JPH03122474A - Freezing device - Google Patents

Freezing device

Info

Publication number
JPH03122474A
JPH03122474A JP25947189A JP25947189A JPH03122474A JP H03122474 A JPH03122474 A JP H03122474A JP 25947189 A JP25947189 A JP 25947189A JP 25947189 A JP25947189 A JP 25947189A JP H03122474 A JPH03122474 A JP H03122474A
Authority
JP
Japan
Prior art keywords
cooling water
defrosting
heat exchanger
condenser
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25947189A
Other languages
Japanese (ja)
Inventor
Minoru Kinoshita
木下 実
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP25947189A priority Critical patent/JPH03122474A/en
Publication of JPH03122474A publication Critical patent/JPH03122474A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve a defrosting effect and to shorten a defrosting time by a method wherein through control of a flow rate control means during defrosting of a second heat exchanger, an amount of cooling water fed to a first heat exchanger is minimized. CONSTITUTION:When a defrosting starting signal is inputted to a defrost starting signal input part 18 from the outside, for example, a timer, a central control part 19 transmits a control signal stored in a memory part 20 and responding to the given minimum number of revolutions of a motor, with the aid of which a cooling water pump 12 is run, to an inverter 22. The inverter 22 receives a control signal to decrease the number of revolutions of a motor to a given minimum value, and an amount of cooling water passing through a cooling water pump 12 and fed to a condenser 3 is reduced to a minimum. This operation reduces an amount of heat exchange effected in a condenser 3 and increases a condensing pressure in the condenser 3, resulting in the increase of the flow rate of hot gas flowing through a bypass circuit 10. As a result, the defrosting efficiency of an air cooler 6 is improved and a defrosting time can be shortened.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は空気冷却器等の熱交換器の除Nを、圧縮機か
ら得られるホットガスを用いて行うようにした冷凍装置
に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] This invention relates to a refrigeration system in which nitrogen removal from a heat exchanger such as an air cooler is performed using hot gas obtained from a compressor. .

〔従来の技術〕[Conventional technology]

第3図は従来の冷凍装置を示す構成図であり、1は冷媒
を加圧してホットガスと成す圧縮機、1aは圧縮機1の
上流側に設けられた中間冷却器、2は圧縮機1から出力
されるホットガスの逆流を防ぐ逆止弁、3は逆止弁2を
通過した上記ホットガスを冷却水で凝縮して冷媒液と成
す第1の熱交換器としての凝縮器、4は上記冷媒液が通
過する成用電磁弁、5は成用電磁弁4を通過し要冷媒液
を減圧する膨張弁、6は減圧された冷媒液を気化させる
第2の熱交換器としての空気冷却器、Tは空気冷却器6
で気化された冷媒の液分を分離し、ガス分を圧縮機1に
戻すアキュムレータ、8は凝縮器3から得られる冷媒液
の一部が通過する中間冷却器用電磁弁、9は中間冷却器
用電磁弁8を通過した冷媒液を減圧して中間冷却器1a
に供給する中間冷却器用膨張弁、10は空気冷却器6の
除霜時に上記ホットガスをこの空気冷却器6に直接供給
するためのバイパス回路、11はバイパス回路10の入
口側に設けられたホットガス用電磁弁である。
FIG. 3 is a configuration diagram showing a conventional refrigeration system, in which 1 is a compressor that pressurizes refrigerant to form hot gas, 1a is an intercooler provided upstream of the compressor 1, and 2 is a compressor 1. 3 is a check valve that prevents backflow of the hot gas output from the check valve 2; 3 is a condenser serving as a first heat exchanger that condenses the hot gas that has passed through the check valve 2 with cooling water to form a refrigerant liquid; The above-mentioned refrigerant liquid passes through a production solenoid valve, 5 passes through the production solenoid valve 4 and depressurizes the required refrigerant liquid, an expansion valve 6, air cooling as a second heat exchanger that vaporizes the depressurized refrigerant liquid. container, T is air cooler 6
8 is an intercooler solenoid valve through which a part of the refrigerant liquid obtained from the condenser 3 passes, and 9 is an intercooler solenoid valve. The refrigerant liquid that has passed through the valve 8 is depressurized and transferred to the intercooler 1a.
10 is a bypass circuit for directly supplying the hot gas to the air cooler 6 during defrosting of the air cooler 6; 11 is a hot gas expansion valve provided on the inlet side of the bypass circuit 10; This is a solenoid valve for gas.

12は凝縮器3に冷却水を送給するための冷却水ポンプ
、13は凝縮器3の入口側に設けられた冷却水人口弁、
14は凝縮器3の出口側に設けられた冷却水出口弁、1
5は冷却水出目弁14からの冷却水を冷却するクーリン
グタワー 16はクーリングタワー用ファン、17はク
ーリングタワー15で冷却された冷却水の温度を検出す
る温度センサである。
12 is a cooling water pump for feeding cooling water to the condenser 3; 13 is a cooling water valve provided on the inlet side of the condenser 3;
14 is a cooling water outlet valve provided on the outlet side of the condenser 3;
5 is a cooling tower that cools the cooling water from the cooling water outlet valve 14; 16 is a fan for the cooling tower; and 17 is a temperature sensor that detects the temperature of the cooling water cooled by the cooling tower 15.

次に動作について説明する。Next, the operation will be explained.

先ず冷凍サイクルでは、圧縮機1によって加圧されホッ
トガスになった冷媒は逆止弁2′jfr、通過後、凝縮
器3で液化され、成用電磁弁4を通過後、膨張弁5で減
圧され、空気冷却器6で蒸発気化される。気化された冷
媒はアキエムレータTで液分を除去され′fI:、後、
再び圧縮機1へと吸入される。また、凝縮器3を出た冷
媒液の一部は中間冷却器用電磁弁8を通過後、中間冷却
器用膨張弁9で減圧されて中間冷却器1aに供給される
ことによシ、ホットガスを冷却している。この冷凍サイ
クルで冷凍運転を続けると、空気冷却器6の伝熱面の着
霜が進行するので、定期的に霜をとシ除かねばならない
First, in the refrigeration cycle, the refrigerant that is pressurized by the compressor 1 and turned into hot gas passes through the check valve 2'jfr, is liquefied in the condenser 3, passes through the solenoid valve 4, and then is depressurized by the expansion valve 5. and is evaporated in the air cooler 6. The liquid content of the vaporized refrigerant is removed by an Akiemulator T, and then
It is sucked into the compressor 1 again. In addition, a part of the refrigerant liquid that has exited the condenser 3 passes through an intercooler solenoid valve 8, is depressurized by an intercooler expansion valve 9, and is supplied to the intercooler 1a, thereby generating hot gas. It's cooling down. If refrigeration operation is continued in this refrigeration cycle, frost buildup on the heat transfer surface of the air cooler 6 will progress, so the frost must be removed periodically.

除霜サイクルでは、成用電磁弁4が閉となって膨張弁5
への液送を停止すると共にホットガス用電磁弁11が開
となって圧縮機1からのホットガスがバイパス回路10
を通じて直接に空気冷却器6に供給されることによυ、
上記空気冷却器6の除霜が行われる。
In the defrost cycle, the production solenoid valve 4 is closed and the expansion valve 5 is closed.
At the same time, the hot gas electromagnetic valve 11 is opened and the hot gas from the compressor 1 is transferred to the bypass circuit 10.
By being directly supplied to the air cooler 6 through
The air cooler 6 is defrosted.

この時、バイパス回路10を流れる冷媒ガス量(ホット
ガス量)は凝縮器3内の凝縮圧力に左右され、凝縮圧力
が高ければ空気冷却器6へ直接流れる冷媒ガス量は多く
なり、凝縮圧力が低ければ凝縮器3に流入する冷媒量が
多く々って空気冷却器6へ直接流れる冷媒ガス量は少く
なる。そして空気冷却器6への冷媒ガス量が少くなると
、空気冷却器6の除霜は長時間を要することになる。
At this time, the amount of refrigerant gas (hot gas amount) flowing through the bypass circuit 10 depends on the condensing pressure in the condenser 3. If the condensing pressure is high, the amount of refrigerant gas flowing directly to the air cooler 6 increases, and the condensing pressure increases. If it is low, the amount of refrigerant flowing into the condenser 3 will be large, and the amount of refrigerant gas flowing directly to the air cooler 6 will be small. When the amount of refrigerant gas to the air cooler 6 decreases, defrosting of the air cooler 6 will take a long time.

一方、冷媒の凝縮圧力は凝縮温度の関数であるので、凝
縮器3内の凝縮圧力を高めるには、凝縮温度、すなわち
冷却水温を上昇させる必要がある。
On the other hand, since the condensation pressure of the refrigerant is a function of the condensation temperature, in order to increase the condensation pressure in the condenser 3, it is necessary to increase the condensation temperature, that is, the cooling water temperature.

従って、所定凝縮圧力以上の圧力を維持するために、冷
却水温を検知する温度センサ17により、冷却水温が低
い時はクーリングタワー用ファン16を停止させて冷却
水温の上昇を図る。また、クーリングタワー用71ン1
6を停止させてもなお冷却水温が低い場合は、手動によ
り冷却水人口弁13や冷却水出口弁14を絞シ込み、冷
却水量を減らすことにより、凝縮器3内の凝縮圧力を維
持するような方法が行われている。
Therefore, in order to maintain the pressure above a predetermined condensing pressure, the temperature sensor 17 that detects the temperature of the cooling water stops the cooling tower fan 16 when the temperature of the cooling water is low to raise the temperature of the cooling water. In addition, 71 in 1 for cooling tower
If the cooling water temperature is still low even after stopping the cooling water, manually tighten the cooling water population valve 13 and the cooling water outlet valve 14 to reduce the amount of cooling water to maintain the condensation pressure in the condenser 3. methods are being used.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来の冷凍装置は以上のように構成されているので、ク
ーリングタワー用7アン16の発停で冷却水入口温度を
制御するのみでは、冷却水温度制御範囲に限υがあり、
このため冷却水人口弁13もしくは冷却水出口弁14を
手動で操作して冷却水量を調整しなければならず、手動
で弁の開閉を操作するわずられしさがある等の課題があ
った。
Since the conventional refrigeration system is configured as described above, there is a limit to the cooling water temperature control range υ if the cooling water inlet temperature is controlled only by starting and stopping the cooling tower 7-amp 16.
For this reason, the amount of cooling water must be adjusted by manually operating the cooling water population valve 13 or the cooling water outlet valve 14, which poses problems such as the hassle of manually opening and closing the valves.

この発明は上記のような課題を解消するためになされた
もので、空気冷却器の伝熱面の除霜中の除霜効果を高め
ると共に、除霜時間の短縮を図ることのできる冷凍装置
を得ることを目的としてbる。
This invention was made to solve the above-mentioned problems, and provides a refrigeration device that can improve the defrosting effect during defrosting of the heat transfer surface of an air cooler and shorten the defrosting time. b with the purpose of obtaining.

〔課題を解決するための手段〕[Means to solve the problem]

この発明に係る冷凍装置は、空気冷却器等の第1の熱交
換器に冷却水を送給する流量制御手段と、除霜開始信号
に応じて冷却水I:が所定の最小流量になるように上記
流量制御手段を動作させる制御信号を発生する制御装置
とを設けたものである。
The refrigeration system according to the present invention includes a flow rate control means for feeding cooling water to a first heat exchanger such as an air cooler, and a flow rate control means for supplying cooling water to a first heat exchanger such as an air cooler, and a flow rate control means for supplying cooling water to a predetermined minimum flow rate in response to a defrosting start signal. and a control device that generates a control signal for operating the flow rate control means.

〔作用〕[Effect]

この発明においては、除霜開始時、除霜開始信号が入力
されると、上記制御装置は予め記憶された所定の最小流
量に相当する制御信号を取り出し、この制御信号に基づ
いて上記流量制御手段を制御して、冷却水量を所定の最
小流量に設定することによシ、第1の熱交換器の凝縮圧
力を高める。
In this invention, when a defrosting start signal is input at the time of starting defrosting, the control device takes out a control signal corresponding to a predetermined minimum flow rate stored in advance, and based on this control signal, the flow rate control means The condensing pressure of the first heat exchanger is increased by controlling the amount of cooling water to a predetermined minimum flow rate.

〔実施例〕〔Example〕

以下、この発明の一実施例を図について説明する。第1
図においては第3図と同一部分には同一符号を付して説
明を省略する。
An embodiment of the present invention will be described below with reference to the drawings. 1st
In the figure, the same parts as in FIG. 3 are given the same reference numerals, and their explanation will be omitted.

第1図において、18は外部からの除霜開始信号を受信
する除霜開始信号入力部、19は除霜開始信号が入力さ
れるCPU等から成る中央制御部、20は冷却水の最小
流量を設定する制御信号が格納された記憶部、21は除
霜開始信号入力部18゜中央制御部19及び記憶部2o
で構成される制御装置である。
In FIG. 1, 18 is a defrost start signal input unit that receives a defrost start signal from the outside, 19 is a central control unit consisting of a CPU, etc., to which the defrost start signal is input, and 20 is a control unit that controls the minimum flow rate of cooling water. A storage section 21 stores a control signal to be set, a defrosting start signal input section 18, a central control section 19, and a storage section 2o.
It is a control device consisting of.

22は制御装置21から出力される制御信号に基づいて
冷却水ポンプ12の駆動モータの回転数を制御するイン
バータ、23は圧縮機1から出力されるホットガスの圧
力を検出して中央制御部19に送る圧力センサである。
22 is an inverter that controls the rotation speed of the drive motor of the cooling water pump 12 based on a control signal output from the control device 21; 23 is a central control unit 19 that detects the pressure of hot gas output from the compressor 1; This is a pressure sensor that sends data to the

なお、この実施例では冷却水ポンプ12が流量制御手段
となっている。
In this embodiment, the cooling water pump 12 serves as a flow rate control means.

次に動作について説明する。Next, the operation will be explained.

外部の例えばタイマ等(図示せず)より除霜開始信号が
除霜開始信号入力部18に入力されると、中央制御部1
9は記憶部2oに記憶された冷却水ポンプ12を駆動す
るモータの所定の最小回転数に相当する制御信号をイン
バータ22に送信する。
When a defrost start signal is input from an external device such as a timer (not shown) to the defrost start signal input section 18, the central control section 1
9 transmits to the inverter 22 a control signal corresponding to a predetermined minimum rotational speed of the motor that drives the cooling water pump 12, which is stored in the storage unit 2o.

インバータ22はこの制御信号を受けて上記モータの回
転数を所定の最小回転数にして、冷却水ポンプ12内を
通過する凝縮器3への冷却水送給量を最小に落とす。こ
の動作によシ凝縮器3内での熱交換量は少なくなυ、凝
縮器3内の凝縮圧力は上昇し、これによってバイパス回
路1o内を流れるホットガスの流量は多くなる。
Upon receiving this control signal, the inverter 22 sets the rotational speed of the motor to a predetermined minimum rotational speed, thereby minimizing the amount of cooling water fed to the condenser 3 passing through the cooling water pump 12. Due to this operation, the amount of heat exchanged in the condenser 3 is reduced υ, and the condensation pressure in the condenser 3 is increased, thereby increasing the flow rate of hot gas flowing in the bypass circuit 1o.

凝縮器3内の凝縮圧力が所定の圧力よp高くなると、圧
縮機1等の他の機器類にとって好ましくないので、圧力
センサ23によって検出される温度が所定値を越えた場
合は、圧力センサ23は中央制御部19へ信号を送る。
If the condensation pressure in the condenser 3 becomes higher than a predetermined pressure, it is not favorable for other equipment such as the compressor 1. Therefore, if the temperature detected by the pressure sensor 23 exceeds a predetermined value, the pressure sensor 23 sends a signal to the central control unit 19.

中央制御部19は上記信号を受信すると、インバータ2
2へ冷却水ポンプ12の回転数を上昇させる信号を出力
する。
When the central control unit 19 receives the above signal, the central control unit 19 controls the inverter 2.
A signal for increasing the rotational speed of the cooling water pump 12 is output to 2.

圧力センサ23の中央制御部19への信号が無くなれば
、再び記憶部20に記憶されている上記制御信号をイン
バータ22に送り、冷却水ポンプ12のモータを所定の
最小回転数まで落として運転を続行する。
When the signal from the pressure sensor 23 to the central control unit 19 disappears, the control signal stored in the storage unit 20 is sent to the inverter 22 again, and the motor of the cooling water pump 12 is reduced to a predetermined minimum rotational speed to start operation. continue.

このようにして、冷却水ポンプ12の回転数を除霜期間
中に制御することにより、凝縮器3内の凝縮圧力を常に
所定圧力以上に保つことができる。
In this way, by controlling the rotation speed of the cooling water pump 12 during the defrosting period, the condensation pressure in the condenser 3 can always be maintained at a predetermined pressure or higher.

なお、上記実施例では、冷却水ポンプ12の駆動モータ
を回転数制御することによシ、冷却水量を制御したが、
第2図に示すように、制御装置21からの制御信号を入
口弁制御装置24に送夛、これに応じて大口弁制御装置
24が冷却水人口弁13の開度を、所定の最小流量開度
に設定するようにしてもよい。
In the above embodiment, the amount of cooling water is controlled by controlling the rotation speed of the drive motor of the cooling water pump 12.
As shown in FIG. 2, a control signal from the control device 21 is sent to the inlet valve control device 24, and in response, the large opening valve control device 24 controls the opening degree of the cooling water valve 13 to a predetermined minimum flow rate. It may be set at once.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によれば、第2の熱交換器の除
霜時に冷却水ポンプ、冷却水人口弁等の流量制御手段を
制御して、第1の熱交換器に供給する冷却水量が最小に
なるように構成したので、第1の熱交換器内の凝縮圧力
を一定以上に保持して、第2の熱交換器に供給されるホ
ットガス量を多くすることができ、これKよって、除霜
効果を高めると共に除霜時間を短縮することができる効
果が得られる。
As described above, according to the present invention, when defrosting the second heat exchanger, the flow rate control means such as the cooling water pump and the cooling water population valve are controlled to supply the amount of cooling water to the first heat exchanger. Since the configuration is configured so that K Therefore, the effect of increasing the defrosting effect and shortening the defrosting time can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例による冷凍装置を示す構成
図、第2図はこの発明の他の実施例による冷凍装置を示
す構成図、第3図は従来の冷凍装置を示す構成図である
。 1は圧縮機、3は凝縮器、5は膨張弁、6は空気冷却器
、10はバイパス回路、12は冷却水ポンプ、13は冷
却水人口弁、21は制御装置。 なお、図中、同一符号は同一 又は相当部分を示す。
FIG. 1 is a block diagram showing a refrigeration system according to an embodiment of the present invention, FIG. 2 is a block diagram showing a refrigeration system according to another embodiment of the invention, and FIG. 3 is a block diagram showing a conventional refrigeration system. be. 1 is a compressor, 3 is a condenser, 5 is an expansion valve, 6 is an air cooler, 10 is a bypass circuit, 12 is a cooling water pump, 13 is a cooling water valve, and 21 is a control device. In addition, the same symbols in the figures indicate the same or equivalent parts.

Claims (1)

【特許請求の範囲】[Claims] 冷媒をホットガスに圧縮する圧縮機と、上記ホットガス
を冷却水で凝縮させる第1の熱交換器と、上記第1の熱
交換器に上記冷却水を供給する流路に設けられた流量制
御手段と、上記第1の熱交換器で凝縮された冷媒液を減
圧する膨張弁と、上記減圧された冷媒液を気化させて上
記圧縮機に戻す第2の熱交換器と、上記第2の熱交換器
の除霜時に上記ホットガスを直接に上記第2の熱交換器
に供給するバイパス回路と、除霜開始信号に応じて上記
冷却水の流量が所定の最小流量となるように上記流量制
御手段を制御する制御装置とを備えた冷凍装置。
A compressor that compresses refrigerant into hot gas, a first heat exchanger that condenses the hot gas with cooling water, and a flow rate control provided in a flow path that supplies the cooling water to the first heat exchanger. means, an expansion valve for reducing the pressure of the refrigerant liquid condensed in the first heat exchanger, a second heat exchanger for vaporizing the reduced pressure refrigerant liquid and returning it to the compressor; a bypass circuit that directly supplies the hot gas to the second heat exchanger during defrosting of the heat exchanger; and a bypass circuit that supplies the hot gas directly to the second heat exchanger when defrosting the heat exchanger; A refrigeration system comprising a control device that controls a control means.
JP25947189A 1989-10-04 1989-10-04 Freezing device Pending JPH03122474A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25947189A JPH03122474A (en) 1989-10-04 1989-10-04 Freezing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25947189A JPH03122474A (en) 1989-10-04 1989-10-04 Freezing device

Publications (1)

Publication Number Publication Date
JPH03122474A true JPH03122474A (en) 1991-05-24

Family

ID=17334538

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25947189A Pending JPH03122474A (en) 1989-10-04 1989-10-04 Freezing device

Country Status (1)

Country Link
JP (1) JPH03122474A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010281532A (en) * 2009-06-05 2010-12-16 Daikin Ind Ltd Refrigerating device for trailer
JP2014040953A (en) * 2012-08-22 2014-03-06 Mitsubishi Electric Corp Freezing air conditioner
US8861766B2 (en) 2007-07-04 2014-10-14 Victor Company Of Japan, Ltd. Headphones
JP2015148354A (en) * 2014-02-05 2015-08-20 株式会社コロナ Composite heat source heat pump device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8861766B2 (en) 2007-07-04 2014-10-14 Victor Company Of Japan, Ltd. Headphones
JP2010281532A (en) * 2009-06-05 2010-12-16 Daikin Ind Ltd Refrigerating device for trailer
JP2014040953A (en) * 2012-08-22 2014-03-06 Mitsubishi Electric Corp Freezing air conditioner
JP2015148354A (en) * 2014-02-05 2015-08-20 株式会社コロナ Composite heat source heat pump device

Similar Documents

Publication Publication Date Title
US6032472A (en) Motor cooling in a refrigeration system
KR100757580B1 (en) air-condition heat pump
JP4317793B2 (en) Cooling system
CN101365917A (en) Defrost system
US4607494A (en) Apparatus for the pasteurization of alimentary mixtures
US5157931A (en) Refrigeration method and apparatus utilizing an expansion engine
JPH03122474A (en) Freezing device
JPH1163769A (en) Refrigerator for refrigerated container
JP3996321B2 (en) Air conditioner and its control method
JP3871207B2 (en) Refrigeration system combining absorption and compression
JPH10148409A (en) Air conditioner
JP2584326B2 (en) Frozen dessert production equipment
JP2004340475A (en) Stream compression type refrigerating machine
JP2003028520A (en) Regenerative refrigerating plant
JPH05264108A (en) Refrigeration device
JP2003262412A (en) Method and system for supplying refrigerant to refrigerant heater of steam injection type cooling and heat pump system
JP3080802B2 (en) Subcooled ice thermal storage device
JP3113992B2 (en) Helium liquefaction refrigeration equipment
JP2589157B2 (en) Frozen dessert production equipment
JP2927230B2 (en) Binary refrigeration equipment
JP2685646B2 (en) Cooling system
JP3874263B2 (en) Refrigeration system combining absorption and compression
JPS605763B2 (en) Starting system for liquefied natural gas cold power generation equipment
KR950004396Y1 (en) Arrangement for vaporising residuum of liquid refrigerant
JPH05172441A (en) Cold water manufacturing device