JPH0312317A - Device for producing hydroxyapatite fine grain - Google Patents

Device for producing hydroxyapatite fine grain

Info

Publication number
JPH0312317A
JPH0312317A JP14652289A JP14652289A JPH0312317A JP H0312317 A JPH0312317 A JP H0312317A JP 14652289 A JP14652289 A JP 14652289A JP 14652289 A JP14652289 A JP 14652289A JP H0312317 A JPH0312317 A JP H0312317A
Authority
JP
Japan
Prior art keywords
tank
storage tank
reaction tank
solution
hap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14652289A
Other languages
Japanese (ja)
Inventor
Takashi Tanioka
隆 谷岡
Takao Kawai
隆夫 川井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP14652289A priority Critical patent/JPH0312317A/en
Publication of JPH0312317A publication Critical patent/JPH0312317A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To control the diameter distribution of hydroxyapatite fine grains in a narrow range by connecting a formation reaction tank and an ageing tank with a connecting pipe and growing the grains under the conditions where the variations in the temp. of the soln. are minimized. CONSTITUTION:A heating mechanism 3 and a pH regulating mechanism 10 are provided in a storage tank 1 for water and/or a hydrophilic org. solvent. The storage tank 1 consists of the formation reaction tank 1a and the ageing tank 1b, and both tanks 1a and 1b are connected with the connecting pipe 5. Meanwhile, a non-phosphate type reactive Ca compd. and a non-Ca salt type reactive oxide of phosphorous are dissolved in the water and/or org. solvent kept at <=50 deg.C to prepare a raw soln. The raw soln. is dripped into the storage tank 1 through the feed pipes 7 and 7, and the Ca/P is specified.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明はヒドロキシアパタイト微粒子の製造装置に関し
、詳細には単相で微細かつ結晶性の良好な高純度ヒドロ
キシアパタイト微粒子を製造する為の装置に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an apparatus for producing hydroxyapatite fine particles, and more particularly to an apparatus for producing single-phase, fine, high-purity hydroxyapatite fine particles with good crystallinity. It is something.

[従来の技術] CaOPz Os系アパタイトは生体材料として開発さ
れており、中でも特にヒドロキシアパタイト(以下HA
Pと記す)は人体の骨を形成する物質と同じ組成であり
、生体内に埋込まれたときに生体との親和性が良く、生
体骨との接合性も良いので、人工骨や人工歯などの材料
として用いられている。また蛋白質との親和性やHAP
自体の有するイオン交換能を利用してクロマトグラフィ
ー用の充填材やイオン交換材などにも用いられている。
[Prior art] CaOPz Os-based apatite has been developed as a biomaterial, and among them, hydroxyapatite (hereinafter referred to as HA) has been developed as a biomaterial.
P) has the same composition as the material that forms bones in the human body, and when implanted in a living body, it has good compatibility with the living body and has good bonding properties with living bone, so it is used as an artificial bone or artificial tooth. It is used as a material such as In addition, affinity with proteins and HAP
Utilizing its own ion exchange ability, it is also used in chromatography packing materials and ion exchange materials.

HAPの製造方法としては、 ■湿式法:Ca塩水溶液と燐酸塩水溶液を反応させてC
aHPO4,40〜1.67の微結晶状の燐酸カルシウ
ムを得、これを更に特定のカルシウム化合物と反応させ
て目的のHAPに変換する方法、■水熱合成法:特公昭
59−51485号公報に開示されている様にCaHP
O4・2H,O(又はCaHPO4)にCa(OH)2
を加えて、あるいはOCP [Caa H2(PO4)
6 ・5H201にCa化合物を加えオートクレーブ中
で200〜400℃、15〜200気圧の熱水条件下で
反応させて緻密結晶構造の結晶質HAPを製造する方法
、 ■乾式合成法:特公昭59−51485号公報に開示さ
れているCaa H2(PO<)s・5Hz OにCa
化合物を加え1000〜1300℃で固相反応させて緻
密結晶構造の結晶質HA Pを製造する方法、 等がある。
As for the production method of HAP, ■Wet method: Ca salt aqueous solution and phosphate aqueous solution are reacted to produce C
A method of obtaining microcrystalline calcium phosphate with aHPO4.40 to 1.67 and further reacting it with a specific calcium compound to convert it into the desired HAP, ■Hydrothermal synthesis method: Japanese Patent Publication No. 59-51485 CaHP as disclosed
O4・2H, O (or CaHPO4) to Ca(OH)2
or OCP [Caa H2(PO4)
6 ・A method for producing crystalline HAP with a dense crystal structure by adding a Ca compound to 5H201 and reacting it in an autoclave under hydrothermal conditions of 200 to 400°C and 15 to 200 atm. ■Dry synthesis method: Japanese Patent Publication No. 1983- Caa H2(PO<)s・5Hz O disclosed in 51485
There is a method in which crystalline HAP with a dense crystal structure is produced by adding a compound and causing a solid phase reaction at 1000 to 1300°C.

しかしながら前記■の方法は反応速度が大きいため生成
物はコロイド状となり、取扱いや操作の面で難があり、
Ca / Pの再現性が悪く、HAP以外の生成相が混
入したり、未反応相が残フたすする。■の方法では高温
高圧を必要とし、設備費が高くなる上に生産効率も低い
。またHAP粒子の大きいものを得るには良い方法と言
えるが微粒子状のものは得難い。■の方法では反応を完
結させよつとすれば高温かつ長時間を要する。また、■
と■の方法ではHAP生成の前段階として純粋なCaH
PO4・2H20(又はCaHPO,)やCaH2(P
O4)6・5H20を得ることが不可欠である。
However, in method (2), the reaction rate is high and the product is colloidal, making it difficult to handle and operate.
The reproducibility of Ca/P is poor, and produced phases other than HAP are mixed in, and unreacted phases remain. Method (2) requires high temperature and high pressure, which increases equipment costs and has low production efficiency. In addition, although it can be said to be a good method for obtaining large HAP particles, it is difficult to obtain fine particles. Method (2) requires high temperature and long time to complete the reaction. Also, ■
In the method of (1) and (2), pure CaH is
PO4・2H20 (or CaHPO,) and CaH2(P
It is essential to obtain O4)6.5H20.

また、粉末を成形して焼成固化する場合において、成形
の密度を高くしたい場合には、粉末の粒子径ができるだ
け細かく、しかも粒度分布の狭いことが望まれているに
もかかわらず、前記方法で得られるHAPは粒子サイズ
が数μmから10μm以上の粗粒のものであり、−成粒
子のサイズがこのように大きいと充填率が低くなり、密
度を高めることが難しい。そこで粒子サイズを細かくし
ようとすれば結晶性が悪くなり、且つ水分を多く含むた
め緻密成形体の焼成時における収縮率が大きくなり、か
つ不定になるという問題を有していた。
Furthermore, in the case of molding powder and solidifying it by firing, if it is desired to increase the density of the molding, it is desirable that the particle size of the powder be as fine as possible and that the particle size distribution be narrow. The obtained HAP is a coarse particle with a particle size of several micrometers to 10 micrometers or more, and when the size of the -forming particles is this large, the filling rate becomes low and it is difficult to increase the density. If an attempt is made to reduce the particle size, the crystallinity deteriorates, and since it contains a large amount of water, the shrinkage rate during firing of the dense compact becomes large and unstable.

そこで木出頭人は過酷な条件を要することなく、また高
価な装置を使用しなくともHAP車相で微粒且つ結晶性
の良好なHAPを製造する方法、更にはCa / Pを
再現性良く制御することのできるHAPの製造方法につ
いて検討し、特願昭62−326516号を先に出願し
ている。
Therefore, Kideto developed a method to produce fine-grained HAP with good crystallinity using a HAP vehicle phase without requiring harsh conditions or using expensive equipment, and also to control Ca/P with good reproducibility. We have investigated a method for manufacturing HAP that can be used to produce HAP, and have previously filed Japanese Patent Application No. 326516/1983.

第4図は上記方法に使用されるHAP@粒子の製造装置
を示す断面説明図である。水および/または親水性有機
溶媒を貯留槽1に貯留し、温度70℃以上、pH4以上
(好ましくは8〜11)に保つための加熱用ヒータ3及
びpH調整用配管10を該貯留槽1に設け、ざらに該貯
留槽1には原料供給管7,7を接続し、該原料供給管7
.7を通して、所定のCa / Pとなるように非燐酸
塩型の反応性Ca化合物および非Ca塩型の燐の反応性
酸素酸化合物を50℃以下の水および/または親水性有
機溶媒に溶解した原料溶液を上記貯留槽1内へ滴下する
様に構成している。尚符号6は攪拌機を示す。
FIG. 4 is an explanatory cross-sectional view showing a HAP@ particle manufacturing apparatus used in the above method. Water and/or a hydrophilic organic solvent is stored in a storage tank 1, and a heater 3 and pH adjustment piping 10 are connected to the storage tank 1 to maintain the temperature at 70° C. or higher and the pH at 4 or higher (preferably 8 to 11). Roughly connect the raw material supply pipes 7, 7 to the storage tank 1, and connect the raw material supply pipes 7 to the storage tank 1.
.. 7, a non-phosphate type reactive Ca compound and a non-Ca salt type reactive oxygen acid compound of phosphorus were dissolved in water and/or a hydrophilic organic solvent at a temperature below 50 °C so as to have a predetermined Ca/P. It is configured so that the raw material solution is dropped into the storage tank 1. Note that the reference numeral 6 indicates a stirrer.

[発明が解決しようとする課題] ところで上記製造装置において原料溶液を貯留槽1内に
滴下供給すると、原料溶液と溶媒のpHの相違のために
、貯留槽1内の溶媒pHは非常に不安定であり、大きく
変動する。その為上記装置ではこの変動を抑制する目的
でpH調整用配管10を通してpH調整液を注入する様
に構成されているが、攪拌機6によっても貯留槽1内の
溶媒pHを均一に保ち続けることは困難であり、実操業
においてはどうしても上記原料供給管7又はpH調整用
配管10の近傍でpHの変動が大きくなる。特に温度の
変化を最小限に抑制するために貯留槽1の容量を大きく
したとき、この傾向は一層顕著となる。
[Problems to be Solved by the Invention] By the way, when the raw material solution is supplied dropwise into the storage tank 1 in the above manufacturing apparatus, the pH of the solvent in the storage tank 1 becomes very unstable due to the difference in pH between the raw material solution and the solvent. , and it fluctuates widely. Therefore, the above device is configured to inject the pH adjustment liquid through the pH adjustment pipe 10 in order to suppress this fluctuation, but it is not possible to keep the solvent pH in the storage tank 1 uniform even with the stirrer 6. This is difficult, and in actual operation, pH fluctuations inevitably increase in the vicinity of the raw material supply pipe 7 or the pH adjustment pipe 10. In particular, this tendency becomes even more remarkable when the capacity of the storage tank 1 is increased in order to minimize temperature changes.

また貯留槽1内の溶媒温度についても、異なる温度の原
料溶液が混入されることになるので、貯留槽1全域にお
ける温度変動及び温度分布の不均一が引き起こされる。
Furthermore, regarding the temperature of the solvent in the storage tank 1, raw material solutions of different temperatures are mixed, which causes temperature fluctuations and non-uniformity in temperature distribution throughout the storage tank 1.

上記pH変動及び温度変動の影響を受けるため、HAP
の生成環境は不均等で且つ時々刻々と変化し、生成され
るHAP粒子の粒径には大きなばらつきが生じると共に
、粒子形状も不均一となる。
HAP is affected by the pH fluctuations and temperature fluctuations mentioned above.
The environment in which HAP is produced is non-uniform and changes from time to time, resulting in large variations in the particle size and non-uniform shape of the HAP particles produced.

そこで本発明者は、粒径のばらつきが少なく、且つ形状
の均一なHAP微粒子を製造できる装置を提供する目的
で研究を重ね、本発明を完成した。
Therefore, the present inventor conducted extensive research and completed the present invention with the aim of providing an apparatus that can produce HAP fine particles with little variation in particle size and uniform shape.

[課題を解決するための手段] 上記目的を達成し得た本発明は、貯留槽を生成反応槽と
熟成槽で構成し、前記生成反応槽には原料溶液供給用の
供給管が接続されると共に、前記生成反応槽と熟成槽を
連結管によって接続する様に構成したことを要旨とする
ものである。
[Means for Solving the Problems] In the present invention, which has achieved the above object, the storage tank is composed of a production reaction tank and an aging tank, and a supply pipe for supplying the raw material solution is connected to the production reaction tank. In addition, the gist is that the production reaction tank and the ripening tank are connected by a connecting pipe.

[作用及び実施例] 第1図は本発明の代表的な実施例を示す断面説明図であ
る。貯留槽1は生成反応槽1aと熟成槽1bによって構
成され、該2つの槽1a、lbは連結管5によって接続
され、該連結管5に設けた送液ポンプ5aによって生成
反応槽1a中の溶液2aを熟成槽1b側の溶液2b中へ
移送する様に構成される。なお前記生成反応槽1aには
原料供給管7.7が接続されると共に、両方の槽1a。
[Operations and Examples] FIG. 1 is a cross-sectional explanatory diagram showing a typical example of the present invention. The storage tank 1 is composed of a production reaction tank 1a and an aging tank 1b.The two tanks 1a and 1b are connected by a connecting pipe 5, and the solution in the production reaction tank 1a is pumped by a liquid feeding pump 5a provided in the connecting pipe 5. 2a into the solution 2b on the aging tank 1b side. Note that a raw material supply pipe 7.7 is connected to the production reaction tank 1a, and both tanks 1a.

1bにはpH調整用配管10.10及び攪拌機6.6が
夫々配設される。上記熟成槽1b内の攪拌機6は破線に
示す攪拌ディスクに替えてもよい。また生成反応槽1a
及び熟成4’11bの壁面には加熱ヒータ3が設けられ
、槽内の溶液温度を一定に保てる様に構成されている。
1b is provided with a pH adjusting pipe 10.10 and a stirrer 6.6, respectively. The stirrer 6 in the aging tank 1b may be replaced with a stirring disk shown by a broken line. Also, the production reaction tank 1a
A heater 3 is provided on the wall of the ripening 4'11b, and is configured to keep the solution temperature in the tank constant.

上記装置を使用してHAP微粒子を製造するに当たりて
は次に述べる通り行なう。
The production of HAP fine particles using the above apparatus is carried out as described below.

まず非燐酸塩型の反応性Ca化合物および非Ca塩型の
反応性酸素酸化合物は、水あるいは親木性有機溶媒に可
溶なものであり、例えば非燐酸塩型の反応性Ca化合物
としてはCa C12゜Ca  (N Os)z、c 
a  (HCOO)2゜Ca CCHs Coo)2 
、Ca (OH)2 。
First, non-phosphate reactive Ca compounds and non-Ca salt-type reactive oxygen acid compounds are soluble in water or woody organic solvents.For example, as non-phosphate reactive Ca compounds, Ca C12゜Ca (N Os)z, c
a (HCOO)2゜Ca CCHs Coo)2
, Ca(OH)2.

CaCO3等やカルシウムジメトキシド、カルシウムジ
ェトキシド、カルシウムジブロポキシド等のCa−アル
コキシド類およびカルボン酸塩類等が非限定的に例示さ
れる。また非Ca塩型の燐の反応性酸素酸化合物として
はH,PO4あるい&tKH2PO4、NH4H,PO
4゜(N H4)2 HP 04 、  (N H4)
s P 04等の如き燐酸塩の他、燐酸トリメトキシド
、燐酸トリエトキシド、燐酸トリプロポキシド、亜燐酸
トリメトキシド、亜燐酸トリエトキシド、亜燐酸トリプ
ロポキシド等の各種燐の酸素酸のアルコキシド類や燐酸
トリメチル、メタ燐酸エチル、燐酸モノエチル、燐酸ジ
エチル、燐酸トリエチル、ピロリン酸エチル等の各種燐
の酸素酸のエステル類が非限定的に例示される。
Non-limiting examples include CaCO3, Ca-alkoxides such as calcium dimethoxide, calcium jetoxide, and calcium dibropoxide, and carboxylic acid salts. In addition, non-Ca salt type phosphorus reactive oxygen acid compounds include H, PO4, &tKH2PO4, NH4H, PO
4゜(NH4)2 HP 04, (NH4)
In addition to phosphates such as s P 04, various phosphorus oxygen acid alkoxides such as phosphoric trimethoxide, phosphoric triethoxide, phosphoric acid tripropoxide, phosphorous trimethoxide, phosphorous triethoxide, phosphorous tripropoxide, trimethyl phosphate, meth Non-limiting examples include esters of various phosphorus oxygen acids such as ethyl phosphate, monoethyl phosphate, diethyl phosphate, triethyl phosphate, and ethyl pyrophosphate.

前記非燐酸塩型の反応性Ca化合物および非Ca塩型の
燐の反応性酸素酸化合物を所定のCa / Pとなるよ
うな配合で50℃以下の水および/または親木性有機溶
媒に溶解させて原料溶液とし、この原料溶液を温度70
℃以上、pH4以上(好ましくは8〜11)に保った生
成反応槽1a内へ原料供給管7.7を介して滴下する。
The non-phosphate type reactive Ca compound and the non-Ca salt type reactive oxygen acid compound of phosphorus are dissolved in water and/or a wood-philic organic solvent at a temperature of 50°C or less in a composition such that a predetermined Ca/P is obtained. This raw material solution is heated to a temperature of 70°C.
It is dropped into the production reaction tank 1a maintained at a temperature of .degree. C. or higher and a pH of 4 or higher (preferably 8 to 11) through a raw material supply pipe 7.7.

前記Ca化合物および前記P化合物を溶解する液あるい
は該溶解液を滴下する被滴下液は、水以外の親水性有機
溶媒としてメタノール、エタノール、アセトン、エーテ
ル等が例示され、水和反応置換に際しては溶解液および
被滴下液として同じものあるいは異なるものを使用して
も良い。また配合原料のCa / Pは1.3以上とす
ることが好ましい。
The solution for dissolving the Ca compound and the P compound or the solution to which the dissolution solution is dropped include methanol, ethanol, acetone, ether, etc. as hydrophilic organic solvents other than water. The liquid and the dripping liquid may be the same or different. Further, it is preferable that the Ca/P of the blended raw materials is 1.3 or more.

上記生成反応槽1aにおいては、加熱ヒータ3及びpH
調整用配管10によって内部溶液の温度及びpHを前述
の一定値に保持する様に構成されており、原料溶液の滴
下によってHAPの核が形成される。モして該核を含む
溶液2aは連結管5を介して熟成槽!bへ連続的に送給
され、該熟成槽1bにおいて上記核を中心にして粒成長
が進行する。
In the production reaction tank 1a, the heater 3 and the pH
The adjustment pipe 10 is configured to maintain the temperature and pH of the internal solution at the above-mentioned constant values, and HAP nuclei are formed by dropping the raw material solution. Then, the solution 2a containing the nuclei is passed through the connecting pipe 5 to the ripening tank! The grains are continuously fed to the aging tank 1b, and grain growth progresses around the core.

このとぎ生成反応槽1aにおいては原料溶液の導入によ
ってpH及び温度は局所的に若干の変動を生じるが、反
応槽の容量を従来のものに比べ小さくで診るので、槽内
の溶液状態が容易に均一化でき、且つpH及び温度の変
動も容易に一定に保持できるので、安定した生成環境で
HAP核の形成ができる。さらに溶液2a及び2bはほ
ぼ同一の温度及びpHを維持する様に構成されているの
で、HAPの核を含んだ溶液2aを溶液2b内へ導入し
ても、該溶液2bの温度及びpHの変動は従来装置に比
較して極めて微小となる。従って熟酸槽1b内ではほぼ
一定の環境下で粒成長が進行し、粒径のばらつきは極め
て少なく、且つHAP微粒子の形状も均一に形成される
様になる。なお上記熟成、1lllbは生成反応槽1a
より大容量のものとすることが好ましく、こうすること
によって溶液の有する大きな熱容量を利用し槽内温度の
変動を極力抑制することができる様になる。また第1図
の如く生成反応槽1aを熟成槽1bの溶液内に浸漬する
様に構成しておけば、熟成槽1bにおける溶液2bの熱
容量により、生成反応槽1aにおける温度変動を抑制す
ることもできる。
In this scouring reaction tank 1a, the pH and temperature will slightly fluctuate locally due to the introduction of the raw material solution, but since the capacity of the reaction tank is smaller than conventional ones, the state of the solution in the tank can be easily checked. Since it can be made homogeneous and fluctuations in pH and temperature can be easily kept constant, HAP nuclei can be formed in a stable production environment. Furthermore, since solutions 2a and 2b are configured to maintain almost the same temperature and pH, even if solution 2a containing HAP nuclei is introduced into solution 2b, the temperature and pH of solution 2b will change. is extremely small compared to conventional devices. Therefore, in the mature acid bath 1b, grain growth progresses under a substantially constant environment, and the variation in grain size is extremely small, and the shape of the HAP fine grains is also formed uniformly. In addition, the above-mentioned ripening, 1llllb is the production reaction tank 1a.
It is preferable to have a larger capacity, and by doing so, it becomes possible to utilize the large heat capacity of the solution and to suppress fluctuations in the temperature inside the tank as much as possible. Furthermore, if the production reaction tank 1a is configured to be immersed in the solution in the ripening tank 1b as shown in Fig. 1, temperature fluctuations in the production reaction tank 1a can be suppressed due to the heat capacity of the solution 2b in the ripening tank 1b. can.

第2図は本発明の他の実施例を示す断面説明図であり、
生成反応槽1aは熟成槽1bの上方部に配設し、生成反
応槽1aの下部に形成された流下連結部5Aを通して、
HAP核を含む溶液2aが熟成槽へ流下する様に構成さ
れたものである。また上記流下連結部5Aの途中位置に
は流量調整弁8を配設されており、溶液2aの送給量を
調節できる様に構成されている。
FIG. 2 is a cross-sectional explanatory diagram showing another embodiment of the present invention,
The production reaction tank 1a is arranged above the ripening tank 1b, and through the downstream connection part 5A formed at the bottom of the production reaction tank 1a,
The structure is such that a solution 2a containing HAP nuclei flows down to a ripening tank. Further, a flow rate adjustment valve 8 is disposed at a midway position of the downstream connecting portion 5A, and is configured to adjust the amount of the solution 2a to be fed.

第3図は本発明の他の実施例を示す説明図であり、生成
反応槽1aと熟成槽1bとさらに生成反応槽1aにpH
及び温度を一定値に保持した溶液を溶液供給管11を介
して補給する溶液4ii1 cとから構成されたもので
ある。この例において生成反応槽1aには槽内液面コン
トローラ12が配設されており、溶液2cの送給量を調
節できる様に構成されている。
FIG. 3 is an explanatory diagram showing another embodiment of the present invention, in which the production reaction tank 1a, the aging tank 1b, and the production reaction tank 1a are
and a solution 4ii1c to which a solution whose temperature is maintained at a constant value is supplied via the solution supply pipe 11. In this example, an in-tank liquid level controller 12 is disposed in the production reaction tank 1a, and is configured to be able to adjust the feeding amount of the solution 2c.

尚、溶液槽1c及び液面コントローラ12は第1図及び
第2図の実施例にも配設でき、本実施例に限定するもの
ではない。
Note that the solution tank 1c and the liquid level controller 12 can be provided in the embodiments shown in FIGS. 1 and 2, and are not limited to this embodiment.

[発明の効果〕 本発明は以上の様に構成されているので、製造されるH
AP微粒子の粒径分布は狭い範囲内のものに揃えること
ができ、さらに該HAP微粒子の形状も均一のものとす
ることができる様になった。
[Effects of the Invention] Since the present invention is configured as described above, the manufactured H
The particle size distribution of the AP fine particles can be made within a narrow range, and the shape of the HAP fine particles can also be made uniform.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の代表的な実施例を示す断面説明図、第
2図および第3図は本発明の他の実施例を示す断面説明
□図、第4図は従来の装置を示す断面説明図である。 1・・・貯留禮 3・・・加熱ヒータ 6・・・攪拌機 8・・・流量調整弁 11・・・溶液供給管 2・・・溶媒 5・・・連結管 7・・・原料液供給管 10・・・pH調整用配管 12・・・液面コントローラ
Fig. 1 is a cross-sectional explanatory diagram showing a typical embodiment of the present invention, Figs. 2 and 3 are cross-sectional explanatory diagrams showing other embodiments of the present invention, and Fig. 4 is a cross-sectional diagram showing a conventional device. It is an explanatory diagram. 1... Reservoir 3... Heater 6... Stirrer 8... Flow rate adjustment valve 11... Solution supply pipe 2... Solvent 5... Connecting pipe 7... Raw material liquid supply pipe 10...pH adjustment piping 12...liquid level controller

Claims (1)

【特許請求の範囲】[Claims] (1)加熱機構及びpH調整機構を備えた水及び/又は
親水性有機溶媒の貯留槽に、所定のCa/Pとなるよう
に非燐酸塩型の反応性Ca化合物および非Ca塩型の燐
の反応性酸素酸化合物を50℃以下の水及び/又は親水
性有機溶媒に溶解した原料溶液を滴下する供給管が配設
されてなるヒドロキシアパタイト微粒子の製造装置にお
いて、上記貯留槽は生成反応槽と熟成槽からなり、前記
生成反応槽には上記供給管が接続されると共に、前記生
成反応槽と熟成槽は連結管によって接続されてなること
を特徴とするヒドロキシアパタイト微粒子の製造装置。
(1) A non-phosphate reactive Ca compound and a non-Ca salt type phosphorus are added to a storage tank of water and/or a hydrophilic organic solvent equipped with a heating mechanism and a pH adjustment mechanism to achieve a predetermined Ca/P. In an apparatus for producing hydroxyapatite fine particles, the storage tank is a production reaction tank, and the storage tank is a production reaction tank. and a ripening tank, the supply pipe is connected to the production reaction tank, and the production reaction tank and the ripening tank are connected by a connecting pipe.
JP14652289A 1989-06-08 1989-06-08 Device for producing hydroxyapatite fine grain Pending JPH0312317A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14652289A JPH0312317A (en) 1989-06-08 1989-06-08 Device for producing hydroxyapatite fine grain

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14652289A JPH0312317A (en) 1989-06-08 1989-06-08 Device for producing hydroxyapatite fine grain

Publications (1)

Publication Number Publication Date
JPH0312317A true JPH0312317A (en) 1991-01-21

Family

ID=15409556

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14652289A Pending JPH0312317A (en) 1989-06-08 1989-06-08 Device for producing hydroxyapatite fine grain

Country Status (1)

Country Link
JP (1) JPH0312317A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8594528B2 (en) 2011-05-27 2013-11-26 Eastman Kodak Company Electrostatographic cleaning blade member and apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8594528B2 (en) 2011-05-27 2013-11-26 Eastman Kodak Company Electrostatographic cleaning blade member and apparatus

Similar Documents

Publication Publication Date Title
Ferraz et al. Hydroxyapatite nanoparticles: a review of preparation methodologies
CN104548213B (en) Porous spherical calcium phosphate filling material and preparing method thereof
US4324772A (en) Process for producing hydroxyapatite
RU2602817C2 (en) Method of producing aqueous salt solution
EP0007767A1 (en) Preparation of hydroxyapatite
JP2012503586A (en) Method for producing silica sol having a broad controllable particle size distribution and minimum particle size
WO2019179194A1 (en) Calcium polyphosphate/wollastonite bio-composite ceramic material and preparation method therefor
CN100509695C (en) Method for preparing porous hydroxyapatite and calcium carbonate nano ceramic
CA2635943A1 (en) Production method for calcium phosphate nano- particles with high purity and their use
JPS6287406A (en) Production of beta-tricalcium phosphate
JP7084058B2 (en) Method for producing octacalcium phosphate and octacalcium phosphate produced thereby
JPH0312317A (en) Device for producing hydroxyapatite fine grain
CN108249796B (en) Preparation method of magnesium phosphate-based bone cement modified by silicon dioxide
CN110510592B (en) Method for regulating and preparing hydroxyapatite with excellent cell compatibility
JPH072505A (en) Production of hydroxyapatite
JP2572793B2 (en) Method for producing hydroxyapatite fine particles
US7052581B2 (en) Process of producing magnesium ammonium phosphate in monohydrate form (dittmarite)
JPH03218911A (en) Method and device for producing hydroxyapatite
KR100840372B1 (en) A manufacturing method of silica sol of controling to particle size
WO2004044274A1 (en) A synthetic bone material
JPH02149408A (en) Preparation of fine particle aggregate of hydroxyapatite
CN218530525U (en) Intelligent calcium phosphate powder synthesis equipment
CN115108542B (en) Porous hydroxyapatite microsphere material and preparation method thereof
CN117865084A (en) Preparation method of nano spherical beta-tricalcium phosphate
CN112174152B (en) Polyion co-doped tetracalcium phosphate powder, synthesis method and application