JPH03122614A - Production of microlens - Google Patents

Production of microlens

Info

Publication number
JPH03122614A
JPH03122614A JP26078589A JP26078589A JPH03122614A JP H03122614 A JPH03122614 A JP H03122614A JP 26078589 A JP26078589 A JP 26078589A JP 26078589 A JP26078589 A JP 26078589A JP H03122614 A JPH03122614 A JP H03122614A
Authority
JP
Japan
Prior art keywords
substrate
microlenses
light
liquid crystal
color filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26078589A
Other languages
Japanese (ja)
Inventor
Yoshiko Mino
美濃 美子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP26078589A priority Critical patent/JPH03122614A/en
Publication of JPH03122614A publication Critical patent/JPH03122614A/en
Pending legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)

Abstract

PURPOSE:To form microlenses to a uniform shape with good reproducibility and to obtain distinct and high image quality by embedding a material having the refractive index different from the refractive index of a substrate glass into the substrate layer of the filter forming surface of a counter substrate. CONSTITUTION:The glass is etched by wet etching of, for example, an HF system with the light shielding patterns 2 of the transparent substrate 1-a formed with the light shielding pattern 2 for preventing the intrusion of light for each one picture element as a mask. For example, a resin 11 is packed as the material having the refractive index different from the refractive index of the substrate is packed into the etched parts so as to flatten the substrate surface. The microlenses 14 are built into the counter substrate layer 1-a, 4 so a to correspond to the picture elements, by which the incident light is focused to the central parts of the respective microlenses. The light is made incident on the very small picture elements of even the substrate having the ultra-high density in this way and the distinct videos having the high image quality are obtd.

Description

【発明の詳細な説明】 産業上の利用分野 本発明ζ上 プラズマデイスプレィや液晶デイスプレィ
、個体撮像装置などのようへ フィルタを載置してカラ
ー表示を行う超高密度表示装置のマイクロレンズの形成
方法に関するものであも従来の技術 従来の技術について、−船釣な液晶表示装置の構成を第
4図を用いて以下に説明すも 液晶表示装置の対向基板l(上 一般に透明基板の一面
にCr等による遮光膜2をパターン形成したの板 例え
ば有機材料によりR,G、  Bのカラーフィルタ3を
形成し 次に表面保護膜をほぼ全面に形成 さらに対向
電極として透明電極4を形成して成も 一方、アレイ基板10(よ 一般に透明基板の一面にP
−3iもしくはa−3iによるTFT5を形成して成り
、対向基板1のフィルタ形成面とアレイ基板lOのTP
T形成面にそれぞれ配向膜6を形成した後ラビング処理
を施す。次く 双方の基板を位置合わせし シール材7
にて貼合わせムさらへ 前記基板間に液晶8を封入した
後フィルタ基板およびアレイ基板に偏光板15を貼付け
も液晶表示装置の現状に於ける基板サイズと絵素数およ
び絵素ピッチを以下に示も このよう番へ 基板は大型化され高精細な画像を得るた
八 絵素数の増加とともに絵素ピッチは縮小傾向にある
。しかしながh  TPTプロセスにおいて微細加工に
は限界があり従って、 1絵素あたりの開口率は激減傾
向にあ4 開口率の激減(よ 液晶表示装置のみなら慣 個体撮像
装置においても同様六 超高密度化にともない問題とな
っていも そこで、現状の対策としては液晶表示装置の場合TFT
アレイの絵素電極上 個体撮像装置の場合にはフォトダ
イオード上に有機材料を用いてマイクロレンズを形成し
 入射光を微細な絵素電極フォトダイオードに集束する
という手段がとられている。
[Detailed description of the invention] Industrial application field of the present invention ζ Top: For plasma displays, liquid crystal displays, solid-state imaging devices, etc. Formation of microlenses for ultra-high-density display devices that display color by mounting filters Regarding the conventional technology, the structure of a liquid crystal display device will be explained below with reference to FIG. A plate on which a light-shielding film 2 made of Cr or the like is patterned.For example, R, G, and B color filters 3 are formed using an organic material, and then a surface protection film is formed on almost the entire surface.Furthermore, a transparent electrode 4 is formed as a counter electrode. On the other hand, the array substrate 10 (generally, P
-3i or a-3i TFT 5 is formed, and the filter forming surface of the counter substrate 1 and the TP of the array substrate lO
After forming an alignment film 6 on each T-forming surface, a rubbing treatment is performed. Next, align both boards and seal material 7
After the liquid crystal 8 is sealed between the substrates, the polarizing plate 15 is attached to the filter substrate and the array substrate. In order to obtain high-definition images as substrates become larger, the pixel pitch tends to shrink as the number of pixels increases. However, there are limits to microfabrication in the TPT process, and therefore the aperture ratio per pixel is on the decline. Although this has become a problem as density increases, the current countermeasure is to use TFT for liquid crystal display devices.
On the pixel electrode of the array In the case of a solid-state imaging device, a method is used in which a microlens is formed using an organic material on the photodiode and the incident light is focused onto the fine pixel electrode photodiode.

有機材料によるマイクロレンズの形成方法について第5
、6図を用いて以下に説明すもま咀 フォトリソ法の場
合、第5図(a)に示すようく 絵素電極9が形成され
たTFTアレイ基板IO上に感光性樹脂11を塗布し 
同図(b)に示すようへ 遮光マスク12を用いて露光
を行(\現像して、同図(C)に示すようく 絵素電極
上に所定の樹脂パターン11−aを形成すも 樹脂パタ
ーン1l−a(、t  現像の際ヘッドがR状に形成さ
れレンズ形状を形成するものもある力(現像の後基板を
40度程度の弱酸性性温水中に浸漬させ前記樹脂パター
ンを膨潤させてレンズ形状を形成する方法もあも また 印刷法の場合、第6図(a)に示すようく 絵素
電極9が形成されたTFTアレイ基板lO上に例えばメ
タルマスク13を載置し その上から熱硬化性もしくは
感光性樹脂11を塗布し 同図(b)に示すようにマス
クを排除し 加熱もしくは光照射にて同図(C)に示す
ような樹脂パターン11−aを得も このようにして絵素電極上にマイクロレンズ14を形成
したTFTアレイ基板10に対向基板lを貼合わせ実装
して成る従来の液晶表示装置を第7図−aに示も まf
−第7図−b +、t、  従来の液晶表示装置の光の
入射について拡大明示したものであム 絵素ピッチaに
対するレンズサイズbは極めて小さ(、s、  cは絵
素電極サイズを示も発明が解決しようとする課題 従来の方法では高密度な加工を施したTFTアレイ基板
や個体撮像基板上にマイクロレンズを形成しており、マ
イクロレンズそのもののサイズも微細であム また 下
地の形状や材籾 プロセスに影響されやす(〜 さら置
 有機材料を用いレンズ形状を基板全面にわたり均一に
形成することは困難である等から満足なレンズ効果を得
ることができなかっ九 課題を解決するための手段 対向基板フィルタ形成面の基板層に基板ガラスとは屈折
率の異なる物質を埋め込みマイクロレンズを形成すも 作用 絵素に対応するよう対向基板層にマイクロレンズを内蔵
することで、入射光は各マイクロレンズの中央部に集束
されも 従って、超高密度の基板においても微小な絵素
に対して前記光は入射し鮮明で高画質の映像を得ること
ができも実施例 本発明の第】の実施例について第1、2、3図を用いて
以下に説明すも ま’71− フォトリソ法では1絵素毎に光の混入を防
止するための例えばCrによる遮光膜パターン2を形成
して成る透明基板1−aの前記遮光膜パターンをマスク
として、例えばHF系のウェットエッチによりガラスを
エツチングする。 (第1図−b参照)この鳳 レンズ
形成箇所以外はエツチングされないようにレジスト等で
保護しておく。
Part 5 on the method of forming microlenses using organic materials
In the case of the photolithography method, which will be explained below using FIG. 6, as shown in FIG.
As shown in Figure (B), exposure is performed using a light-shielding mask 12 (and development is performed to form a predetermined resin pattern 11-a on the picture element electrode as shown in Figure (C)). Pattern 1l-a (, t) During development, the head is formed into an R shape, and there are some that form a lens shape.After development, the substrate is immersed in weakly acidic hot water at about 40 degrees to swell the resin pattern. In the case of the printing method, as shown in FIG. 6(a), for example, a metal mask 13 is placed on the TFT array substrate 10 on which the picture element electrode 9 is formed. A thermosetting or photosensitive resin 11 is applied from the resin, the mask is removed as shown in FIG. 5(b), and a resin pattern 11-a as shown in FIG. 2(c) is obtained by heating or light irradiation. A conventional liquid crystal display device is shown in FIG. 7-a, in which a counter substrate l is bonded and mounted on a TFT array substrate 10 on which microlenses 14 are formed on picture element electrodes.
-Figure 7-b +, t, is an enlarged view of the incident light of a conventional liquid crystal display device.The lens size b relative to the pixel pitch a is extremely small (, s, c indicate the pixel electrode size). Problems to be Solved by the Invention In conventional methods, microlenses are formed on a TFT array substrate or solid imaging substrate that has undergone high-density processing, and the size of the microlens itself is minute. Because it is difficult to form a lens shape uniformly over the entire surface of the substrate using organic materials, it is difficult to obtain a satisfactory lens effect. Means: A material with a refractive index different from that of the substrate glass is embedded in the substrate layer on the surface on which the filter is formed. Microlenses are formed.By incorporating microlenses in the opposing substrate layer to correspond to the active pixels, the incident light is Even if the light is focused at the center of the microlens, the light is incident on minute picture elements even in an ultra-high-density substrate, and a clear, high-quality image can be obtained. Examples will be explained below with reference to FIGS. 1, 2, and 3. In the photolithography method, a light-shielding film pattern 2 made of, for example, Cr is formed for each picture element to prevent light from entering. Using the light-shielding film pattern on the transparent substrate 1-a as a mask, the glass is etched by, for example, HF-based wet etching. (See Figure 1-b) Protect areas other than the area where the lens will be formed with a resist or the like to prevent etching. I'll keep it.

次へ エツチング部に基板とは屈折率の異なる物質とし
て例えば樹脂11を充填させ基板面が平坦になるように
する。 (第1図−〇参照)このような基板(よ 白黒
表示もしくは3板式カラー表示のの液晶表示装置やオン
チップカラーフィルタの固体撮像装置に用いることがで
きも そして、フルカラー液晶表示装置にi友  前記基板上
にR,G、  B、  のカラーフィルタ3を形成まそ
の上に透明電極4、配向膜6を順次形成して成る基板を
用いも (第2図参照) このようにして絵素電極に対応する基板のガラス層内に
マイクロレンズ14を形成した対向基板とTFTアレイ
基板10を貼合わせ実装して成る本発明の液晶表示装置
を第3図−aに示も また 第3図−bに本発明の液晶
表示装置の光の入射について拡大明示したものであム 
絵素ピッチaに対するレンズサイズbは従来のものと比
べかなり犬きくなっていも な抵 本実施例ではマイクロレンズを形成した面上にカ
ラーフィルタを形成しているバ マイクロレンズ形成面
と相反するガラス裏面にカラーフィルタを形成すること
も可能であも 発明の効果 本発明によると、マイクロレンズは対向基板となるガラ
ス基板層に形成したのちカラーフィル久透明電楓 配向
膜などの各形成工程がありこれら後工程は従来の条件で
良−一 すなわ板 マイクロレンズ形成時にはレンズ形
成箇所以外へのエツチング防止のみ考慮しておけばよい
ことから従来ののように他の工程に影響されにくく作業
法 安定性がよ(〜 絵素ピッチサイズをフルに利用し マイクロレンズを形
成できることから光の集束量が多く高密度の液晶パネル
においても鮮明な画質を得ることができも 従来のように下地影響され不均一になっていたマイクロ
レンズ形状(よ 遮光膜パターンの開口面積とエツチン
グ性のコントロールにより均一に再現性よく形成するこ
とができも
Next, the etching portion is filled with a material having a refractive index different from that of the substrate, such as resin 11, so that the substrate surface becomes flat. (See Figure 1-○) Such a substrate can be used for monochrome display or three-panel color display liquid crystal display devices, and solid-state imaging devices with on-chip color filters. It is also possible to use a substrate in which R, G, B, color filters 3 are formed on the substrate, and a transparent electrode 4 and an alignment film 6 are sequentially formed thereon (see FIG. 2). A liquid crystal display device of the present invention is shown in FIG. 3-a and is constructed by bonding and mounting a TFT array substrate 10 and a counter substrate in which microlenses 14 are formed in the glass layer of the substrate corresponding to the substrate. This is an enlarged illustration of the incidence of light on the liquid crystal display device of the present invention.
Although the lens size b relative to the pixel pitch a is quite large compared to the conventional one, in this example, the color filter is formed on the surface on which the microlenses are formed. Although it is possible to form a color filter on the back side, the effect of the invention According to the present invention, the microlens is formed on the glass substrate layer which becomes the counter substrate, and then various steps of forming a color film, a transparent electric maple, an alignment film, etc. are performed. These post-processes can be performed under conventional conditions. In other words, when forming microlenses, it is only necessary to consider preventing etching to areas other than the lens formation area, so the work method is stable and less affected by other processes as in conventional methods. (~ Since microlenses can be formed by making full use of the pixel pitch size, a large amount of light is focused, and clear image quality can be obtained even on high-density liquid crystal panels. It is now possible to form microlenses uniformly and with good reproducibility by controlling the aperture area and etching properties of the light-shielding film pattern.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は本発明のマイクロレンズ形成工程を
説明する断面諷 第3図(上 本発明のマイクロレンズ
を有する対向基板を用いた液晶表示装置の構成を示す断
面は 第4図は従来のマイクロレンズを有しない液晶表
示装置の構成を示す断面は 第5図及び第6図は絵素電
極上にマイクロレンズ形成する工程を説明する断面文 
第7図は絵素電極上にマイクロレンズを有する従来のア
レイ基板を用いた液晶表示装置の構成を示す断面図であ
る。 l・・・・・対向基板  1−a・・・・・透明基板2
・・・・・遮光膜   3・・・・・カラーフィルタ4
・・・・・透明電極  5・・・・・TPT6・・・・
・配向膜   7・・・・・シール材8・・・・・液晶
    9・・・・・絵素電極10・・・・・TFTア
レイ基板 11・・・・・樹脂    11−a・・・・・樹脂パ
ターンl2・・・・・遮光マスク 13・・・・・メタルマスク 第 図 14・・・・・マイクロレンズ と遮光膜
FIG. 1 and FIG. 2 are cross-sections illustrating the microlens forming process of the present invention. FIG. Figures 5 and 6 are cross-sectional diagrams showing the structure of a conventional liquid crystal display device without microlenses.
FIG. 7 is a sectional view showing the structure of a liquid crystal display device using a conventional array substrate having microlenses on picture element electrodes. l...Counter substrate 1-a...Transparent substrate 2
..... Light shielding film 3 ..... Color filter 4
...Transparent electrode 5...TPT6...
-Alignment film 7...Seal material 8...Liquid crystal 9...Picture element electrode 10...TFT array substrate 11...Resin 11-a...・Resin pattern l2...Light-shielding mask 13...Metal mask Fig. 14...Microlens and light-shielding film

Claims (6)

【特許請求の範囲】[Claims] (1)透明基板上に遮光膜を形成する工程と、遮光膜を
マスクとして前記透明基板をエッチングする工程と、透
明基板のエッチング部に透明基板とは屈折率の異なる物
質を埋め込む工程とを含むマイクロレンズの製造方法。
(1) The steps include forming a light-shielding film on a transparent substrate, etching the transparent substrate using the light-shielding film as a mask, and embedding a substance having a different refractive index from that of the transparent substrate into the etched portion of the transparent substrate. How to manufacture microlenses.
(2)請求項1に記載の方法によりマイクロレンズを形
成し、平坦化する工程と、前記平坦化面上にカラーフィ
ルタを形成する工程とを含むカラーフィルタ基板の製造
方法。
(2) A method for manufacturing a color filter substrate, comprising the steps of forming microlenses by the method according to claim 1 and planarizing the same, and forming a color filter on the planarized surface.
(3)請求項1に記載の方法によりマイクロレンズを形
成し、平坦化する工程と、前記平坦化面と相反する面に
カラーフィルタを形成する工程とを含むカラーフィルタ
基板の製造方法。
(3) A method for manufacturing a color filter substrate, comprising the steps of forming microlenses by the method according to claim 1 and planarizing the same, and forming a color filter on a surface opposite to the planarized surface.
(4)走査信号を伝達する第1の配線群と、表示信号を
伝達する第2の配線群がXYマトリックス状に配置され
 前記第1の配線群と前記第2の配線群の交点に対応し
てスイッチング素子を配した第1の基板と、これと対向
する第2の基板との間に液晶を挟持して成る液晶パネル
において、前記第2の基板が請求項2もしくは3のいず
れかに記載の方法により製造されたフィルタ基板である
ことを特徴とする液晶表示装置。
(4) A first wiring group for transmitting scanning signals and a second wiring group for transmitting display signals are arranged in an XY matrix, corresponding to the intersections of the first wiring group and the second wiring group. A liquid crystal panel comprising a liquid crystal sandwiched between a first substrate on which a switching element is disposed and a second substrate opposing the first substrate, wherein the second substrate is the liquid crystal panel according to claim 2 or 3. A liquid crystal display device characterized in that it is a filter substrate manufactured by the method described above.
(5)第1の基板の絵素電極上に有機材料から成るマイ
クロレンズを有することを特徴とする請求項4記載の液
晶表示装置。
(5) The liquid crystal display device according to claim 4, further comprising a microlens made of an organic material on the picture element electrode of the first substrate.
(6)フォトダイオードと対向する位置に、マイクロレ
ンズが配置されるように請求項2記載の方法により製造
されたカラーフィルタ基板を接着剤を介して貼付けたこ
とを特徴とする固体撮像装置。
(6) A solid-state imaging device, characterized in that a color filter substrate manufactured by the method according to claim 2 is attached via an adhesive so that a microlens is disposed at a position facing a photodiode.
JP26078589A 1989-10-05 1989-10-05 Production of microlens Pending JPH03122614A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26078589A JPH03122614A (en) 1989-10-05 1989-10-05 Production of microlens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26078589A JPH03122614A (en) 1989-10-05 1989-10-05 Production of microlens

Publications (1)

Publication Number Publication Date
JPH03122614A true JPH03122614A (en) 1991-05-24

Family

ID=17352701

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26078589A Pending JPH03122614A (en) 1989-10-05 1989-10-05 Production of microlens

Country Status (1)

Country Link
JP (1) JPH03122614A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0527114A (en) * 1991-07-25 1993-02-05 Sharp Corp Production of organic color filter array and projection type color liquid crystal display device
US5623368A (en) * 1994-07-07 1997-04-22 Corning Incorporated Process and apparatus for manufacturing networks of optical microlenses
WO1999008149A1 (en) * 1997-08-08 1999-02-18 Japan, As Represented By Director General Of Agency Of Industrial Science And Technology Optical element, optical control method and apparatus using the optical element, and method of manufacturing the optical element
WO2002010805A1 (en) * 2000-07-31 2002-02-07 Rochester Photonics Corporation Microlens arrays having high focusing efficiency
US6835535B2 (en) 2000-07-31 2004-12-28 Corning Incorporated Microlens arrays having high focusing efficiency
JP2005039195A (en) * 2003-06-26 2005-02-10 Nippon Sheet Glass Co Ltd Manufacturing method of light emitting element with built-in lens
US7033736B2 (en) 2000-07-31 2006-04-25 Corning Incorporated Structured screens for controlled spreading of light
US7092165B2 (en) 2000-07-31 2006-08-15 Corning Incorporated Microlens arrays having high focusing efficiency

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5753702A (en) * 1980-09-16 1982-03-30 Nippon Sheet Glass Co Ltd Lens body
JPS6029703A (en) * 1983-07-29 1985-02-15 Nippon Telegr & Teleph Corp <Ntt> Micro-lens array and its preparation
JPH01222221A (en) * 1988-03-02 1989-09-05 Seiko Epson Corp Liquid crystal display element

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5753702A (en) * 1980-09-16 1982-03-30 Nippon Sheet Glass Co Ltd Lens body
JPS6029703A (en) * 1983-07-29 1985-02-15 Nippon Telegr & Teleph Corp <Ntt> Micro-lens array and its preparation
JPH01222221A (en) * 1988-03-02 1989-09-05 Seiko Epson Corp Liquid crystal display element

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0527114A (en) * 1991-07-25 1993-02-05 Sharp Corp Production of organic color filter array and projection type color liquid crystal display device
US5623368A (en) * 1994-07-07 1997-04-22 Corning Incorporated Process and apparatus for manufacturing networks of optical microlenses
WO1999008149A1 (en) * 1997-08-08 1999-02-18 Japan, As Represented By Director General Of Agency Of Industrial Science And Technology Optical element, optical control method and apparatus using the optical element, and method of manufacturing the optical element
US6452710B1 (en) 1997-08-08 2002-09-17 National Institute Of Advanced Industrial Science And Technology Optical element, optical control method and device using this optical element, and method of manufacturing optical element
WO2002010805A1 (en) * 2000-07-31 2002-02-07 Rochester Photonics Corporation Microlens arrays having high focusing efficiency
US6835535B2 (en) 2000-07-31 2004-12-28 Corning Incorporated Microlens arrays having high focusing efficiency
US7033736B2 (en) 2000-07-31 2006-04-25 Corning Incorporated Structured screens for controlled spreading of light
US7092165B2 (en) 2000-07-31 2006-08-15 Corning Incorporated Microlens arrays having high focusing efficiency
JP2005039195A (en) * 2003-06-26 2005-02-10 Nippon Sheet Glass Co Ltd Manufacturing method of light emitting element with built-in lens

Similar Documents

Publication Publication Date Title
KR100427500B1 (en) Liquid crystal display unit and process for fabrication thereof
US5280375A (en) Liquid crystal display device with two different pre-tilt angles adjacent on one substrate
US10684502B2 (en) Display panel and the manufacturing method thereof, and display device
JP4362882B2 (en) Liquid crystal panel, liquid crystal panel manufacturing method, and liquid crystal display device
US5835176A (en) Method for planarizing a substrate of a liquid crystal display
JP2000122071A (en) Liquid crystal display element and production of liquid crystal display element
JP2002182220A (en) Liquid crystal display
JPH1062789A (en) Liquid crystal display device and its production
JP2001091727A (en) Production method of color filter substrate, color filter substrate and liquid crystal display device
KR100525880B1 (en) Electro-optical device and projector
JPH03122614A (en) Production of microlens
JP3210791B2 (en) Method for manufacturing color liquid crystal display device
JPH04116624A (en) Liquid crystal panel device consisting of semiconductor single crystal substrate
KR100462376B1 (en) reflective type LCD and method for fabricating the same
KR100749458B1 (en) Lcd formed a color filter on the tft array and method for manufacturing of the same
JP2002082339A (en) Liquid crystal display
JP2001159755A (en) Liquid crystal display device and method of producing the same
JP3171844B2 (en) Semiconductor single crystal thin film substrate liquid crystal light valve device
JP2715612B2 (en) Active matrix substrate manufacturing method
JPH11202313A (en) Liquid crystal display element
JPH0521771A (en) Solid image pick-up element and its manufacture
JPH0216065A (en) Liquid crystal optical shutter
JP3052606B2 (en) Liquid crystal display device and method of manufacturing the same
JP2860001B2 (en) Single-panel liquid crystal display for liquid crystal projection
TWI260431B (en) Color filter substrate and fabricating method thereof