JPS605763B2 - Starting system for liquefied natural gas cold power generation equipment - Google Patents

Starting system for liquefied natural gas cold power generation equipment

Info

Publication number
JPS605763B2
JPS605763B2 JP5146280A JP5146280A JPS605763B2 JP S605763 B2 JPS605763 B2 JP S605763B2 JP 5146280 A JP5146280 A JP 5146280A JP 5146280 A JP5146280 A JP 5146280A JP S605763 B2 JPS605763 B2 JP S605763B2
Authority
JP
Japan
Prior art keywords
pressure
natural gas
liquefied natural
power generation
turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5146280A
Other languages
Japanese (ja)
Other versions
JPS56148605A (en
Inventor
正蔵 竹内
喜徳 久角
博 寺井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP5146280A priority Critical patent/JPS605763B2/en
Publication of JPS56148605A publication Critical patent/JPS56148605A/en
Publication of JPS605763B2 publication Critical patent/JPS605763B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は液化天然ガス(LNG)冷熱発電装置の起動シ
ステムに関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a starting system for a liquefied natural gas (LNG) cold thermal power generation device.

(従来技術) 中間熱媒体(例えばプロパン)を使用するLNG冷熱発
電装置の概要は、本発明の一例を示す第1図を参照して
説明すると、以下の通りである。
(Prior Art) An overview of an LNG cryogenic power generation device using an intermediate heat medium (for example, propane) is as follows with reference to FIG. 1, which shows an example of the present invention.

LNGIは中間熱媒体の凝縮器2に供給されて加溢気化
され、更に加温器3によって海水4で加溢される。
LNGI is supplied to an intermediate heat medium condenser 2 where it is flooded and vaporized, and further flooded with seawater 4 by a heater 3 .

他方、LNGの冷熱によって凝縮された中間熱媒体は、
ポンプ6によって凝縮器2から蒸発器6に供鎌倉これ、
ここで海水4によって加溢蒸発せしめられる。気化中間
熱媒体は次いで発電機のタービン7に僕V給され、その
圧力でもつてタービンの駆動に供された後タービン排気
として上記凝縮器2に戻され、再び凝縮される。発電運
転時には、ポンプ5の運転によって、高圧側の蒸発器と
低圧側の凝縮器との間に通常、5k9/鮒G程度の圧力
差を作り、これを利用してタービン7を駆動している。
かかる発電装置を起動する場合には「第2図を参照して
説明すると、まずタービンと発電機の糸における潤滑油
圧、タービンシール油差圧、夕−ビンノズル14閉鎖、
タービン冷却水、発電機操作電源等を正常にして、その
後(t,)時間にタービン入口弁8を開き「次いでター
ビンバイパス弁9,IQとポンプバイパス弁量1を閉じ
て「凝縮器2と蒸発器6を各別に独立した系状態にし、
中り間熱媒体の自然循環を止める。
On the other hand, the intermediate heat medium condensed by the cold heat of LNG is
Kamakura is supplied from the condenser 2 to the evaporator 6 by the pump 6,
Here, it is flooded with seawater 4 and evaporated. The vaporized intermediate heat medium is then supplied to the turbine 7 of the generator, and after its pressure is used to drive the turbine, it is returned to the condenser 2 as turbine exhaust and is condensed again. During power generation operation, the operation of the pump 5 normally creates a pressure difference of approximately 5k9/Chu G between the evaporator on the high pressure side and the condenser on the low pressure side, and this is used to drive the turbine 7. .
When starting up such a power generation device, "to explain with reference to FIG.
After setting the turbine cooling water, generator operating power, etc. to normal, open the turbine inlet valve 8 at time (t,) and then close the turbine bypass valve 9, IQ and pump bypass valve volume 1 to close the condenser 2 and evaporator. Each device 6 is put into an independent system state,
Stops the natural circulation of the intermediate heat transfer medium.

この状態で海水4を供給して蒸発器6の中間熱媒体圧力
aを海水温度に見合った圧力まで上昇させ、他方LNG
Iを設定流量の勾配bでもつて供給して凝縮器2の中間
熱媒体圧力cを次第に低下させる。このように5してタ
ービン7の入出口において差圧を生じ始める。凝縮器2
で冷却された中間熱媒体はガス抜き配管12を循環する
ことによって、ポンプ5とその配管系を冷却する。凝縮
器2の圧力cは発電運転時の上述の圧力差をもたらすよ
うに、A圧力、通常okg/地Gに設定されており、こ
れに達するとその調節計Pにによって検出され、その信
号によってタービンの/ズル14が開放される。
In this state, seawater 4 is supplied to raise the intermediate heat medium pressure a of the evaporator 6 to a pressure commensurate with the seawater temperature, and the LNG
By supplying I at a set flow rate gradient b, the intermediate heat medium pressure c in the condenser 2 is gradually lowered. In this manner, a pressure difference begins to occur at the inlet and outlet of the turbine 7. Condenser 2
The intermediate heat medium cooled by circulating through the gas venting pipe 12 cools the pump 5 and its piping system. The pressure c of the condenser 2 is set to A pressure, usually OKG/G, so as to produce the above-mentioned pressure difference during power generation operation, and when this value is reached, it is detected by the controller P, and the signal is The /zzle 14 of the turbine is opened.

そして、圧力cの値の変動に応じてノズルi4の開度が
調節されるように、該ノズル14が凝縮手段2に調節計
PICを通じて連結されている。タービンノズル14の
開放により、蒸発器6の高圧中間熱媒体がタービン7に
流入し、これが回転を始動する。規定回転数に達すると
発電機遮断器を投入し、電動機運転で所定の回転数に上
げ発電運転に入る。一方これに平行して、蒸発器6の中
間熱媒体液面が低下するので、ガス抜き配管12を閉じ
る。その際、ポンプ5の全負荷起動、空引き運転を防止
するために、ポンプ吐出側の蒸発器液面制御弁13が全
閉「ポンプポット液面上限の条件が揃っているときにポ
ンプ5を起動させ、ポンプに必要な最低流量を確保しな
がら運転を続ける。一方、蒸発器6の液面が設定値以下
になってきてその制御弁13が開放され、設定値に制御
される。このようにして当該発電装置が起動されるので
あるが、凝縮器の圧力cが設定値Aに達した時点でこれ
に連動してタービン7のノズル14が開放されると、タ
ービン入出口における中間熱媒体の圧力差が上述の如く
大きいためにオーバシュートをきたし「第2図の点線で
示す如く当該圧力cのA時点での制御が困難となり、同
時にタービンノズル14の開放状態dにも変動をきたし
て、当該発電装置の円滑な起動を望めない。
The nozzle 14 is connected to the condensing means 2 through a controller PIC so that the opening degree of the nozzle i4 is adjusted in accordance with fluctuations in the value of the pressure c. By opening the turbine nozzle 14, the high-pressure intermediate heat medium of the evaporator 6 flows into the turbine 7, which starts its rotation. When the specified rotational speed is reached, the generator circuit breaker is turned on, the motor is operated to raise the specified rotational speed, and power generation operation begins. On the other hand, in parallel with this, the intermediate heat medium liquid level in the evaporator 6 decreases, so the gas venting pipe 12 is closed. At this time, in order to prevent the pump 5 from starting at full load and running dry, the evaporator liquid level control valve 13 on the pump discharge side is fully closed. The pump is started and continues to operate while ensuring the minimum flow rate necessary for the pump.Meanwhile, when the liquid level in the evaporator 6 falls below the set value, its control valve 13 is opened and the pump is controlled to the set value. When the pressure c of the condenser reaches the set value A, the nozzle 14 of the turbine 7 is opened, and the intermediate heat medium at the inlet and outlet of the turbine is activated. As mentioned above, the large pressure difference causes an overshoot, making it difficult to control the pressure c at point A, as shown by the dotted line in Figure 2, and at the same time, the open state d of the turbine nozzle 14 also fluctuates. , it is difficult to expect smooth startup of the power generation device.

(発明の目的) 本発明は当該発電装置の起動時におけるかかる問題点を
解消するために考案されたものであり、上記オーバシュ
ートの超生を防止して当該発電装贋の円滑な起動を行い
得るシステムを提供することにある。
(Object of the Invention) The present invention has been devised to solve such problems at the time of starting up the power generation device, and can prevent the above-mentioned overshoot from occurring and smoothly start up the power generation device. The goal is to provide a system.

(発明の構成、効果) 即ち、本発明の特徴は「上記圧力cの設定値より所定値
高い値(A+Q)に達した時点でタービンノズル14を
強制的に開き、その後圧力cが設定値Aに達した時点で
該圧力cの値の変動に連動的にタービンノズル14の開
放を行うことにある。
(Structure and Effect of the Invention) That is, the feature of the present invention is that the turbine nozzle 14 is forcibly opened when the pressure c reaches a value (A+Q) that is a predetermined value higher than the set value of the pressure c, and then the pressure c is set to the set value A. The purpose is to open the turbine nozzle 14 in conjunction with the change in the value of the pressure c when the pressure c reaches the value c.

具体的には、上誌圧力cがA+ひく例えばA十lk9/
榊G)に達した時点でタービンノズル14を第2図のe
で示す如く強制的に開くと、タービン入出口の圧力差に
よって中間熱媒体がタービン7を介して流通するので「
圧力cは実線で示す如く一時的に上昇するが、次第にゆ
るやかに降下し、設定値Aに達する。
Specifically, the above pressure c is A+ minus, for example, A0lk9/
When reaching Sakaki G), turn the turbine nozzle 14 to e in Figure 2.
When it is forcibly opened as shown in , the intermediate heat medium flows through the turbine 7 due to the pressure difference between the turbine input and output.
The pressure c temporarily increases as shown by the solid line, but then gradually decreases and reaches the set value A.

この時点で上述の如く圧力cの値の変動にタービンノズ
ル14の開放を連動させても、圧力cが設定値Aに維持
され、よってタービンノズル14の開放状態も一定され
、これにより当該発電装置の起動を円滑に実施できるよ
うになる。
At this point, even if the opening of the turbine nozzle 14 is linked to the fluctuation in the value of the pressure c as described above, the pressure c is maintained at the set value A, and therefore the open state of the turbine nozzle 14 is also constant, thereby causing the power generating device will be able to start up smoothly.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明装置の一例を示すフローシート、第2図
はその起動システムを説明するためのグラフであって「
1はLNG、2は中間熱媒体の凝縮器、6はその蒸発
器、5はポンプ、7はタービン「 14はそのノズルを
示す。 第1図 第2図
FIG. 1 is a flow sheet showing an example of the device of the present invention, and FIG. 2 is a graph for explaining its startup system.
1 is the LNG, 2 is the intermediate heat medium condenser, 6 is its evaporator, 5 is the pump, 7 is the turbine. 14 is the nozzle. Fig. 1 Fig. 2

Claims (1)

【特許請求の範囲】[Claims] 1 液化天然ガスの気化に供して凝縮された中間熱媒体
を蒸発させ、これを発電機のタービンに供給してその駆
動に使用した後、再度液化天然ガスの気化に循環使用す
る液化天然ガス冷熱発電装置において、中間熱媒体の蒸
発手段における圧力を設定値に維持すると共に、中間熱
媒体の凝縮手段における圧力を液化天然ガスの所定勾配
供給によって降下させ、該圧力が発電運転時の設定値よ
り所定値高い圧力に達した時点でタービンのノズルを開
いて、中間熱媒体を蒸発手段側から凝縮手段側へ流通さ
せながら該圧力を上記設定値まで降下させ、設定値に達
した時点で該圧力の値の変化に応じてタービンのノズル
の開閉状態を調節するように上記凝縮手段とノズルを連
結することを特徴とする発電装置の起動システム。
1 Liquefied natural gas cold heat that is used to vaporize the liquefied natural gas and evaporate the condensed intermediate heat medium, supply it to the generator turbine and use it to drive it, and then circulate and use it again to vaporize the liquefied natural gas. In the power generation device, the pressure in the intermediate heat medium evaporation means is maintained at a set value, and the pressure in the intermediate heat medium condensation means is lowered by supplying liquefied natural gas at a predetermined gradient, so that the pressure is lower than the set value during power generation operation. When the pressure reaches a predetermined value, the nozzle of the turbine is opened and the intermediate heat medium is allowed to flow from the evaporating means side to the condensing means side, while the pressure is lowered to the above set value, and when the set value is reached, the pressure is lowered. A starting system for a power generator, characterized in that the condensing means and the nozzle are connected so as to adjust the opening/closing state of the nozzle of the turbine according to a change in the value of .
JP5146280A 1980-04-17 1980-04-17 Starting system for liquefied natural gas cold power generation equipment Expired JPS605763B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5146280A JPS605763B2 (en) 1980-04-17 1980-04-17 Starting system for liquefied natural gas cold power generation equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5146280A JPS605763B2 (en) 1980-04-17 1980-04-17 Starting system for liquefied natural gas cold power generation equipment

Publications (2)

Publication Number Publication Date
JPS56148605A JPS56148605A (en) 1981-11-18
JPS605763B2 true JPS605763B2 (en) 1985-02-14

Family

ID=12887596

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5146280A Expired JPS605763B2 (en) 1980-04-17 1980-04-17 Starting system for liquefied natural gas cold power generation equipment

Country Status (1)

Country Link
JP (1) JPS605763B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106840952B (en) * 2017-02-21 2021-03-26 天津市特种设备监督检验技术研究院(天津市特种设备事故应急调查处理中心) Method for detecting heat insulation performance of vehicle-mounted LNG (liquefied Natural gas) cylinder
CN109104842B (en) * 2017-06-21 2020-04-03 鸿富锦精密电子(天津)有限公司 Heat dissipation circulation system

Also Published As

Publication number Publication date
JPS56148605A (en) 1981-11-18

Similar Documents

Publication Publication Date Title
JP3979778B2 (en) Apparatus and method for cooling drying
US6332328B1 (en) Absorption heat pump and process for operation of an absorption heat pump
JPS6040707A (en) Low boiling point medium cycle generator
JPS627463B2 (en)
KR20010074933A (en) Absorption refrigeration machine
JPH05222906A (en) Controller for power plant utilizing exhaust heat
JPS605763B2 (en) Starting system for liquefied natural gas cold power generation equipment
JP2005291094A (en) Power plant facility using liquefied gas vaporizing device
KR100188989B1 (en) Method for controlling an absorption system
JPH08296895A (en) Heat pump hot-water supply apparatus
JP3746471B2 (en) Engine-driven heat pump type air conditioner equipped with hot water supply / heating unit and operation control method thereof
JP3080802B2 (en) Subcooled ice thermal storage device
JPH0914766A (en) Refrigerating unit
JP2526773B2 (en) Power control device in refrigerant circulation power generation system
JPH03122474A (en) Freezing device
JP7011516B2 (en) Liquefied natural gas vaporization system
JP2940838B2 (en) Air conditioning
JPH0130563Y2 (en)
JP3819523B2 (en) Refrigeration equipment
JPS5936084B2 (en) Shutdown system for liquefied natural gas cold power generation equipment
JPH01237309A (en) Generating equipment using lng cryogenic heat
JP3434279B2 (en) Absorption refrigerator and how to start it
JP2901430B2 (en) Control method of absorption heat pump
JPH11107906A (en) Binary generating system
TWI542780B (en) Heat exchanger with minimum vapor pressure maintained mechenism applied to a heat engine cycle and method thereof