JPH02149408A - Preparation of fine particle aggregate of hydroxyapatite - Google Patents

Preparation of fine particle aggregate of hydroxyapatite

Info

Publication number
JPH02149408A
JPH02149408A JP63305636A JP30563688A JPH02149408A JP H02149408 A JPH02149408 A JP H02149408A JP 63305636 A JP63305636 A JP 63305636A JP 30563688 A JP30563688 A JP 30563688A JP H02149408 A JPH02149408 A JP H02149408A
Authority
JP
Japan
Prior art keywords
water
solvent
compd
soln
type reactive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63305636A
Other languages
Japanese (ja)
Other versions
JPH0788206B2 (en
Inventor
Takao Kawai
隆夫 川井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP63305636A priority Critical patent/JPH0788206B2/en
Publication of JPH02149408A publication Critical patent/JPH02149408A/en
Publication of JPH0788206B2 publication Critical patent/JPH0788206B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the aggregate fine particles having uniform fine spherical shape by dropping a soln. in water and/or a hydrophilic org. solvent of a non phosphate type reactive Ca compd. and a non Ca salt type reactive oxyacid compd. of P into water and/or the hydrophilic org. solvent. CONSTITUTION:A non phosphate type reactive Ca compd. (e.g. CaCl2) and a non Ca salt type reactive oxyacid compd. of P (e.g. H3PO4) are dissolved in water and/or a hydrophilic org. solvent (e.g. methanol) at <=50 deg.C in a specified proportion by mole of Ca/P. While holding the temp. of the soln. at >=70 deg.C, the pH of the soln. is adjusted to >=4 by adding an alkali such as NaOH, KOH, etc. Then the soln. is dropped into water and/or a hydrophilic org. solvent while controlling a velocity for forming a precipitate. Thus, aggregate bodies formed around initially precipitated particles are obtd. The precipitate is then recovered.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、クロマトグラフィー分離用担体や成形体原料
として最適なヒドロキシアパタイト微粒子凝集体の製造
方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for producing hydroxyapatite fine particle aggregates, which are suitable as carriers for chromatographic separation and raw materials for molded bodies.

[従来の技術] Ca0−P20@系アパタイトは主として生体材料とし
て開発されており、中でもヒドロキシアパタイト(以下
HAPと記すことがある)は人体の骨を形成する物質と
同じ組成であり、生体内に埋入された場合、生体との親
和性が良く、自家骨との接合性も良いので、人工骨や人
工歯などの材料として用いられている。また蛋白質との
親和性やHAP自体の有するイオン交換能を利用してク
ロマトグラフィー用の充填材やイオン交換材などにも用
いられている。
[Prior art] Ca0-P20@-based apatite has been developed mainly as a biomaterial, and among them, hydroxyapatite (hereinafter sometimes referred to as HAP) has the same composition as the substance that forms the bones of the human body, and is not used in vivo. When implanted, it has good compatibility with living organisms and has good bonding properties with autologous bone, so it is used as a material for artificial bones, artificial teeth, etc. It is also used as a packing material for chromatography, an ion exchange material, etc. by utilizing its affinity with proteins and the ion exchange ability of HAP itself.

蛋白質等の生体関連物質の分離・精製は医学・薬学分野
において益々強く要請されるようになり、例えば高速液
体クロマトグラフィーによる生体関連物質の分離・精製
技術が工業的手段として注目されている。こうしたクロ
マトグラフィーの固定相に用いられる担体としては、上
記生体関連物質との親和性が良好であることが要求され
、上記要求を満足するRAPがクロマトグラフィー分離
用担体として用いられる様になってきた。しかしながら
HAPの粒子径や形状を制御する技術が確立されていな
いこと、およびMAPのCa / P比の再現性が悪い
こと等によって製造ロット毎に分離特性が変わってしま
うという欠点があり、その改善が望まれている。
BACKGROUND ART Separation and purification of biologically related substances such as proteins are increasingly required in the medical and pharmaceutical fields, and techniques for separating and purifying biologically related substances using, for example, high-performance liquid chromatography are attracting attention as an industrial means. The carrier used for the stationary phase in such chromatography is required to have good affinity with the above-mentioned biological substances, and RAP that satisfies the above requirements has come to be used as a carrier for chromatographic separation. . However, there are drawbacks such as the fact that technology for controlling the particle size and shape of HAP has not been established, and the reproducibility of the Ca/P ratio of MAP is poor, resulting in the separation characteristics changing from production lot to production lot. is desired.

高速液体クロマトグラフィーは、移動相を10〜3 Q
 H/secの高速で流して分離の高速化を図るもので
あるが、この様な高速化に対処するには高圧力に耐え得
るだけの強度が担体に要求される。またクロマトグラフ
ィーによる分離能力を高く維持するには、担体の充填を
クロマトグラフィーの近似的分布平衡状態にできるだけ
維持することが必要である。特に担体の粒子径が100
〜150μm程度の大きさであると、移動相の高速状態
下においては前記平衡状態を維持することが困難である
。従って前記平衡状態を高速状態下で維持するには、担
体の粒子径を充分細かくすると共にその粒子径を揃える
ことが必要である。
High performance liquid chromatography uses a mobile phase of 10 to 3 Q
The purpose is to speed up the separation by flowing at a high speed of H/sec, but in order to cope with such high speed, the carrier is required to have sufficient strength to withstand high pressure. Furthermore, in order to maintain a high separation ability by chromatography, it is necessary to maintain the packing of the carrier in an approximate distribution equilibrium state for chromatography as much as possible. Especially when the particle size of the carrier is 100
If the size is about 150 μm, it is difficult to maintain the above-mentioned equilibrium state under the high speed state of the mobile phase. Therefore, in order to maintain the above-mentioned equilibrium state under high-speed conditions, it is necessary to make the particle size of the carrier sufficiently fine and to make the particle size uniform.

クロマトグラフィー分離用担体として用いられるHAP
は、湿式法で合成されたものをそのまま或は造粒物とし
て使用するか、乾式合成法によって合成されたものを粉
砕分級して用いるのが一般的である。しかしながら粒径
10μm以下の微粒子とするにはいずれの方法によって
も歩留りが悪く、しかも形状や粒度分布等の面では前述
した問題が未解決のまま残る。
HAP used as a carrier for chromatography separation
Generally, those synthesized by a wet method are used as they are or in the form of granules, or those synthesized by a dry method are pulverized and classified. However, in order to produce fine particles with a particle size of 10 μm or less, the yield is poor regardless of which method is used, and furthermore, the above-mentioned problems in terms of shape, particle size distribution, etc. remain unsolved.

HAPの製造方法としては上述した方法以外にもf重々
の方法が知られているが、例えばオートクレーブ法では
HAPが杭状粒子となってしまい、Ca HP O4を
出発物質とする湿式合成法では菱形となり、しかもいず
れの方法によっても10μm以下の微粒子形状として得
ることは困難である。これに対し燐酸の中和による方法
では微粒子状HAPが得られるが、コロイド状となり理
想とする球状且つ均一粒子は得られない、尚スプレード
ライ法による造粒が行なわれることもあるが、10μm
以下の微粒子の歩留りが悪いという難がある。
In addition to the above-mentioned methods, there are many other known methods for producing HAP. For example, in the autoclave method, HAP becomes pile-shaped particles, while in the wet synthesis method using CaHPO4 as a starting material, it becomes diamond-shaped. Moreover, it is difficult to obtain particles with a particle size of 10 μm or less by any method. On the other hand, with the method of neutralizing phosphoric acid, fine particulate HAP can be obtained, but it becomes colloidal and the ideal spherical and uniform particles cannot be obtained.Additionally, granulation is sometimes carried out by spray drying, but the particle diameter is 10 μm.
There is a problem that the yield of the following fine particles is poor.

−1MAP粉末を成形して焼成固化する場合において成
形体の密度をできるだけ高くするに当たっては、粉末の
粒子径ができるだけ小かく、しかも粒度分布の狭いこと
が望まれている。しかしながら前記の方法で得られるH
AP粒子のサイズは数μmから10μm以上の粗粒のも
のであり、−次粒子のサイズがこのように大きいと充填
率が低くなり、密度を高めることが難しい。そこで粒子
を細かくしようとすれば結晶性が悪くなり、水分を多く
含むため緻密成形体の焼成時における収縮率が大きくな
り、かつ不安定になるという問題を有していた。
In order to make the density of the compact as high as possible when molding -1 MAP powder and solidifying it by firing, it is desired that the particle size of the powder be as small as possible and that the particle size distribution be as narrow as possible. However, H obtained by the above method
AP particles are coarse particles ranging in size from several μm to 10 μm or more, and when the size of secondary particles is this large, the filling rate becomes low and it is difficult to increase the density. If an attempt is made to make the particles finer, the crystallinity deteriorates, and since the compact contains a large amount of water, the shrinkage rate during firing of the dense compact becomes large and the compact becomes unstable.

[発明が解決しようとする課題] 本発明はこうした技術的課題を解決する為になされたも
のであって、その目的は、粒子形状を球状にすると共に
粒度を均−且つ微細にし、しかもCa / P比を再現
性良く制御でき、クロマトグラフィー分離用担体や成形
体原料として最適なヒドロキシアパタイト微粒子1集体
の製造方法を提供することにある。
[Problems to be Solved by the Invention] The present invention has been made to solve these technical problems, and its purpose is to make the particle shape spherical, to make the particle size uniform and fine, and to make Ca/ The object of the present invention is to provide a method for producing a single aggregate of hydroxyapatite fine particles, which can control the P ratio with good reproducibility and is optimal as a carrier for chromatography separation or as a raw material for a molded body.

[3!題を解決する為の手段] 上記目的を達成し得た本発明とは、所定のCa/P比と
なるように非燐酸塩型の反応性Ca化合物および非Ca
塩型の燐の反応性酸素酸化合物を50℃以下の水および
/または親水性有機溶媒に熔解し、この溶液を水および
/または親木性有機溶媒に温度70℃以上、pH4以上
に保ちつつ滴下し、沈殿物の生成速度を制御することに
よって初期晶出粒子を核とする凝集体を形成し、その沈
殿物を回収する点に要旨を有するヒドロキシアパタイト
微粒子凝集体の製造方法である。
[3! [Means for Solving the Problems] The present invention that has achieved the above object is to use a non-phosphate reactive Ca compound and a non-Ca compound such that a predetermined Ca/P ratio
A reactive oxygen acid compound of salt-type phosphorus is dissolved in water and/or a hydrophilic organic solvent at a temperature of 50°C or lower, and this solution is dissolved in water and/or a hydrophilic organic solvent while maintaining a temperature of 70°C or higher and a pH of 4 or higher. This is a method for producing hydroxyapatite fine particle aggregates, the gist of which is to form aggregates with initially crystallized particles as cores by dropping the particles dropwise and control the rate of precipitation formation, and to collect the precipitates.

[作用] 本発明者らは、CaとPの夫々の化合物を予め混合して
一液とした後、これを水和置換反応させればHAPのC
a / P比を再現性良く制御できることを見出し、そ
の技術的意義が認められたので先に特許出願した(特願
昭62−326516号)。そして本発明者らは上記技
術を更に改良すべく、その後も研究を重ねた。その結果
水和置換反応における[(AP沈殿物の生成速度を適切
に制御すれば、初期晶出粒子を核としてHAP粒子が集
合した凝集体ができることが判明し、この凝集体の形状
は球状且つ均一に生成することからクロマトグラフィー
分離担体や成形体原料として最適であることを見出し、
本発明を完成した。尚沈殿物の生成速度を制御する具体
的手段としては、上記溶液の水や親水性有機溶媒に対す
る過飽和度を少なくし且つ滴下時に単独に新しい結晶核
ができにくい程度に滴下速度をコントロールすることが
挙げられる。
[Function] The present inventors have discovered that if the respective compounds of Ca and P are mixed in advance to form a single liquid, and then subjected to a hydration displacement reaction, the C of HAP can be reduced.
It was discovered that the a/P ratio could be controlled with good reproducibility, and its technical significance was recognized, so a patent application was filed (Japanese Patent Application No. 326516/1982). The inventors of the present invention continued to conduct research in order to further improve the above technology. As a result, it was found that if the formation rate of [(AP precipitate) in the hydration displacement reaction is appropriately controlled, aggregates in which HAP particles gather around the initial crystallized particles as cores can be formed, and the shape of these aggregates is spherical and We discovered that it is ideal as a chromatography separation carrier and a raw material for molded bodies because it is produced uniformly.
The invention has been completed. In addition, as a specific means to control the rate of precipitation formation, it is possible to reduce the degree of supersaturation of the above solution with respect to water or a hydrophilic organic solvent, and to control the dropping rate to such an extent that new crystal nuclei are difficult to form independently during dropping. Can be mentioned.

本発明で用いる非燐酸塩型の反応性Ca化合物および非
Ca塩型の反応性酸素酸化合物は、水あるいは親水性有
flN溶媒に可溶なものであり、例えば非燐酸塩型の反
応性Ca化合物としてはCaC1t 、Ca (NOs
 )2 。
The non-phosphate reactive Ca compound and the non-Ca salt reactive oxygen acid compound used in the present invention are those that are soluble in water or hydrophilic flN solvents, such as non-phosphate reactive Ca compounds. Compounds include CaClt, Ca(NOs
)2.

Ca (8C00)2 、Ca (CHs Coo)2
 。
Ca (8C00)2, Ca (CHs Coo)2
.

Ca (O)i)z 、CaCO5等やカルシウムジメ
トキシド、カルシウムジェトキシド、カルシウムジブロ
ポキシド等のCa−アルコキシド類およびカルボン酸塩
類等が非限定的に例示される。
Non-limiting examples include Ca(O)i)z, CaCO5, etc., Ca-alkoxides such as calcium dimethoxide, calcium jetoxide, and calcium dibropoxide, and carboxylic acid salts.

また非Ca塩型の燐の反応性酸素酸化合物としては、8
3PO4あるいはKHaPO4゜NHa 82 PO4
、(NH4)2 HPO4。
In addition, as a non-Ca salt type phosphorus reactive oxygen acid compound, 8
3PO4 or KHaPO4゜NHa 82 PO4
, (NH4)2HPO4.

(NH4)s Po、4等の如き燐酸塩の他、燐酸トリ
メトキシド、燐酸トリエトキシド、燐酸トリプロポキシ
ド、亜燐酸トリメトキシド、亜燐酸トリエトキシド、亜
燐酸トリプロポキシド等の各f1燐の酸素酸のアルコキ
シド類や燐酸トリメチル、メタ燐酸エチル1燐酸モノエ
チル、燐酸ジエチル。
In addition to phosphates such as (NH4)s Po, 4, etc., alkoxides of f1 phosphorus oxygen acids such as phosphoric acid trimethoxide, phosphoric triethoxide, phosphoric acid tripropoxide, phosphorous trimethoxide, phosphorous triethoxide, phosphorous tripropoxide, etc. trimethyl phosphate, ethyl metaphosphate monoethyl phosphate, diethyl phosphate.

燐酸トリエチル、ビロリン酸エチル等の各種燐の酸素酸
のエステル類が非限定的に例示される。
Non-limiting examples include esters of various phosphorus oxygen acids such as triethyl phosphate and ethyl birophosphate.

前記非燐酸塩型の反応性Ca化合物および非Ca塩型の
燐の反応性酸素酸化合物を所定のCa / P比となる
ような配合で50℃以下の水および/または親木性有機
溶媒に熔解させ、この熔解液を水および/または親水性
溶媒に温度70℃以上、pH4以上(好ましくは8〜1
1)に保ちつつ滴下し、水和置換反応させてHAP徹粒
子粒子凝集体殿物を得る。この際熔解液の温度を50℃
以下とするのは熔解液中での反応を制御するためである
The non-phosphate type reactive Ca compound and the non-Ca salt type reactive oxygen acid compound of phosphorus are mixed in water and/or a wood-philic organic solvent at a temperature of 50°C or less in such a manner that a predetermined Ca/P ratio is achieved. Melt the solution and add the melt to water and/or a hydrophilic solvent at a temperature of 70°C or higher and a pH of 4 or higher (preferably 8 to 1).
1), and a hydration displacement reaction is carried out to obtain a HAP particle aggregate precipitate. At this time, the temperature of the melt was set at 50℃.
The reason for the following is to control the reaction in the melt.

また被滴下液の温度を70℃以上に保つとともにKOH
,NaOH,NH40H等のアルカリを滴下してpHを
4以上(好ましくは8〜11)に保つのは、被滴下液の
温度が70℃未満では生成HAPが非晶質相との混合晶
となってしまい、また結晶性も悪くなってしまうからで
あり、被滴下液の温度は70℃以上とする。被滴下液が
pH4未満では沈殿物が生成せず、仮に生成したとして
もHAP微粒子が再熔解し、生成物の粒子形状や化学組
成が不安定になるのでpH4以上(好ましくは8〜11
)に保つことが必要である。尚pHを制御することによ
って、粒度の調整も可能である(後記実施例1参照)。
In addition, while keeping the temperature of the dripping liquid above 70℃,
The reason for keeping the pH at 4 or higher (preferably 8 to 11) by dropping an alkali such as , NaOH, or NH40H is because if the temperature of the dropping liquid is below 70°C, the formed HAP becomes a mixed crystal with an amorphous phase. This is because the temperature of the liquid to be dropped should be 70° C. or higher. If the dropping solution has a pH of less than 4, no precipitate will be formed, and even if it does, the HAP fine particles will re-melt and the particle shape and chemical composition of the product will become unstable.
). The particle size can also be adjusted by controlling the pH (see Example 1 below).

前記Ca化合物および前記P化合物を熔解する液あるい
は熔解液を滴下する被滴下液の水以外の親水性有機溶媒
としては、メタノール、エタノール、アセトン、エーテ
ル等が例示され、水和反応置換に際しては熔解液および
被滴下液として同じものあるいは異なるものを使用して
も良い。
Examples of the hydrophilic organic solvent other than water in the liquid for dissolving the Ca compound and the P compound or the liquid to which the dissolved liquid is dropped include methanol, ethanol, acetone, ether, etc. The liquid and the dripping liquid may be the same or different.

以下本発明を実施例によフて更に詳細に説明するが、下
記実施例は本発明方法の一具体例を示しただけであって
、前・後記の趣旨に徴して設計変更することはいずれも
本発明の技術的範囲に含まれるものである。
The present invention will be explained in more detail below with reference to examples, but the following examples merely show one specific example of the method of the present invention, and the design may not be changed in any way for the purpose of the above and below. Also included in the technical scope of the present invention.

[実施例] 東直画ユ CaC1zとHsPO4(85%濃度)を所定のCa 
/ Pモル比となる様に25℃のイオン交換水iIlに
熔解し、混合溶液とした。
[Example] Tonaoga Yu CaC1z and HsPO4 (85% concentration) were mixed with predetermined Ca
/P molar ratio was dissolved in 25°C ion-exchanged water IIl to obtain a mixed solution.

続いて70℃のイオン交換水11にこの温度を保ちつつ
、pHコントローラに接続したマイクロチューブポンプ
でKOH水溶液を加えてpHを制御するとともに前記混
合液を滴下したところ、乳白色の懸濁液を得た。この懸
濁液を2時間保持した後、メンブランフィルタ−にて濾
過し、AgN0.水溶液による濾液の白濁化が認められ
なくなるまで純水で洗浄した。得られた沈殿物を100
℃にて乾燥後粉末X線回折に付した結果によると、すべ
てHAPの単相であった。また透過電子顕微鏡による粒
子形状の観察では、針状粒子が集合した均一な球状凝集
体であった。また得られた)(APのCa / P比は
原料の配合比とほぼ符合するものであった。このときの
pHと粒子径との関係を第1表に示す。
Next, while maintaining this temperature in the ion-exchanged water 11 at 70°C, the pH was controlled by adding a KOH aqueous solution using a microtube pump connected to a pH controller, and the mixture was added dropwise to obtain a milky white suspension. Ta. After holding this suspension for 2 hours, it was filtered with a membrane filter and AgN0. The filtrate was washed with pure water until no clouding of the filtrate due to the aqueous solution was observed. The obtained precipitate was 100
According to the results of powder X-ray diffraction after drying at .degree. C., all the materials were a single phase of HAP. Furthermore, observation of the particle shape using a transmission electron microscope revealed that it was a uniform spherical aggregate made up of needle-like particles. The Ca/P ratio of the obtained AP (AP) was almost the same as the blending ratio of the raw materials. Table 1 shows the relationship between the pH and the particle size.

第 表 表J(」ユ Caジェトキシド13gをエチレングリコール72.6
gに熔解し、これを亜燐酸トリエチル10gを熔解した
エチルアルコール100ccに混合して混合溶液とした
。無水酢酸32gをエチルアルコール100ccに熔解
した溶液に上記混合溶液を滴下したところ、乳白色の懸
濁液を得た。該懸濁液を実施例と同様に濾過・乾燥した
後、得られた沈殿物をX線回折したところ、球状且つ均
一なHAP微粒子凝集体であることが分かった。
Table J
This was mixed with 100 cc of ethyl alcohol in which 10 g of triethyl phosphite was dissolved to prepare a mixed solution. When the above mixed solution was added dropwise to a solution of 32 g of acetic anhydride dissolved in 100 cc of ethyl alcohol, a milky white suspension was obtained. After filtering and drying the suspension in the same manner as in Examples, the resulting precipitate was subjected to X-ray diffraction, and it was found to be spherical and uniform HAP fine particle aggregates.

またこの凝集体のCa / P比は1.67であった。Further, the Ca/P ratio of this aggregate was 1.67.

実施例3 Ca / P比が所定の値となる様に、Caジェトキシ
ドと燐酸トリメチルを25℃のエチルアルコールに熔解
して混合溶液を得た。続いて70℃のイオン交換水中に
、pHコントローラに接続したマイクロチューブでKO
H水溶液を加えてpHを7以上に制御しながら前記混合
溶液を滴下したところ、乳白色の懸濁液を得た。該懸?
ji3液を実施例1と同様に濾過・乾燥した後、得られ
た沈殿物をX線回折したところ、ヒドロキシアパタイト
単相であることが確認された。また得られたHAPは、
実施例1のときと同様の形状であった。
Example 3 Ca jetoxide and trimethyl phosphate were dissolved in ethyl alcohol at 25° C. to obtain a mixed solution so that the Ca/P ratio was a predetermined value. Next, KO was placed in ion-exchanged water at 70°C using a microtube connected to a pH controller.
The mixed solution was added dropwise while controlling the pH to 7 or more by adding an aqueous H solution, to obtain a milky white suspension. The question?
After filtering and drying the ji3 liquid in the same manner as in Example 1, the resulting precipitate was subjected to X-ray diffraction, and it was confirmed that it was a single phase of hydroxyapatite. In addition, the obtained HAP is
It had the same shape as in Example 1.

[発明の効果] 以上述べた如く本発明によれば、クロマトグラフィー分
離用担体や成形体原料として最適なヒドロキシアパタイ
ト微粒子凝集体が得られた。
[Effects of the Invention] As described above, according to the present invention, a hydroxyapatite fine particle aggregate suitable as a carrier for chromatography separation or a raw material for a molded body was obtained.

Claims (1)

【特許請求の範囲】[Claims] 所定のCa/P比となるように非燐酸塩型の反応性Ca
化合物および非Ca塩型の燐の反応性酸素酸化合物を5
0℃以下の水および/または親水性有機溶媒に熔解し、
この溶液を水および/または親水性有機溶媒に温度70
℃以上、pH4以上に保ちつつ滴下し、沈殿物の生成速
度を制御することによって初期晶出粒子を核とする凝集
体を形成し、その沈殿物を回収することを特徴とするヒ
ドロキシアパタイト微粒子凝集体の製造方法。
Non-phosphate reactive Ca is added to achieve a predetermined Ca/P ratio.
Compounds and reactive oxygen acid compounds of phosphorus in non-Ca salt form
Dissolved in water and/or hydrophilic organic solvent at 0°C or lower,
This solution was added to water and/or a hydrophilic organic solvent at a temperature of 70°C.
Hydroxyapatite fine particle agglomeration method is characterized in that it is added dropwise while maintaining the temperature at ℃ or above and pH 4 or above, and forms an aggregate with initially crystallized particles as a nucleus by controlling the rate of precipitation formation, and then collects the precipitate. Method of manufacturing aggregates.
JP63305636A 1988-12-01 1988-12-01 Method for producing hydroxyapatite fine particle aggregate Expired - Lifetime JPH0788206B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63305636A JPH0788206B2 (en) 1988-12-01 1988-12-01 Method for producing hydroxyapatite fine particle aggregate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63305636A JPH0788206B2 (en) 1988-12-01 1988-12-01 Method for producing hydroxyapatite fine particle aggregate

Publications (2)

Publication Number Publication Date
JPH02149408A true JPH02149408A (en) 1990-06-08
JPH0788206B2 JPH0788206B2 (en) 1995-09-27

Family

ID=17947517

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63305636A Expired - Lifetime JPH0788206B2 (en) 1988-12-01 1988-12-01 Method for producing hydroxyapatite fine particle aggregate

Country Status (1)

Country Link
JP (1) JPH0788206B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999018029A1 (en) * 1997-10-08 1999-04-15 Nippon Chemical Industrial Co., Ltd. Apatite slurry and process for the preparation thereof
US6159437A (en) * 1996-05-08 2000-12-12 Nippon Chemical Industrial Co., Ltd. Method for manufacturing an aptatite slurry
JP2001287903A (en) * 2000-04-05 2001-10-16 Asahi Kasei Corp Method for producing needle-like apatite particle
JP2008050260A (en) * 1997-01-16 2008-03-06 Orthovita Inc Novel minerals and methods for their production and use
US9220595B2 (en) 2004-06-23 2015-12-29 Orthovita, Inc. Shapeable bone graft substitute and instruments for delivery thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6159437A (en) * 1996-05-08 2000-12-12 Nippon Chemical Industrial Co., Ltd. Method for manufacturing an aptatite slurry
JP2008050260A (en) * 1997-01-16 2008-03-06 Orthovita Inc Novel minerals and methods for their production and use
WO1999018029A1 (en) * 1997-10-08 1999-04-15 Nippon Chemical Industrial Co., Ltd. Apatite slurry and process for the preparation thereof
JP2001287903A (en) * 2000-04-05 2001-10-16 Asahi Kasei Corp Method for producing needle-like apatite particle
US9220595B2 (en) 2004-06-23 2015-12-29 Orthovita, Inc. Shapeable bone graft substitute and instruments for delivery thereof
US9789225B2 (en) 2004-06-23 2017-10-17 Orthovita, Inc. Shapeable bone graft substitute and instruments for delivery thereof
US10441683B2 (en) 2004-06-23 2019-10-15 Orthovita, Inc. Method for restoring bone using shapeable bone graft substitute and instruments for delivery thereof

Also Published As

Publication number Publication date
JPH0788206B2 (en) 1995-09-27

Similar Documents

Publication Publication Date Title
AU713435B2 (en) Low temperature calcium phosphate apatite and a method of its manufacture
CN110898253B (en) Method for preparing intrafiber biomimetic mineralized collagen membrane capable of promoting cell osteogenic differentiation
CN102897734B (en) Calcium phosphate nano-structures and preparation method thereof
CN106006593B (en) A kind of nano-calcium phosphate preparation method of simple and effective
CN113460986B (en) Method for preparing hydroxyapatite microsphere with core-shell structure by one-step method and application thereof
CN109205583A (en) A kind of large scale argentum-carried hydroxylapatite porous microsphere material and preparation method thereof
CN101254909A (en) Method for preparing meso-porous nano hydroxyl phosphorite crystal
JPH02149408A (en) Preparation of fine particle aggregate of hydroxyapatite
WO2003042098A1 (en) Granular zirconium phosphate and methods for synthesis of same
CN112830464B (en) Strontium-doped hydroxyapatite nanotube and preparation method thereof
CN101205058B (en) Preparation method of micron level sphere hydroxyapatite
JP2021502319A (en) Method for producing octacalcium phosphate and octacalcium phosphate produced thereby
KR101017815B1 (en) Calcium Phosphate Particle Manufacture Methods for Solution Growth Method
KR100977195B1 (en) Method for manufacturing hydroxy apatite
CN110510592B (en) Method for regulating and preparing hydroxyapatite with excellent cell compatibility
CN103803519B (en) There is the preparation method of the layered porous calcium phosphate powder of micro-nano multilevel hierarchy
CN104401954A (en) Magnesium phosphate nano-structure material and preparation method thereof
RU2657817C1 (en) Method for producing ceramic powder based on hydroxyapatite and wollastonite
KR100498759B1 (en) Method for manufacturing hydroxyapatite granule for biomaterials
JP5544813B2 (en) Method for producing spherical hydroxyapatite
JP2572793B2 (en) Method for producing hydroxyapatite fine particles
JPH0426509A (en) Hydroxyapatite fine crystal and its production
EP1447104A1 (en) Process to synthetize artificial bone tissue, artificial bone tissue obtained by such a process and use thereof
JP4427662B2 (en) Method for producing fine calcium phosphate powder from calcium phosphate precursor obtained by wet grinding method
CN111943157B (en) Method for preparing alpha-tricalcium phosphate based on inositol molecules and application thereof