JPH03218911A - Method and device for producing hydroxyapatite - Google Patents

Method and device for producing hydroxyapatite

Info

Publication number
JPH03218911A
JPH03218911A JP2011735A JP1173590A JPH03218911A JP H03218911 A JPH03218911 A JP H03218911A JP 2011735 A JP2011735 A JP 2011735A JP 1173590 A JP1173590 A JP 1173590A JP H03218911 A JPH03218911 A JP H03218911A
Authority
JP
Japan
Prior art keywords
suspension
hydroxyapatite
chamber
exchange resin
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011735A
Other languages
Japanese (ja)
Inventor
Hideaki Ito
秀明 伊藤
Masahiko Muro
正彦 室
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Steel Works Ltd
Original Assignee
Japan Steel Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Steel Works Ltd filed Critical Japan Steel Works Ltd
Priority to JP2011735A priority Critical patent/JPH03218911A/en
Publication of JPH03218911A publication Critical patent/JPH03218911A/en
Pending legal-status Critical Current

Links

Landscapes

  • Materials For Medical Uses (AREA)

Abstract

PURPOSE:To continuously and automatically carry out the whole process and to obtain a high-purity and stabilized-quality product in the process in which a hydrolysis reaction is conducted in two stages without using an org. solvent by using an ion-exchange resin to remove the generated ions. CONSTITUTION:Sparingly water-soluble calcium phosphate 2 as the starting material and water sucked up from a tank 3 by a pump 4 through a solenoid valve 5 are charged into a first reaction vessel 1, and a pH regulator is added from a vessel 6. The vessel 1 is agitated, a reaction is carried out in the basic medium, and a suspension of hydroxyapatite having the non-stoichiometric composition and in which the molar ratio of Ca to P is controlled to <1.67 is produced. The suspension is successively introduced into chambers 9 and 10 respectively packed with anion and cation-exchange resin to remove the anion and cations, and then the suspension is supplied to a second reaction vessel 12. Ca<2+> is added to the suspension from a pH regulator container 16, a reactrion is carried out in the basic medium, the molar ratio of Ca to P is increased to 1.67, and the suspension is converted into a suspension of hydroxyapatite having a stoichiometric composition. The obtained suspension is supplied to a chamber 15 to remove Ca<2+>.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、水酸アパタイトの製造方法及びその装置に関
するものである. 〔従来の技術及びその課題〕 水酸アパタイト(Ca+e(PO4)i(OB)z)は
、HAPと略称され、歯や骨の成分の60〜70%を占
めるミネラルであり、生体適合性に優れることから生体
用材料として脚光を浴びている.その具体的な用途には
、歯・骨欠損部への充填材、歯科用セメント、歯磨き材
、人工歯冠・人工歯根などがある,そのほか、水酸アパ
タイト粒子表面は反応性に富み、吸着能や触媒能も併せ
て有することから、特に蛋白質などの有機物を高効率で
分離・濃縮する高速液体クロマトグラム用カラム充填材
としても利用されつつある. 従来の水酸アパタイトの製造方法としては、固相反応法
、水熱合成法、沈澱反応法、加水分解法等が知られてい
る.しかしながら、固相反応法は、ヒ素^Sなどの不純
物が多く、かつ、反応に密閉耐圧容器を使用するため、
高価である.水熱合成法も密閉耐圧容器を使用し、また
得られる水酸アパタイトは、単結晶となり粒度が大きい
.また、沈澱反応法により得られる水酸アパタイトは、
活性で焼結性は良いが、沈澱がコロイド状をなしてろ過
性が悪く、また組成のコントロールが困難である.更に
、加水分解法は、一般に反応に長時間を要する有機溶剤
(n−ベンタン)の共存下で時間短縮が可能であるが、
後処理が面倒になるなどの難点がある. 一方、従来の水酸アパタイトの製造方法として、有機溶
剤を使用せず、加水分解反応を2段階に分けて行い、短
時間に水酸アパタイトを製造する方法が、特開昭62−
46908号公報に開示されている.この方法では、第
1段階反応の終了後にPH調整用塩基性物質(NH.O
H等)及び加水分解時の反応副産物であるH3POsが
混在し、また、第2段階反応の終了後に化学量論組成の
水酸アパタイトと共に、pHtm整用の過剰カルシウム
イオンCa”+が存在する. そして、第1段階反応後に混在するイオン(NHa”、
又はH*POn − 、HPO4”−、P04ト等)は
、次の第2段階反応の進行を抑制するため、水溶液から
これらのイオンを除去しなければならない.更に、第2
段階反応後の過剰Ca2+も、高純度の水酸アパタイト
を得るために除去する必要がある.このため、実際には
、各反応終了段階では水溶液は水酸アパタイト粒子のけ
ん濁液であるので、第3図に示すように、各反応終了後
、具体的には第1段反応(加水分解)後及び第2段反応
(Ca”添加)後にそれぞれ1時間程度かけて、けん濁
液のろ過・洗浄を繰り返す工程を採用している。しかし
、この方法では、けん濁液を反応容器から取り出した後
、繰り返しろ過・洗浄して水酸アパタイト粒子を分離・
回収し、更に次の反応容器等に移し換える操作が必要で
あり、不連続処理になり、水酸アパタイトの生産性及び
品質の安定化の面で、工業的には不適である. 〔課題を解決するための手段〕 本発明は、上記の事情に鑑みてなされたものであり、請
求項(1)記載の発明の構成は、難水溶性リン酸カルシ
ウムを塩基性水溶液中で加水分解させて、Ca/Pモル
比を所定値より小さい非化学量論組成の水酸アパタイト
のけん濁液とし、その後塩基性水溶液の下でカルシウム
イオンを添加しテCa/Pモル比を所定値までに増加さ
せる水酸アパタイトの製造方法において、発生する陰イ
オン又は陽イオンをイオン交換樹脂にて除去する水酸ア
パタイトの製造方法である. また、請求項(2)記載の発明の構成は、難水溶性リン
酸カルシウムを塩基性水溶液中で加水分解させて、Ca
/Pモル比を所定値より小さい非化学量論組成の水酸ア
パタイトのけん濁液となす第1反応容器と、該けん濁液
を陰イオン交換IMWM層を通して混在する陰イオンを
除去する第1チャンバーと、該けん濁液を陽イオン交換
樹脂層を遣して混在す.る陽イオンを除去する第2チャ
ンバーと、該第1及び第2チャンバーを通過したけん濁
液を塩基性水溶液の下でカルシウムイオンを添加してC
a/Pモル比を所定値までの値に増加させる第2反応容
器と、該第2反応容器を遍遇したけん濁液を陽イオン交
換樹脂層を通して混在するカルシウムイオンを除去する
第3チャンバーとを備える水酸アパタイトの製造装置で
ある.なお、第1チャンバーに陽イオン交換樹脂を充填
し、第2チャンバーに陰イオン交換樹脂を充填してもよ
い。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for producing hydroxyapatite and an apparatus therefor. [Prior art and its problems] Hydroxyapatite (Ca+e(PO4)i(OB)z), abbreviated as HAP, is a mineral that accounts for 60 to 70% of the components of teeth and bones, and has excellent biocompatibility. For this reason, it is attracting attention as a biological material. Specific uses include filling materials for teeth and bone defects, dental cement, toothpaste, artificial tooth crowns and roots, etc.In addition, the surface of hydroxyapatite particles is highly reactive and has adsorption capacity. Because it also has catalytic and catalytic abilities, it is increasingly being used as a column packing material for high-performance liquid chromatography, which separates and concentrates organic substances such as proteins with high efficiency. Conventional methods for producing hydroxyapatite include solid-phase reaction methods, hydrothermal synthesis methods, precipitation reaction methods, and hydrolysis methods. However, the solid phase reaction method contains many impurities such as arsenic^S and uses a closed pressure vessel for the reaction.
It's expensive. The hydrothermal synthesis method also uses a closed pressure vessel, and the resulting hydroxyapatite is single crystal and has a large particle size. In addition, hydroxyapatite obtained by the precipitation reaction method is
It is active and has good sinterability, but the precipitate is colloidal, making filterability poor, and composition control difficult. Furthermore, in the hydrolysis method, the reaction time can be shortened in the coexistence of an organic solvent (n-bentane), which generally requires a long reaction time.
There are disadvantages such as post-processing being troublesome. On the other hand, as a conventional method for producing hydroxyapatite, there is a method for producing hydroxyapatite in a short time by dividing the hydrolysis reaction into two stages without using an organic solvent.
It is disclosed in Publication No. 46908. In this method, a basic substance for pH adjustment (NH.O.
(H, etc.) and H3POs, which are reaction byproducts during hydrolysis, are present, and after the second stage reaction, along with hydroxyapatite of stoichiometric composition, excess calcium ion Ca''+ for pHtm adjustment is present. After the first stage reaction, the ions (NHa”,
or H*POn −, HPO4”−, P04, etc.), these ions must be removed from the aqueous solution in order to suppress the progress of the next second stage reaction.
Excess Ca2+ after the stepwise reaction also needs to be removed to obtain high purity hydroxyapatite. Therefore, in reality, at each reaction completion stage, the aqueous solution is a suspension of hydroxyapatite particles. ) and after the second stage reaction (Ca" addition), the suspension is repeatedly filtered and washed for about an hour. However, in this method, the suspension is removed from the reaction vessel. After that, the hydroxyapatite particles are separated by repeated filtration and washing.
It is necessary to collect the hydroxyapatite and transfer it to the next reaction vessel, etc., resulting in a discontinuous process, which is not suitable for industrial use in terms of productivity and quality stabilization of hydroxyapatite. [Means for Solving the Problems] The present invention has been made in view of the above circumstances, and the structure of the invention described in claim (1) is to hydrolyze poorly water-soluble calcium phosphate in a basic aqueous solution. A suspension of hydroxyapatite with a non-stoichiometric composition in which the Ca/P molar ratio is smaller than a predetermined value is made, and then calcium ions are added in a basic aqueous solution to bring the Ca/P molar ratio to a predetermined value. This is a method for producing hydroxyapatite in which generated anions or cations are removed using an ion exchange resin. Further, the structure of the invention described in claim (2) is such that barely water-soluble calcium phosphate is hydrolyzed in a basic aqueous solution, and Ca.
A first reactor containing a suspension of hydroxyapatite with a non-stoichiometric composition in which the /P molar ratio is smaller than a predetermined value; The chamber and the suspension are mixed through a cation exchange resin layer. a second chamber that removes cations, and the suspension that has passed through the first and second chambers is treated with calcium ions in a basic aqueous solution to
a second reaction vessel for increasing the a/P molar ratio to a predetermined value; and a third chamber for removing mixed calcium ions through a cation exchange resin layer that passes through the suspension that has passed through the second reaction vessel. This is a hydroxyapatite production equipment equipped with the following. Note that the first chamber may be filled with a cation exchange resin, and the second chamber may be filled with an anion exchange resin.

〔作用〕[Effect]

水酸アパタイトの製造方法によれば、難水溶性リン酸カ
ルシウムを非化学量論組成の水酸アパタイトのけん濁液
となした後、最終工程に至るまで、けん濁液のままで連
続処理され、その処理過程において生ずる陰イオン又は
陽イオンがイオン交換樹脂にて除去され、反応が速やか
に終了すると共に、高純度の水酸アパタイトが得られる
According to the method for manufacturing hydroxyapatite, poorly water-soluble calcium phosphate is made into a suspension of hydroxyapatite with a non-stoichiometric composition, and then the suspension is continuously processed until the final process. Anions or cations generated during the treatment process are removed by an ion exchange resin, the reaction is quickly completed, and highly pure hydroxyapatite is obtained.

また、製造装置によれば、第1反応容器において難水溶
性リン酸カルシウムを塩基性水溶液中で加水分解させる
際にP04ト等の陰イオン及びNH.”の陽イオンを生
ずる.この陰イオンは、第1チャンバーにおいて陰イオ
ン交換樹脂によって除去され、また陽イオンは、第2チ
ャンバーにおいて陽イオン交換樹脂によって速やかに除
去される。このイオンの除去されたけん濁液を第2反応
容器に導き、塩基性水溶液の下でカルシウムイオンを添
加するので、反応が速やかに終了し、化学量論組成の水
酸アパタイトが得られる。その後、第3チャンバーに導
き、陽イオン交換樹脂を用いて余分のカルシウムイオン
を除去することにより、高純度の水酸アパタイトが速や
かかつ自動的に得られる。なお、陽イオンを第1チャン
バーで除去し、陰イオンを第2チャンバーで除去しても
作用は同じである。
According to the manufacturing apparatus, when hydrolyzing poorly water-soluble calcium phosphate in a basic aqueous solution in the first reaction vessel, anions such as P04 and NH. This anion is removed by an anion exchange resin in the first chamber, and the cation is rapidly removed by a cation exchange resin in the second chamber. The turbid liquid is introduced into the second reaction vessel, and calcium ions are added under a basic aqueous solution, so that the reaction is quickly completed and hydroxyapatite with a stoichiometric composition is obtained.Then, it is introduced into the third chamber, By removing excess calcium ions using a cation exchange resin, highly pure hydroxyapatite can be obtained quickly and automatically.The cations are removed in the first chamber, and the anions are removed in the second chamber. Even if it is removed, the effect is the same.

〔実施例] 以下、本発明の実施例について図面を参照して説明する
. 第1図は、本発明の1実施例に係る装置を示し、第2図
は、同工程のフローを示す.図中において符号1は、第
1反応容器であり、第1反応容器l内には水酸アパタイ
トの原材料(出発原料)である難水溶性リン酸カルシウ
ム(例えば、CaHPO4・2H!0)2と、水タンク
3からポンプ4によって汲み上げられ、NMi弁5を通
って供給された水とを収容する.6は、pH調整剤とし
て例えばNH.011を収容するpHu4整剤容器であ
る.第1工程としては、上記第1反応容器lに、pH調
整剤容器6からpH調整剤を適宜に加えてpHを調整す
ると共に、スターラ7aによって第1反応容器l内を攪
拌し、塩基性状態にて反応させて、Ca/Pのモル比が
1.67より小さい非化学量論組成の水酸アパタイト (Ca+o−g (HPOa)g (POa)h−m)
(OH)z−* ・nHzO)を生成する。ここで、n
はθ〜2.5、2は0〜1を表す。この第1段階の反応
は、例えば、温度6o”C,pH値8、約1時間の条件
にて行われる.原材料としてCa}IPO4・2H!0
を使用した場合の第1段階の反応式を次に示す. (10−z)CaHPOn  ・2HzO+ [(2−
z) +n ) H!O →Ca+o−t (}IPO
a)g (POa)i−*(OR)z−++  ’II
HzO+(4−z)HsPOa + 2(10−z)H
tOそしてこの反応終了後には、PH調整用NH40H
及び加水分解時の反応副産物であるH3PO.が混在す
る。これに伴うイオン(NH.” 、又は11!PO.
HPO.”−若しくはPO. ’−)は、後記する第2
段階の反応の進行を抑制するため、水溶液からこれらの
イオンを除去しなければならない。
[Examples] Examples of the present invention will be described below with reference to the drawings. FIG. 1 shows an apparatus according to one embodiment of the present invention, and FIG. 2 shows the flow of the same process. In the figure, reference numeral 1 denotes a first reaction vessel, and inside the first reaction vessel l, there is a poorly water-soluble calcium phosphate (e.g., CaHPO4.2H!0) 2, which is a raw material (starting material) for hydroxyapatite, and water. It contains water pumped up from the tank 3 by the pump 4 and supplied through the NMi valve 5. 6 is a pH adjusting agent such as NH. This is a pHu4 preparation container containing 011. In the first step, the pH is adjusted by appropriately adding a pH adjusting agent from the pH adjusting agent container 6 to the first reaction container 1, and the inside of the first reaction container 1 is stirred by the stirrer 7a to make it basic. to produce hydroxyapatite (Ca+o-g (HPOa)g (POa)hm) with a non-stoichiometric composition in which the Ca/P molar ratio is less than 1.67.
(OH)z−*·nHzO) is generated. Here, n
represents θ~2.5, and 2 represents 0-1. This first stage reaction is carried out for about 1 hour at a temperature of 6°C, a pH value of 8, and a raw material of Ca}IPO4・2H!0.
The reaction formula of the first stage when using is shown below. (10-z)CaHPOn ・2HzO+ [(2-
z) +n) H! O → Ca+o-t (}IPO
a) g (POa)i-*(OR)z-++ 'II
HzO+(4-z)HsPOa+2(10-z)H
tO and after the completion of this reaction, NH40H for pH adjustment.
and H3PO. which is a reaction by-product during hydrolysis. are mixed. The accompanying ions (NH.”, or 11!PO.
HPO. ”- or PO. '-) is the second
These ions must be removed from the aqueous solution in order to inhibit the progress of the step reaction.

なお、難水溶性リン酸カルシウムとしては、CaHPO
a ’ 2Hzoの他、CaHPO4. Caz(PO
Jg等がある.第2工程では、スラリーボンプ13aを
駆動し、電磁弁8を解放して、第1反応容器1内の反応
生成物である非化学量論組成の水酸アパタイト粒子のけ
ん濁液を第1チャンハ−9及び第2チャンバー10に順
次に導入する.第1チャンバー9には、陰イオン交換樹
脂が充填されているため、混在する陰イオン (PO4
”−)が除去される.また、第2チャンハ−lOには、
陽イオン交換樹脂が充填されているため、混在する陽イ
オン(NH4” )が除去される.圧力計20a,  
2Qbは、各チャンバー9、10の目づまりを圧力上昇
として検出し各イオン交換樹脂を水洗いするためのもの
である.この第2工程に要する時間は、10分程度であ
る. 第2チャンハ−10を通過した非化学量論組成の水酸ア
パタイトのけん濁液は、電磁弁11を通して第2反応容
器l2に供給し、第3工程に移る.第3工程では、第2
反応容器l2中の非化学量論組成の水酸アパタイトに、
pH調整剤容器l6から例えばCa (OH) z等を
供給してカルシウムイオンCa24を添加すると共に、
塩基性状態にて反応させて、Ca/Pのモル比を1.6
7までの所定の比まで増加させて化学量論組成の水酸ア
パタイトのけん濁液に転化させる。この第2段階の反応
は、例えば温度60″C,pH値11、約1時間の条件
にて行う,7bは、スターラである。
In addition, as poorly water-soluble calcium phosphate, CaHPO
In addition to a′ 2Hz, CaHPO4. Caz(P.O.
There are Jg etc. In the second step, the slurry pump 13a is driven, the electromagnetic valve 8 is opened, and a suspension of hydroxyapatite particles having a non-stoichiometric composition, which is a reaction product, in the first reaction vessel 1 is pumped into the first chamber. 9 and the second chamber 10 sequentially. The first chamber 9 is filled with anion exchange resin, so anions (PO4
”-) is removed. Also, in the second Changha-IO,
Since it is filled with cation exchange resin, mixed cations (NH4'') are removed.Pressure gauge 20a,
2Qb is for detecting clogging of each chamber 9, 10 as a pressure increase and washing each ion exchange resin with water. The time required for this second step is about 10 minutes. The non-stoichiometric suspension of hydroxyapatite that has passed through the second chamber 10 is supplied to the second reaction vessel 12 through the electromagnetic valve 11, and then proceeds to the third step. In the third step, the second
In the non-stoichiometric hydroxyapatite in the reaction vessel l2,
For example, supplying Ca (OH) z etc. from the pH adjuster container l6 and adding calcium ions Ca24,
The reaction was carried out in a basic state, and the molar ratio of Ca/P was 1.6.
7 to convert into a stoichiometric suspension of hydroxyapatite. This second stage reaction is carried out, for example, at a temperature of 60''C, a pH value of 11, and a period of about 1 hour. 7b is a stirrer.

この第2段階の反応式を次に示す. CM+o−* (HPO4)g (POJ*−++(O
R)x−g  ’ nHzo+Zca”◆十ZOH −
.  − Ca+e(POa)h(OR)z +zl{
” +nHzOこの反応終了後には化学量論組成の水酸
アパタイトと共にpHili整用の遇剰Ca”◆が存在
する.そこで、この第2反応容器12内の水酸アパタイ
トのけん濁液は、スラリーボンブ13bを駆動し、電磁
弁14を通して第3チャンバー15に供給し、第4工程
に移る.第3チャンハ−15には、陽イオン交換樹脂が
充填されており、混在する余分のカルシウムイオン(C
a1+ )が除去され、高純度の水酸アパタイトの水溶
液が得られる。この第4工程に要する時間は、5分程度
である。20cは、圧力針である. 第3チャンバー15を通過した水酸アパタイトのけん濁
液は、電磁弁l7を介してHAP容器18に収容する,
HAP容器18内の水酸アパタイトのけん濁液は、t磁
弁l9を開いて外部に取り出し、乾燥する,7cはスタ
ーラである。
The reaction formula for this second stage is shown below. CM+o-* (HPO4)g (POJ*-++(O
R) x-g'nHzo+Zca"◆10ZOH -
.. −Ca+e(POa)h(OR)z+zl{
”+nHzOAfter the completion of this reaction, surplus Ca” ◆ for pH adjustment exists along with hydroxyapatite of stoichiometric composition. Therefore, the suspension of hydroxyapatite in the second reaction vessel 12 is supplied to the third chamber 15 through the electromagnetic valve 14 by driving the slurry bomb 13b, and the process proceeds to the fourth step. The third chamber 15 is filled with cation exchange resin, and excess calcium ions (C
a1+) is removed, and a highly pure aqueous solution of hydroxyapatite is obtained. The time required for this fourth step is about 5 minutes. 20c is a pressure needle. The hydroxyapatite suspension that has passed through the third chamber 15 is stored in the HAP container 18 via the solenoid valve l7.
The hydroxyapatite suspension in the HAP container 18 is taken out to the outside by opening the magnetic valve 19 and dried. 7c is a stirrer.

なお、第2工程では、第1チャンバー9に陽イオン交換
樹脂を充填し、第2チャンバー10に陰イオン交換樹脂
を充填し、これにより第1チャンハ−9にて陽イオン(
NH.↑)を除去し、第2チャンバー10にて陰イオン
(PO4’−)を除去してもよい. 〔発明の効果〕 以上の説明によって理解されるように、本発明によれば
、下記の効果が得られる。
In the second step, the first chamber 9 is filled with a cation exchange resin, and the second chamber 10 is filled with an anion exchange resin, whereby cations (
N.H. ↑) and anions (PO4'-) may be removed in the second chamber 10. [Effects of the Invention] As understood from the above explanation, according to the present invention, the following effects can be obtained.

(1).イオン交換樹脂でイオンを除去するため、水酸
アパタイトをけん濁液のまま全工程を連続・自動処理す
ることができ、反応に要するトータル時間が短縮すると
共にイオンを簡単かつ速やかに除去することができ、生
産性は大幅に向上する。
(1). Since ions are removed using an ion exchange resin, the entire process can be carried out continuously and automatically while the hydroxyapatite remains as a suspension, reducing the total reaction time and allowing ions to be removed easily and quickly. This will greatly improve productivity.

(2).水酸アパタイトの製造が、全工程を通してけん
濁液のクローズドサイクルとなり、従来方法におけるろ
過、洗浄工程での不純物の混入を防止できること、更に
各工程の連続・自動化により反応条件を正確かつ均一に
制御することができ、水酸アパタイトの品質が安定化す
る. (3).上記のように品質の安定した水酸アパタイトを
生産性良好に得ることができる結果、工業化に適した水
酸アパタイトの製造方法及びその装置が提供された.
(2). The production of hydroxyapatite is a closed cycle of the suspension throughout the entire process, which prevents the contamination of impurities during the filtration and washing processes that occur in conventional methods, and furthermore, the reaction conditions are accurately and uniformly controlled by continuous and automated processes. This stabilizes the quality of hydroxyapatite. (3). As a result of being able to obtain hydroxyapatite with stable quality and good productivity as described above, a method and apparatus for producing hydroxyapatite suitable for industrialization have been provided.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の1実施例に係る製造装置を示す概略図
、第2図は同製造工程のフローを示す図、第3図は従来
の製造工程のフローを示す図である. l:第1反応容器,2:難水溶性リン酸カルシウム,3
:水タンク,4:ポンプ 5 8 1114,17,1
9:電磁弁,6,16:PH調整剤容器,9:第1チャ
ンバー.10:第2チャンバー,12:第2反応容器.
15:第3チャンバー.18:l{AP容器.
FIG. 1 is a schematic diagram showing a manufacturing apparatus according to an embodiment of the present invention, FIG. 2 is a diagram showing a flow of the same manufacturing process, and FIG. 3 is a diagram showing a flow of a conventional manufacturing process. l: first reaction vessel, 2: poorly water-soluble calcium phosphate, 3
:Water tank, 4:Pump 5 8 1114,17,1
9: Solenoid valve, 6, 16: PH adjuster container, 9: First chamber. 10: second chamber, 12: second reaction vessel.
15: Third chamber. 18:l {AP container.

Claims (3)

【特許請求の範囲】[Claims] (1)、難水溶性リン酸カルシウムを塩基性水溶液中で
加水分解させて、Ca/Pモル比を所定値より小さい非
化学量論組成の水酸アパタイトのけん濁液とし、その後
塩基性水溶液の下でカルシウムイオンを添加してCa/
Pモル比を所定値までに増加させる水酸アパタイトの製
造方法において、発生する陰イオン又は陽イオンをイオ
ン交換樹脂にて除去することを特徴とする水酸アパタイ
トの製造方法。
(1) Slightly water-soluble calcium phosphate is hydrolyzed in a basic aqueous solution to form a suspension of hydroxyapatite with a non-stoichiometric composition in which the Ca/P molar ratio is smaller than a predetermined value, and then under a basic aqueous solution. Add calcium ions to Ca/
1. A method for producing hydroxyapatite in which the P molar ratio is increased to a predetermined value, the method comprising removing generated anions or cations using an ion exchange resin.
(2)、難水溶性リン酸カルシウムを塩基性水溶液中で
加水分解させて、Ca/Pモル比を所定値より小さい非
化学量論組成の水酸アパタイトのけん濁液となす第1反
応容器と、該けん濁液を陰イオン交換樹脂層を通して混
在する陰イオンを除去する第1チャンバーと、該けん濁
液を陽イオン交換樹脂層を通して混在する陽イオンを除
去する第2チャンバーと、該第1及び第2チャンバーを
通過したけん濁液を塩基性水溶液の下でカルシウムイオ
ンを添加してCa/Pモル比を所定値までの値に増加さ
せる第2反応容器と、該第2反応容器を通過したけん濁
液を陽イオン交換樹脂層を通して混在するカルシウムイ
オンを除去する第3チャンバーとを備えることを特徴と
する水酸アパタイトの製造装置。
(2) a first reaction vessel in which poorly water-soluble calcium phosphate is hydrolyzed in a basic aqueous solution to form a suspension of hydroxyapatite with a non-stoichiometric composition in which the Ca/P molar ratio is smaller than a predetermined value; a first chamber that passes the suspension through an anion exchange resin layer to remove mixed anions; a second chamber that passes the suspension through a cation exchange resin layer to remove mixed cations; The suspension passed through the second chamber was passed through a second reaction vessel in which calcium ions were added to the suspension under a basic aqueous solution to increase the Ca/P molar ratio to a predetermined value. A hydroxyapatite production apparatus comprising: a third chamber for removing mixed calcium ions by passing the suspension through a cation exchange resin layer.
(3)、第1チャンバーに陽イオン交換樹脂が充填され
、第2チャンバーに陰イオン交換樹脂が充填された請求
項(2)記載の水酸アパタイトの製造装置。
(3) The apparatus for producing hydroxyapatite according to claim (2), wherein the first chamber is filled with a cation exchange resin and the second chamber is filled with an anion exchange resin.
JP2011735A 1990-01-23 1990-01-23 Method and device for producing hydroxyapatite Pending JPH03218911A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011735A JPH03218911A (en) 1990-01-23 1990-01-23 Method and device for producing hydroxyapatite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011735A JPH03218911A (en) 1990-01-23 1990-01-23 Method and device for producing hydroxyapatite

Publications (1)

Publication Number Publication Date
JPH03218911A true JPH03218911A (en) 1991-09-26

Family

ID=11786293

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011735A Pending JPH03218911A (en) 1990-01-23 1990-01-23 Method and device for producing hydroxyapatite

Country Status (1)

Country Link
JP (1) JPH03218911A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7169372B1 (en) * 2000-07-03 2007-01-30 Zakrytoe Aktsionernoe Obschestvo “OSTIM” Method for producing nano-sized crystalline hydroxyapatite
JP2007528833A (en) * 2003-07-16 2007-10-18 イノフォス インコーポレーテッド Hydroxyapatite calcium phosphate granules, their preparation and use
JP2013505193A (en) * 2009-09-18 2013-02-14 エー123 システムズ, インコーポレイテッド Ferric phosphate and method for its preparation
US9660267B2 (en) 2009-09-18 2017-05-23 A123 Systems, LLC High power electrode materials

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7169372B1 (en) * 2000-07-03 2007-01-30 Zakrytoe Aktsionernoe Obschestvo “OSTIM” Method for producing nano-sized crystalline hydroxyapatite
JP2007528833A (en) * 2003-07-16 2007-10-18 イノフォス インコーポレーテッド Hydroxyapatite calcium phosphate granules, their preparation and use
JP4854507B2 (en) * 2003-07-16 2012-01-18 イノフォス インコーポレーテッド Method for preparing granular calcium phosphate
JP2013505193A (en) * 2009-09-18 2013-02-14 エー123 システムズ, インコーポレイテッド Ferric phosphate and method for its preparation
US9660267B2 (en) 2009-09-18 2017-05-23 A123 Systems, LLC High power electrode materials
US9954228B2 (en) 2009-09-18 2018-04-24 A123 Systems, LLC High power electrode materials
US10522833B2 (en) 2009-09-18 2019-12-31 A123 Systems, LLC High power electrode materials
US11652207B2 (en) 2009-09-18 2023-05-16 A123 Systems Llc High power electrode materials

Similar Documents

Publication Publication Date Title
CN106006593B (en) A kind of nano-calcium phosphate preparation method of simple and effective
JPH0369844B2 (en)
RU2402483C2 (en) Method of preparing nanodispersed hydroxyapatite for medicine
JPH03218911A (en) Method and device for producing hydroxyapatite
KR101017815B1 (en) Calcium Phosphate Particle Manufacture Methods for Solution Growth Method
WO2003042098A1 (en) Granular zirconium phosphate and methods for synthesis of same
CN110510592B (en) Method for regulating and preparing hydroxyapatite with excellent cell compatibility
JPS59131506A (en) Manufacture of high purity trimagnesium phosphate octahydrate
RU2391117C1 (en) Method of obtaining hydroxyapatite
JPS5921509A (en) Manufacture of hydroxylapatite
CN108584896B (en) Magnesium-doped hydroxyapatite and preparation method thereof
JPS62260708A (en) Production of high purity hydroxyapatite
JPS6229366B2 (en)
JPH10130099A (en) Production of hydroxyapatite whisker
CN109650364B (en) Micron hexagonal-column strontium-doped hydroxyapatite and synthesis process thereof
TWI790041B (en) A method for preparing hydroxyapatite
JPH0193408A (en) Production of hydroxyapatite or tricalcium phosphate using rice bran as raw material
JPH0426509A (en) Hydroxyapatite fine crystal and its production
JPS61151010A (en) Production of hydroxy apatite
KOJIMA et al. ADSORPTION OF GLYCINE ON AMORPHOUS CALCIUM PHOSPHATE AND ITS THERMAL STABILITY
O’Sullivan et al. 1Chanelle Pharma, Galway, Ireland, 2PBC BioMed, Shannon, Ireland
JPH02149408A (en) Preparation of fine particle aggregate of hydroxyapatite
JPH0313162B2 (en)
JPH0578109A (en) Production of hydroxyapatite
JPH07106887B2 (en) Method for producing strontium hydroxyapatite powder