial flocs can be dispersed, the contact efficiency between the bacteria and the extract can be increased, and the extraction reaction can be promoted.
[0146] また、分解液に含まれる成分としては、特に限定されな!、が Tris— Hcl、 HEPES、 PBS、 MES、 Tricine等が挙げられる。  [0146] The components contained in the decomposition solution are not particularly limited !, but include Tris-Hcl, HEPES, PBS, MES, Tricine and the like.
[0147] 図 11は本発明に係る細菌検出装置の第 8実施形態を示す概略図である。図 11は 、検体液を収容する第 1ゥエル 1に検体液を導入すると、第一一第五の経路 A— E〖こ 送流され、それぞれで個別の検出を行うことができる装置である。まず、導入された検 体液は、フィルタ 30を通して不溶成分を排除し、次いで除去液と混合して遊離 ATP を除去し、更に不活性化液と混合して、余分な除去液を不活性化させる。更に分解 液で細菌のフロックを分散させる。こうして得られた混合液を第一一第五経路 A— E に分岐させる。そして、第一経路 Aにおいては、増幅液と抽出液により細菌内 ATPを 抽出、増幅させ、発光液により発光させ、光検出手段 8aにより、細菌を検出すること ができる。また、第二経路 Bにおいては、増幅液と特定抽出液 Aにより特定の細菌 A の細菌内 ATPを抽出、増幅させ、発光液により発光させ、光検出手段 8aにより、細 菌 Aを検出することができる。更に、第三経路 Cにおいては、増幅液と特定抽出液 B により特定の細菌 Bの細菌内 ATPを抽出、増幅させ、発光液により発光させ、光検出 手段 8aにより、細菌 Bを検出することができる。また、第四経路 Dにおいては、増幅液 と発光液により遊離 ATPを検出することができる。そして、第五経路 Eにおいては、 A TPを導入し増幅液と発光液により試薬の活性度を確認することができる。 FIG. 11 is a schematic diagram showing an eighth embodiment of the bacteria detection device according to the present invention. Figure 11 shows When the sample liquid is introduced into the first well 1 containing the sample liquid, the first to fifth paths A to E are sent and the individual liquids can be individually detected. First, the introduced sample solution removes insoluble components through a filter 30 and then mixes with a removing solution to remove free ATP, and further mixes with an inactivating solution to inactivate excess removing solution. . In addition, the floc of the bacteria is dispersed with the decomposition solution. The mixture thus obtained is branched to the first to fifth paths A to E. Then, in the first route A, the ATP in the bacterium is extracted and amplified by the amplifying solution and the extract, the luminescence is emitted by the luminescent solution, and the bacterium can be detected by the light detecting means 8a. In the second pathway B, the bacterial ATP of the specific bacterium A is extracted and amplified by the amplifying solution and the specific extract A, and the luminescence is emitted by the luminescent solution. Can be. Further, in the third route C, it is possible to extract and amplify ATP in the bacterium of the specific bacterium B with the amplification solution and the specific extract B, emit the luminescence with the luminescent solution, and detect the bacterium B with the light detection means 8a. it can. In the fourth route D, free ATP can be detected by the amplification solution and the luminescence solution. Then, in the fifth route E, ATP is introduced, and the activity of the reagent can be confirmed by the amplification solution and the luminescence solution.
[0148] したがって、経路 Aによってすべての細菌を検出することができ、経路 B及び Cによ つて特定の細菌 A及び Bを検出することができ、経路 D及び Eによって遊離 ATPの検 出及び試薬の活性度の確認を行うことができる。また、この経路は拡散が極めて短時 間で行われることになり、この結果、反応を瞬時に行うことができ、迅速且つ正確に細 菌を検出することができる。 [0148] Therefore, all bacteria can be detected by pathway A, specific bacteria A and B can be detected by pathways B and C, and free ATP detection and reagents can be detected by pathways D and E. Can be confirmed. In addition, the diffusion in this route is performed in a very short time. As a result, the reaction can be performed instantaneously, and the bacteria can be detected quickly and accurately.
[0149] 本発明の細菌検出装置は、上記実施形態に限定されるものではない。例えば上記 第 1実施形態では、カバー 10bを指で押圧することにより空洞部 35に負圧部を作り、 それによつて各ゥエルからの液体を第 1チャネル 11に導入している。すなわち、カバ 一 10b、空洞部 35及び空気抜き孔 36が移送手段を構成しているが、本発明の細菌 検出装置は、移送手段としてバルブやポンプ等が用いられてもよい。このような場合 でも、各ゥエル力 の液体を一括して且つ確実且つ容易に第 1チャネルに導入するこ とができる。また、逆止弁を設けることも有用である。なお、これらはマイクロチャネル チップ内に設置することも可能である。  [0149] The bacteria detection device of the present invention is not limited to the above embodiment. For example, in the first embodiment, a negative pressure portion is formed in the hollow portion 35 by pressing the cover 10b with a finger, whereby the liquid from each well is introduced into the first channel 11. That is, the cover 10b, the cavity 35, and the air vent 36 constitute the transfer means, but the bacteria detection device of the present invention may use a valve, a pump, or the like as the transfer means. Even in such a case, it is possible to collectively and surely and easily introduce the liquids of each pneumatic force into the first channel. It is also useful to provide a check valve. These can be installed in a microchannel chip.
[0150] このように移送手段を設けることによって、各ゥエルに収容される液体を発光部に移 送させることが容易となる。なお、これらの移送手段はゥエル数やチャネル数に影響 することなぐ各ゥエル力 の液体を一括して且つ確実に第 1チャネルに導入すること ができる。 [0150] By providing the transfer means as described above, the liquid contained in each well is transferred to the light emitting unit. It becomes easy to send. In addition, these transfer means can collectively and surely introduce the liquids of each gell force into the first channel without affecting the number of wells and the number of channels.
[0151] また本発明の細菌検出装置は、第 1チャネル 11を加熱する加熱手段、第 1チヤネ ル 11に電界を印加する電界印加手段、及び第 1チャネル 11に超音波を印加する超 音波印加手段のうちの少なくとも 1種以上を備えることが好ましい。  [0151] Further, the bacteria detection device of the present invention includes a heating means for heating the first channel 11, an electric field applying means for applying an electric field to the first channel 11, and an ultrasonic wave application for applying an ultrasonic wave to the first channel 11. It is preferable to provide at least one or more of the means.
[0152] 細菌検出装置がこれらの手段を備えることにより、抽出液に代えて、これらの手段で 細菌から細菌内 ATPを抽出することができる。したがって、第 3ゥエルが不要となるた め、更に装置構造を簡単にすることができる。なお、これらは抽出反応のみならず、 発光させる反応等にも応用させることができる。また、これらの手段は複数並列して設 置することもでき、マイクロチャネルチップ内に設置することも可能である。  [0152] When the bacteria detection device is provided with these means, ATP in bacteria can be extracted from bacteria by these means instead of the extract. Therefore, since the third well is not required, the structure of the device can be further simplified. These can be applied not only to the extraction reaction, but also to the reaction for emitting light. Also, a plurality of these means can be installed in parallel, and can be installed in a microchannel chip.
[0153] 更にまた、第 1チャネルにおいて、除去液導入部より下流側の少なくとも 1部の温度 を 50°C以上に制御して ATP除去剤を不活性ィ匕させる温度制御手段を更に備えるこ とが好ましい。この場合、温度を制御するだけで余分な除去液を不活性化させること ができる。従って、不活性ィ匕液が不要となるため、不活性ィ匕液を収容するためのゥェ ルゃ不活性化液を送流するためのチャネルを省くことができ、マイクロチャネルチップ の構造を簡素にすることができる。  [0153] Furthermore, the first channel may further include temperature control means for controlling the temperature of at least one portion downstream of the removing solution introduction portion to 50 ° C or more to inactivate the ATP removing agent. Is preferred. In this case, it is possible to inactivate the excess removing solution only by controlling the temperature. Therefore, since the inactive liquid is unnecessary, a channel for sending the inactivating liquid for containing the inactive liquid can be omitted, and the structure of the microchannel chip can be reduced. Can be simplified.
[0154] また上記実施形態では、細菌の検出の際に第 3ゥエル、第 2ゥエルに抽出液、発光 液をそれぞれ収容している力 第 3ゥエル及び第 2ゥエルには、予め抽出液と発光液 を収容させておくのが好ましい。予め抽出液と発光液を収容していれば、検体液を第 1ゥエルに導入するのみで細菌検出を行うことができ、環境を選ばず、簡便に検出精 度の高い測定ができる。更に、除去液、不活性化、増幅液、分解液も必要に応じて 予め収容させておくことも可能である。  In the above embodiment, when bacteria are detected, the extraction liquid and the luminescent liquid are stored in the third and second wells, respectively. It is preferable that the liquid is stored. If the extract solution and the luminescent solution are stored in advance, bacteria can be detected simply by introducing the sample solution into the first well, and measurement with high detection accuracy can be easily performed regardless of the environment. Furthermore, a removing solution, an inactivating solution, an amplifying solution, and a decomposing solution can be stored in advance as necessary.
[0155] 更にこの場合、抽出液と発光液の温度を制御する制御手段を備えることが好ましい 。温度制御手段はマイクロチャネルチップをヒーターブロックで上下から挟むように設 置することができ、ヒーターブロックには温度センサが電気的に接続される。そして、 温度センサで得られた温度に基づいてヒーターブロックの温度が制御される。  [0155] Further, in this case, it is preferable to provide a control means for controlling the temperatures of the extraction liquid and the luminescent liquid. The temperature control means can be provided so as to sandwich the microchannel chip from above and below with a heater block, and a temperature sensor is electrically connected to the heater block. Then, the temperature of the heater block is controlled based on the temperature obtained by the temperature sensor.
[0156] このように温度を制御することによって、本発明の装置内で行われる反応に最適な 環境を提供することができる。例えば、温度を抽出液や発光液等にとって最適な値と することによって、反応速度を更に高めることができ、更には、温度をその値で維持 すること〖こよって、反応を安定化することができる。 [0156] By controlling the temperature in this manner, it is possible to optimize the reaction performed in the apparatus of the present invention. Environment can be provided. For example, the reaction rate can be further increased by setting the temperature at an optimum value for the extract, the luminescent liquid, etc., and furthermore, the reaction can be stabilized by maintaining the temperature at that value. it can.
[0157] また、マイクロチャネルチップは冷凍装置 (温度制御手段)等によって冷凍して保存 することが好ましい。冷凍保存を行えば、細菌が増殖したり不活性ィ匕することなく長期 間保存することができる。また、冷凍したマイクロチャネルチップは解凍することにより 用!/、ることができる。 [0157] Further, the microchannel chip is preferably frozen and stored by a freezer (temperature control means) or the like. If stored frozen, bacteria can be stored for a long period of time without multiplying or inactivating bacteria. Also, frozen microchannel chips can be used by thawing.
産業上の利用可能性  Industrial applicability
[0158] 本発明の細菌検出装置及び細菌検出方法は、細菌を十分に短時間で簡単に検出 できることから、食品業界等において、多くの商品に対し細菌検出試験を要する場合 に特に適用できる。 [0158] Since the bacteria detection device and the bacteria detection method of the present invention can easily detect bacteria in a sufficiently short time, they can be particularly applied to the food industry and the like when a bacteria detection test is required for many commodities.

Claims

請求の範囲 The scope of the claims
[1] 細菌を含む検体液を収容するための第 1ゥエル、  [1] 1st well for containing a sample solution containing bacteria,
前記細菌内 ATPの存在下で発光する発光液を収容するための第 2ゥエル、 前記細菌内 ATPと前記発光液とを接触させる発光部、  A second well for containing a luminescent solution that emits light in the presence of the intracellular ATP; a light emitting unit that contacts the intracellular ATP with the luminescent solution;
前記第 1ゥエルと前記発光部とを接続し、発光液導入部を有する第 1チャネル、 前記発光液導入部と前記第 2ゥエルとを接続する第 2チャネル  A first channel connecting the first well to the light emitting unit and having a luminescent liquid introduction unit; a second channel connecting the luminescent liquid introduction unit to the second well;
を有するマイクロチャネルチップと、  A microchannel chip having
前記細菌力 細菌内 ATPを抽出させる抽出手段と、  Extraction means for extracting ATP in bacteria,
前記細菌内 ATPと前記発光液との接触により生じる光を検出する光検出手段と、 前記第 1ゥエルに収容される液体を前記発光部に移送させ、前記第 2ゥエルに収容 される液体を前記第 1チャネルに移送させるための移送手段と、  Light detection means for detecting light generated by the contact between the ATP in the bacteria and the luminescent liquid; transferring the liquid stored in the first well to the light emitting unit; Means for transferring to the first channel;
を備えており、且つ、  , And
前記第 1チャネルのチャネル幅が lmm以下である、細菌検出装置。  The bacteria detection device, wherein a channel width of the first channel is 1 mm or less.
[2] 前記第 1チャネルが、前記細菌カゝら細菌内 ATPを抽出させる抽出液が導入される 抽出液導入部を有し、 [2] The first channel has an extract introducing portion into which an extract for extracting ATP in the bacterial capilla is introduced,
前記抽出手段が、前記マイクロチャネルチップに含まれ、且つ前記抽出液を収容 するための第 3ゥエルと、前記抽出液導入部と前記第 3ゥエルとを接続する第 3チヤネ ルと、を備えており、且つ  The extraction means includes a third well included in the microchannel chip and containing the extract, and a third channel connecting the extract introduction part and the third well. And
前記移送手段が、前記第 1ゥエルに収容される液体を前記発光部に移送させ、前 記第 3ゥエルに収容される液体を前記第 1チャネル移送させることが可能となっている 、請求項 1記載の細菌検出装置。  The transfer means is capable of transferring the liquid stored in the first well to the light emitting unit and transferring the liquid stored in the third well to the first channel. The bacterium detection device according to claim 1.
[3] 前記第 1チャネルが、 ATP除去剤を含む除去液が導入される除去液導入部、及び ATP除去剤を不活性化させる不活性化剤を含む不活性ィ匕液が導入される不活性ィ匕 液導入部を更に有し、 [3] The first channel is provided with a removing solution introducing portion into which a removing solution containing an ATP removing agent is introduced, and an inert solution containing an inactivating agent for inactivating the ATP removing agent. Further comprising an activation liquid introduction part,
前記マイクロチャネルチップが、  The microchannel chip,
前記除去液を収容するための第 4ゥエルと、  A fourth well for containing the removal solution;
前記不活性ィ匕液を収容するための第 5ゥエルと、  A fifth well for containing the inert liquid;
前記除去液導入部と前記第 4ゥエルとを接続する第 4チャネルと、 前記不活性ィ匕液導入部と前記第 5ゥエルとを接続する第 5チャネルと、を更に備え ており、 A fourth channel connecting the removal solution introduction section and the fourth well, A fifth channel connecting the inactive liquid introduction part and the fifth well;
前記第 1チャネルにおいて、前記除去液導入部が前記抽出液導入部よりも上流側 に設けられており、  In the first channel, the removal liquid introduction section is provided upstream of the extract introduction section,
前記不活性化液導入部が前記除去液導入部の下流側であって前記抽出液導入 部の上流側に設けられており、且つ、  The inactivating liquid introduction section is provided downstream of the removal liquid introduction section and upstream of the extract introduction section, and
前記移送手段が前記第 4及び第 5ゥエルに収容される液体を前記第 1チャネルに 移送することが可能となっている、請求項 2に記載の細菌検出装置。  3. The bacteria detection device according to claim 2, wherein the transfer means is capable of transferring the liquid contained in the fourth and fifth wells to the first channel.
[4] 前記第 1チャネルが、 ATP除去剤を含む除去液が導入される除去液導入部を更に 有し、 [4] The first channel further has a removing solution introducing portion into which a removing solution containing an ATP removing agent is introduced,
前記マイクロチャネルチップが、  The microchannel chip,
前記除去液を収容するための第 4ゥエルと、  A fourth well for containing the removal solution;
前記除去液導入部と前記第 4ゥエルとを接続する第 4チャネルと、  A fourth channel connecting the removal solution introduction section and the fourth well,
前記除去液を温度 50°C以上に制御して ATP除去剤を不活性ィ匕させる温度制御 手段と、  Temperature control means for controlling the temperature of the removing solution to 50 ° C. or higher to inactivate the ATP removing agent,
を更に備えており、  Is further provided,
前記第 1チャネルにおいて、前記除去液導入部が前記抽出液導入部よりも上流側 に設けられており、  In the first channel, the removal liquid introduction section is provided upstream of the extract introduction section,
前記温度制御手段によって温度が制御される温度制御部が前記除去液導入部の 下流側であって前記抽出液導入部の上流側の部分の温度を制御することが可能で あり、且つ、  A temperature control unit whose temperature is controlled by the temperature control unit can control a temperature of a portion downstream of the removal liquid introduction unit and upstream of the extraction liquid introduction unit; and
前記移送手段が前記第 4ゥエルに収容される液体を前記第 1チャネルに移送するこ とが可能となっている、請求項 2記載の細菌検出装置。  3. The bacteria detection device according to claim 2, wherein the transfer means is capable of transferring the liquid contained in the fourth well to the first channel.
[5] 前記第 1チャネルが、細菌内 ATPを増幅させる増幅液が導入される増幅液導入部 を更に有し、 [5] The first channel further has an amplification solution introduction part into which an amplification solution for amplifying ATP in bacteria is introduced,
前記マイクロチャネルチップが、  The microchannel chip,
前記増幅液を収容するための第 6ゥエルと、  A sixth well for containing the amplification solution,
前記増幅液導入部と前記第 6ゥエルとを接続する第 6チャネルと、 を更に備えており、 A sixth channel connecting the amplification solution introduction section and the sixth well, Is further provided,
前記第 1チャネルにお!、て、前記増幅液導入部が前記不活性化液導入部の下流 側に設けられおり、且つ、  In the first channel, the amplification liquid introduction section is provided downstream of the inactivation liquid introduction section, and
前記移送手段が前記第 6ゥエルに収容される液体を前記第 1チャネルに移送するこ とが可能となっている、請求項 3記載の細菌検出装置。  4. The bacteria detection device according to claim 3, wherein the transfer means is capable of transferring the liquid contained in the sixth well to the first channel.
[6] 前記第 1チャネルが、細菌のフロックを分解させる分解液が導入される分解液導入 部を更に有し、 [6] The first channel further has a decomposition solution introducing section into which a decomposition solution for decomposing bacterial flocs is introduced,
前記マイクロチャネルチップが、  The microchannel chip,
前記分解液を収容する第 7ゥエルと、  A seventh well containing the decomposition solution;
前記分解液導入部と前記第 7ゥエルとを接続する第 7チャネルと、  A seventh channel connecting the decomposition solution introduction section and the seventh well,
を更に備えており、  Is further provided,
前記第 1チャネルにお!ヽて、前記分解液導入部が前記抽出液導入部よりも上流側 に設けられており、且つ、  In the first channel, the decomposition solution introduction section is provided upstream of the extract solution introduction section, and
前記移送手段が前記第 7ゥエルに収容される液体を前記第 1チャネルに移送するこ とが可能となっている、請求項 2— 5のいずれか一項に記載の細菌検出装置。  6. The bacteria detection device according to claim 2, wherein the transfer means is capable of transferring the liquid contained in the seventh well to the first channel.
[7] 前記マイクロチャネルチップにお!、て、前記第 2ゥエル、前記第 3ゥエル、及び前記 第 6ゥヱルのうちのいずれか一つのゥエルが他のゥヱルを兼ねている、請求項 5記載 の細菌検出装置。 [7] The microchannel chip according to claim 5, wherein any one of the second well, the third well, and the sixth well also serves as another well. Bacteria detection device.
[8] 前記第 1チャネルが、細菌内 ATPを増幅させる増幅液が導入される増幅液導入部 、及び細菌のフロックを分解させる分解液が導入される分解液導入部を更に有し、 前記マイクロチャネルチップが、  [8] The first channel further includes an amplification solution introduction section into which an amplification solution for amplifying ATP in bacteria is introduced, and a decomposition solution introduction section into which a decomposition solution for decomposing bacterial flocs is introduced, Channel chip
前記増幅液を収容するための第 6ゥエルと、  A sixth well for containing the amplification solution,
前記分解液を収容する第 7ゥエルと、  A seventh well containing the decomposition solution;
前記増幅液導入部と前記第 6ゥエルとを接続する第 6チャネルと、  A sixth channel connecting the amplification solution introduction section and the sixth well,
前記分解液導入部と前記第 7ゥエルとを接続する第 7チャネルと、  A seventh channel connecting the decomposition solution introduction section and the seventh well,
を更に備えており、  Is further provided,
前記第 1チャネルにお!ヽて、前記分解液導入部が前記抽出液導入部よりも上流側 に設けられており、 前記第 1チャネルにお!、て、前記増幅液導入部が前記不活性化液導入部の下流 側に設けられおり、且つ、 In the first channel, the decomposition solution introduction section is provided upstream of the extract solution introduction section, In the first channel, the amplification liquid introduction section is provided downstream of the inactivation liquid introduction section, and
前記第 2ゥエル、前記第 3ゥエル、前記第 4ゥエル、前記第 5ゥエル、前記第 6ゥエル 、及び前記第 7ゥェルカもなる群より選ばれる少なくとも 1つのゥエルに、そのゥエルに 対応する前記抽出液、前記発光液、前記除去液、前記不活性化液、前記増幅液、 及び前記分解液が収容されている、請求項 3記載の細菌検出装置。  The extract corresponding to at least one well selected from the group consisting of the second well, the third well, the fourth well, the fifth well, the sixth well, and the seventh well, and the extract corresponding to the well. 4. The bacteria detection device according to claim 3, wherein the luminescence solution, the removal solution, the inactivation solution, the amplification solution, and the decomposition solution are accommodated.
[9] 前記マイクロチャネルチップ内の液体の温度を制御する制御手段を更に備える、請 求項 1一 8のいずれか一項に記載の細菌検出装置。  [9] The bacteria detection device according to any one of claims 118, further comprising control means for controlling a temperature of a liquid in the microchannel chip.
[10] 前記抽出手段が、前記第 1チャネルを加熱する加熱手段、前記第 1チャネルに電 界を印加する電界印加手段、及び前記第 1チャネルに超音波を印加する超音波印 加手段のうちの少なくとも 1種以上の手段を備える、請求項 1記載の細菌検出装置。  [10] The extraction means may include a heating means for heating the first channel, an electric field applying means for applying an electric field to the first channel, and an ultrasonic applying means for applying ultrasonic waves to the first channel. The bacterium detection device according to claim 1, further comprising at least one or more means.
[11] 前記第 1チャネルが、 ATP除去剤を含む除去液が導入される除去液導入部及び A TP除去剤を不活性化させる不活性化剤を含む不活性ィ匕液が導入される不活性ィ匕 液導入部を更に有し、  [11] The first channel is provided with a removing solution introducing portion into which a removing solution containing an ATP removing agent is introduced and an inert solution containing an inactivating agent for inactivating the ATP removing agent. Further comprising an activation liquid introduction part,
前記マイクロチャネルチップが、  The microchannel chip,
前記除去液を収容するための第 4ゥエルと、  A fourth well for containing the removal solution;
前記不活性ィ匕液を収容するための第 5ゥエルと、  A fifth well for containing the inert liquid;
前記除去液導入部と前記第 4ゥエルとを接続する第 4チャネルと、  A fourth channel connecting the removal solution introduction section and the fourth well,
前記不活性ィ匕液導入部と前記第 5ゥエルとを接続する第 5チャネルと、を更に備え ており、  A fifth channel connecting the inactive liquid introduction part and the fifth well;
前記第 1チャネルにおいて、前記除去液導入部が前記加熱手段、前記電界印加 手段又は前記超音波印加手段によって細菌から細菌内 ATPを抽出する抽出部より も上流側に設けられており、  In the first channel, the removal liquid introduction unit is provided upstream of an extraction unit that extracts ATP in bacteria from bacteria by the heating unit, the electric field application unit, or the ultrasonic application unit,
前記不活性化液導入部が前記除去液導入部の下流側であって前記抽出部の上 流側に設けられており、且つ、  The deactivating liquid introduction part is provided downstream of the removal liquid introduction part and upstream of the extraction part, and
前記移送手段が前記第 4及び第 5ゥエルに収容される液体を前記第 1チャネルに 移送することが可能となっている、請求項 10記載の細菌検出装置。  11. The bacteria detection device according to claim 10, wherein the transfer means is capable of transferring the liquid contained in the fourth and fifth wells to the first channel.
[12] 前記第 1チャネルが、 ATP除去剤を含む除去液が導入される除去液導入部を更に 有し、 [12] The first channel further includes a removing solution introducing section into which a removing solution containing an ATP removing agent is introduced. Have
前記マイクロチャネルチップが、  The microchannel chip,
前記除去液を収容するための第 4ゥエルと、  A fourth well for containing the removal solution;
前記除去液導入部と前記第 4ゥエルとを接続する第 4チャネルと、  A fourth channel connecting the removal solution introduction section and the fourth well,
前記除去液を温度を 50°C以上に制御して ATP除去剤を不活性ィ匕させる温度制御 手段と、  Temperature control means for controlling the temperature of the removing solution to 50 ° C. or higher to inactivate the ATP removing agent,
を更に備えており、  Is further provided,
前記第 1チャネルにおいて、前記除去液導入部が前記加熱手段、前記電界印加 手段又は前記超音波印加手段によって細菌から細菌内 ATPを抽出する抽出部より も上流側に設けられており、  In the first channel, the removal liquid introduction unit is provided upstream of an extraction unit that extracts ATP in bacteria from bacteria by the heating unit, the electric field application unit, or the ultrasonic application unit,
前記温度制御手段によって温度が制御される温度制御部が前記除去液導入部の 下流側であって前記抽出部の上流側の部分の温度を制御することが可能であり、且 つ、  A temperature control unit whose temperature is controlled by the temperature control means is capable of controlling the temperature of a portion downstream of the removing liquid introduction unit and upstream of the extraction unit; and
前記移送手段が前記第 4ゥエルに収容される液体を前記第 1チャネルに移送するこ とが可能となっている、請求項 10記載の細菌検出装置。  11. The bacteria detection device according to claim 10, wherein the transfer means is capable of transferring the liquid contained in the fourth well to the first channel.
[13] 前記第 1チャネルが、細菌内 ATPを増幅させる増幅液が導入される増幅液導入部 を更に有し、 [13] The first channel further has an amplification solution introduction section into which an amplification solution for amplifying ATP in bacteria is introduced,
前記マイクロチャネルチップが、  The microchannel chip,
前記増幅液を収容するための第 6ゥエルと、  A sixth well for containing the amplification solution,
前記増幅液導入部と前記第 6ゥエルとを接続する第 6チャネルと、  A sixth channel connecting the amplification solution introduction section and the sixth well,
を更に備えており、  Is further provided,
前記第 1チャネルにお!、て、前記増幅液導入部が前記不活性化液導入部の下流 側に設けられおり、且つ、  In the first channel, the amplification liquid introduction section is provided downstream of the inactivation liquid introduction section, and
前記移送手段が前記第 6ゥエルに収容される液体を前記第 1チャネルに移送するこ とが可能となっている、請求項 11記載の細菌検出装置。  12. The bacteria detection device according to claim 11, wherein the transfer means is capable of transferring the liquid contained in the sixth well to the first channel.
[14] 前記第 1チャネルが、細菌のフロックを分解させる分解液が導入される分解液導入 部を更に有し、 [14] The first channel further has a digestion solution introducing section into which a digestion solution for decomposing bacterial flocs is introduced,
前記マイクロチャネルチップが、 前記分解液を収容する第 7ゥエルと、 The microchannel chip, A seventh well containing the decomposition solution;
前記分解液導入部と前記第 7ゥエルとを接続する第 7チャネルと、  A seventh channel connecting the decomposition solution introduction section and the seventh well,
を更に備えており、  Is further provided,
前記第 1チャネルにおいて、前記分解液導入部が前記加熱手段、前記電界印加 手段又は前記超音波印加手段によって細菌から細菌内 ATPを抽出する抽出部より も上流側に設けられており、且つ、  In the first channel, the decomposition solution introduction unit is provided upstream of an extraction unit that extracts ATP in bacteria from bacteria by the heating unit, the electric field application unit, or the ultrasonic application unit, and
前記移送手段が前記第 7ゥエルに収容される液体を前記第 1チャネルに移送するこ とが可能となっている、請求項 10— 13のいずれか一項に記載の細菌検出装置。  14. The bacteria detection device according to claim 10, wherein the transfer means is capable of transferring the liquid contained in the seventh well to the first channel.
[15] 前記第 1チャネルが、細菌内 ATPを増幅させる増幅液が導入される増幅液導入部 及び細菌のフロックを分解させる分解液が導入される分解液導入部を更に有し、 前記マイクロチャネルチップが、 [15] The first channel further includes an amplification solution introduction section into which an amplification solution for amplifying ATP in bacteria is introduced, and a decomposition solution introduction section into which a decomposition solution for decomposing bacterial flocs is introduced, The tip is
前記増幅液を収容するための第 6ゥエルと、  A sixth well for containing the amplification solution,
前記分解液を収容する第 7ゥエルと、  A seventh well containing the decomposition solution;
前記増幅液導入部と前記第 6ゥエルとを接続する第 6チャネルと、  A sixth channel connecting the amplification solution introduction section and the sixth well,
前記分解液導入部と前記第 7ゥエルとを接続する第 7チャネルと、  A seventh channel connecting the decomposition solution introduction section and the seventh well,
を更に備えており、  Is further provided,
前記第 1チャネルにおいて、前記分解液導入部が前記加熱手段、前記電界印加 手段又は前記超音波印加手段によって細菌から細菌内 ATPを抽出する抽出部より も上流側に設けられており、  In the first channel, the decomposition solution introduction unit is provided upstream of an extraction unit that extracts ATP in bacteria from bacteria by the heating unit, the electric field application unit, or the ultrasonic application unit,
前記第 1チャネルにお!、て、前記増幅液導入部が前記不活性化液導入部の下流 側に設けられおり、且つ、  In the first channel, the amplification liquid introduction section is provided downstream of the inactivation liquid introduction section, and
前記第 2ゥエル、前記第 4ゥエル、前記第 5ゥエル、前記第 6ゥエル、及び前記第 7ゥ エル力もなる群より選ばれる少なくとも 1つのゥエルに、そのゥエルに対応する前記発 光液、前記除去液、前記不活性化液、前記増幅液、及び前記分解液が収容されて いる、請求項 11記載の細菌検出装置。  At least one well selected from the group consisting of the second well, the fourth well, the fifth well, the sixth well, and the seventh well is also provided with the light emitting liquid corresponding to the well and the removal. 12. The bacteria detection device according to claim 11, wherein the bacteria detection device contains a solution, the inactivation solution, the amplification solution, and the decomposition solution.
[16] 前記マイクロチャネルチップ内の液体の温度を制御する制御手段を更に備える、請 求項 10— 15のいずれか一項に記載の細菌検出装置。 ネル内で、細菌を含む検体液から、前記細菌の細菌内 ATPを抽出し、前記細菌内[16] The bacteria detection device according to any one of claims 10 to 15, further comprising control means for controlling a temperature of a liquid in the microchannel chip. Extract the ATP in the bacteria from the sample solution containing the bacteria in the
ATPの存在下、発光液を発光させ、該発光を検出する、細菌検出方法。 A method for detecting bacteria, which comprises causing a luminescent solution to emit light in the presence of ATP and detecting the emitted light.
[18] 前記検体液と、前記細菌力 細菌内 ATPを抽出させる抽出液と、前記細菌内 ATP の存在下に発光する前記発光液とを混合し、前記抽出液により前記細菌から前記細 菌内 ATPを抽出する、請求項 17記載の細菌検出方法。 [18] The sample solution, the extract for extracting the bacterial force ATP in the bacterium, and the luminescent solution emitting light in the presence of the ATP in the bacterium are mixed, and the extract is used to separate the bacterium from the bacteria 18. The method for detecting bacteria according to claim 17, wherein ATP is extracted.
[19] 前記抽出液が特定の細菌のみ力 選択的に ATPを抽出する特定抽出液である、 請求項 18記載の細菌検出方法。 19. The bacteria detection method according to claim 18, wherein the extract is a specific extract that selectively extracts ATP only for specific bacteria.
[20] 前記特定抽出液がファージ又は抗生物質である、請求項 19記載の細菌検出方法 [20] The method for detecting bacteria according to claim 19, wherein the specific extract is a phage or an antibiotic.
[21] 前記抽出液と前記発光液に混合させる前に、前記検体液を、 ATP除去剤を含む 除去液と混合して、前記除去液により前記検体液力 遊離 ATPを除去し、更に不活 性化剤を含む不活性ィ匕液と混合して、前記除去液を不活性化させる、請求項 18— 2 0のいずれか一項に記載の細菌検出方法。 [21] Before mixing the extract solution and the luminescent solution, the sample solution is mixed with a removing solution containing an ATP removing agent, and the removing solution removes the sample solution free ATP, and further inactivates the sample solution. The method for detecting bacteria according to any one of claims 18 to 20, wherein the elimination solution is inactivated by mixing with an inactivation solution containing a activating agent.
[22] 前記抽出液と前記発光液に混合させる前に、前記検体液を、 ATP除去剤を含む 除去液と混合して、前記除去液により前記検体液力 遊離 ATPを除去し、更に前記 除去液との混合液の温度を 50°C以上に制御して前記 ATP除去剤を不活性ィ匕させる 、請求項 18— 20のいずれか一項に記載の細菌検出方法。  [22] Before mixing the extract solution and the luminescent solution, the sample solution is mixed with a removing solution containing an ATP removing agent, and the removing solution removes the sample solution free ATP, and further removes the ATP. The method for detecting bacteria according to any one of claims 18 to 20, wherein the temperature of the mixed solution with the solution is controlled to 50 ° C or higher to inactivate the ATP removing agent.
[23] 前記検体液を、前記除去液を不活性化させた後に細菌内 ATPを増幅させる増幅 液と混合して、前記検体液に含まれる細菌の細菌内 ATPを増幅させる、請求項 21 記載の細菌検出方法。  23. The method according to claim 21, wherein the sample solution is mixed with an amplification solution for amplifying intracellular ATP after inactivating the removing solution to amplify intracellular ATP of bacteria contained in the sample solution. Bacteria detection method.
[24] 前記検体液を、前記抽出液と前記発光液に混合させる前に、細菌のフロックを分解 させる分解液と混合して、前記分解液により前記検体液カゝら細菌のフロックを分解さ せる、請求項 18— 23のいずれか一項に記載の細菌検出方法。  [24] Before mixing the sample liquid with the extract and the luminescent liquid, the sample liquid is mixed with a decomposing solution for decomposing bacterial flocs, and the decomposing solution decomposes the floc of the sample liquid capillar bacteria. The method for detecting bacteria according to any one of claims 18 to 23.
[25] 前記検体液に加熱、電界印加および超音波印加のいずれか 1つ以上を行うことに より前記細菌力も前記細菌内 ATPを抽出する、請求項 17記載の細菌検出方法。  25. The bacteria detection method according to claim 17, wherein the bacterial force also extracts the intracellular ATP by performing at least one of heating, electric field application, and ultrasonic application to the sample solution.
[26] 前記検体液に前記加熱、前記電界印加又は前記超音波印加を行う前に、 ATP除 去剤を含む除去液と混合して、前記除去液により前記検体液カゝら遊離 ATPを除去し 、更に不活性化剤を含む不活性ィ匕液と混合して、前記除去液を不活性化させる、請 求項 25記載の細菌検出方法。 [26] Before performing the heating, the electric field application, or the ultrasonic application to the sample solution, the sample solution is mixed with a removing solution containing an ATP removing agent, and the free ATP is removed using the removing solution. Then, the mixture is mixed with an inactivating liquid containing an inactivating agent to inactivate the removing liquid. The method for detecting bacteria according to claim 25.
[27] 前記検体液に前記加熱、前記電界印加又は前記超音波印加を行う前に、前記検 体液を、 ATP除去剤を含む除去液と混合して、前記除去液により前記検体液から遊 離 ATPを除去し、更に前記除去液との混合液の温度を 50°C以上に制御して前記 A TP除去剤を不活性化させる、請求項 25記載の細菌検出方法。  [27] Before performing the heating, the electric field application, or the ultrasonic application to the sample solution, the test solution is mixed with a removing solution containing an ATP removing agent, and is separated from the sample solution by the removing solution. 26. The method for detecting bacteria according to claim 25, wherein ATP is removed, and the temperature of the mixed solution with the removing solution is controlled to 50 ° C. or higher to inactivate the ATP removing agent.
[28] 前記検体液中の前記除去液を不活性化させた後に、前記検体液を、細菌内 ATP を増幅させる増幅液と混合して、前記検体液に含まれる細菌の細菌内 ATPを増幅さ せる、請求項 26記載の細菌検出方法。  [28] After inactivating the removal solution in the sample solution, the sample solution is mixed with an amplification solution for amplifying ATP in bacteria to amplify ATP in bacteria of bacteria contained in the sample solution. 27. The method for detecting bacteria according to claim 26, wherein the bacteria are detected.
[29] 前記検体液に前記加熱、前記電界印加又は前記超音波印加を行う前に、前記検 体液を、細菌のフロックを分解させる分解液と混合して、前記分解液により前記検体 液に含まれる細菌のフロックを分解させる、請求項 25— 28のいずれか一項に記載の 細菌検出方法。  Before performing the heating, the application of the electric field, or the application of the ultrasonic wave to the sample solution, the sample solution is mixed with a decomposing solution for decomposing bacterial flocs, and is contained in the sample solution by the decomposing solution. The method for detecting bacteria according to any one of claims 25 to 28, wherein the method comprises decomposing bacterial flocs.
PCT/JP2005/005372 2004-04-06 2005-03-24 Microbe detector and method of microbe detection WO2005097968A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-112455 2004-04-06
JP2004112455A JP2007236202A (en) 2004-04-06 2004-04-06 Microbe detector and method of microbe detection

Publications (1)

Publication Number Publication Date
WO2005097968A1 true WO2005097968A1 (en) 2005-10-20

Family

ID=35125063

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/005372 WO2005097968A1 (en) 2004-04-06 2005-03-24 Microbe detector and method of microbe detection

Country Status (2)

Country Link
JP (1) JP2007236202A (en)
WO (1) WO2005097968A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009515155A (en) * 2005-11-04 2009-04-09 クロンデイアグ・ゲーエムベーハー Apparatus and method for particle detection
CN100528276C (en) * 2007-06-05 2009-08-19 中国科学院上海微系统与信息技术研究所 Liquid-liquid extractor and extraction process
JP2010252746A (en) * 2009-04-28 2010-11-11 Nippon Telegr & Teleph Corp <Ntt> Bacterium analyzer
JP2011523712A (en) * 2008-06-04 2011-08-18 ケーシーアイ ライセンシング インコーポレイテッド Detection of infections in decompression wound therapy
US11365140B2 (en) 2017-10-31 2022-06-21 Luminultra Technologies Ltd. Decision support system and method for water treatment

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101148308B1 (en) * 2007-11-29 2012-05-25 연세대학교 산학협력단 Microorganism meter apparatus
WO2020264241A2 (en) * 2019-06-26 2020-12-30 Transformative Technologies Devices and methods for the detection of bacteria

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03123481A (en) * 1989-10-06 1991-05-27 Toa Denpa Kogyo Kk Apparatus for automatic simultaneous determination of cell concentration and cell activity
JPH07135963A (en) * 1993-11-15 1995-05-30 Canon Inc Separation of microorganism and method for counting number of individual microbial cells
JPH07506430A (en) * 1992-05-01 1995-07-13 トラスティーズ・オブ・ザ・ユニバーシティ・オブ・ペンシルベニア Microfabricated detection structure
JP2000189197A (en) * 1998-12-25 2000-07-11 Kikkoman Corp Atp eliminant, atp elimination and measurement of atp in cell
JP2001272374A (en) * 2000-03-27 2001-10-05 Kikuchi Jun Method and device for immunoassay
JP2001299390A (en) * 2000-04-20 2001-10-30 Satake Corp Method for amplifying atp in chainlike manner and method for testing trace atp using the amplification method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03123481A (en) * 1989-10-06 1991-05-27 Toa Denpa Kogyo Kk Apparatus for automatic simultaneous determination of cell concentration and cell activity
JPH07506430A (en) * 1992-05-01 1995-07-13 トラスティーズ・オブ・ザ・ユニバーシティ・オブ・ペンシルベニア Microfabricated detection structure
JPH07135963A (en) * 1993-11-15 1995-05-30 Canon Inc Separation of microorganism and method for counting number of individual microbial cells
JP2000189197A (en) * 1998-12-25 2000-07-11 Kikkoman Corp Atp eliminant, atp elimination and measurement of atp in cell
JP2001272374A (en) * 2000-03-27 2001-10-05 Kikuchi Jun Method and device for immunoassay
JP2001299390A (en) * 2000-04-20 2001-10-30 Satake Corp Method for amplifying atp in chainlike manner and method for testing trace atp using the amplification method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009515155A (en) * 2005-11-04 2009-04-09 クロンデイアグ・ゲーエムベーハー Apparatus and method for particle detection
CN100528276C (en) * 2007-06-05 2009-08-19 中国科学院上海微系统与信息技术研究所 Liquid-liquid extractor and extraction process
JP2011523712A (en) * 2008-06-04 2011-08-18 ケーシーアイ ライセンシング インコーポレイテッド Detection of infections in decompression wound therapy
US8460892B2 (en) 2008-06-04 2013-06-11 Kci Licensing, Inc. Detecting infection in reduced pressure wound treatment
JP2010252746A (en) * 2009-04-28 2010-11-11 Nippon Telegr & Teleph Corp <Ntt> Bacterium analyzer
US11365140B2 (en) 2017-10-31 2022-06-21 Luminultra Technologies Ltd. Decision support system and method for water treatment

Also Published As

Publication number Publication date
JP2007236202A (en) 2007-09-20

Similar Documents

Publication Publication Date Title
US11999997B2 (en) Integrated device for nucleic acid detection and identification
WO2005097968A1 (en) Microbe detector and method of microbe detection
Jenkins et al. Handheld device for real-time, quantitative, LAMP-based detection of Salmonella enterica using assimilating probes
CN102203284A (en) Temperature controlled nucleic-acid detection method suitable for practice in a closed-system
US8969029B2 (en) Biological sterilization indicator, system, and methods of using same
IL142018A0 (en) Nucleic acid amplification reaction station for disposable test devices
AU3481297A (en) Monitoring hybridization during pcr
CN106536704A (en) Nucleic acid amplification device, nucleic acid amplification method, and chip for nucleic acid amplification
ATE458068T1 (en) SINGLE NUCLEOTIDE AMPLIFICATION AND DETECTION WITH POLYMERASE
Spatola Rossi et al. Microfluidics for rapid detection of live pathogens
WO2003019158A3 (en) Thermo-optical analysis system for biochemical reactions
US11608521B2 (en) Method of detecting genetic material in a biological sample and a device for its implementation
WO2005098022A1 (en) Bacteria counting method and bacteria counter
WO2006134698A1 (en) Microchannel chip and microorganism detector
CN1833032B (en) Improved method of amplifying ATP and use thereof
Zhong et al. Colony and bacterial LAMP: simple alternative methods for bacterial determination
CN220703691U (en) Chip device and instrument for detecting nucleic acid
TWI814324B (en) A portable device integrated with all-in-one lamp system for nucleic acid amplification and method thereof
US20240131508A1 (en) Diagnostics for Emerging Disease
US20240226877A9 (en) Diagnostics for Emerging Disease
Csordas et al. Nucleic acid sensor and fluid handling for detection of bacterial pathogens
CN116536452A (en) Visual rapid detection method for new coronavirus in environmental medium
Barnett et al. 2. Towards In-Field Life Detection and Characterisation in Icy Environments
CN118109566A (en) Nucleic acid detection method for UDG enzyme-regulated CRISPR switch

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP