JPH0312140B2 - - Google Patents

Info

Publication number
JPH0312140B2
JPH0312140B2 JP8893587A JP8893587A JPH0312140B2 JP H0312140 B2 JPH0312140 B2 JP H0312140B2 JP 8893587 A JP8893587 A JP 8893587A JP 8893587 A JP8893587 A JP 8893587A JP H0312140 B2 JPH0312140 B2 JP H0312140B2
Authority
JP
Japan
Prior art keywords
gas
furnace
present
heating
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8893587A
Other languages
Japanese (ja)
Other versions
JPS63255355A (en
Inventor
Kaneaki Kida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NICHEI KOZAI KK
Original Assignee
NICHEI KOZAI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NICHEI KOZAI KK filed Critical NICHEI KOZAI KK
Priority to JP8893587A priority Critical patent/JPS63255355A/en
Publication of JPS63255355A publication Critical patent/JPS63255355A/en
Publication of JPH0312140B2 publication Critical patent/JPH0312140B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、金属表面のガス複合浸透による改質
方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for modifying a metal surface by gas complex permeation.

[従来の技術] 機械部品・工具・治具・金属等の金属表面の改
質方法は、大別すると浸炭・窒化・浸硫・浸硼等
改質媒体の元素を金属表層部に浸透・拡散させて
表面を改質する方法と、表面焼入・メツキ・化成
処理・肉盛等で表層部を物理的・化学的に反応さ
せ改質する方法と2分される。後者は、複雑で高
度な技術が要求され、コストが高く、母材が限定
され、作業・品質管理に難点が多い。前者の浸透
改質方法は改質媒体により次のように2分され
る。
[Conventional technology] Methods for modifying the surface of metal such as machine parts, tools, jigs, metals, etc. can be roughly divided into carburizing, nitriding, sulfurizing, and boronizing, etc. Penetration and diffusion of modifying medium elements into the metal surface layer. There are two methods: methods in which the surface is modified through surface hardening, plating, chemical conversion treatment, overlay, etc., and methods in which the surface layer is physically and chemically reacted and modified through surface hardening, plating, chemical conversion treatment, overlay, etc. The latter requires complex and advanced technology, is expensive, has limited base materials, and has many difficulties in work and quality control. The former osmotic modification method is divided into two types depending on the modification medium as follows.

即ち、改質媒体に液体・固体を用いる方法と気
体を用いる方法である。
That is, there are two methods: one uses liquid/solid as the reforming medium, and the other uses gas.

改質媒体に液体・固体及び気体を用いる従来の
方法には、次のような問題点がある。
Conventional methods that use liquids, solids, and gases as reforming media have the following problems.

(1) 例えば仕込塩としてNaCNとNaCNOの混塩
を用い、これを外熱式加熱炉で溶融し、所定温
度で所定時間改質を施す塩浴改質方法が現在最
も多く用いられているが、塩類が猛毒のため公
害問題があり、その社会的責任を問われるので
公害防止設備に多額な費用がかかる上、現在の
技術水準としては完璧な防止法が未だ確立され
ていない。
(1) For example, the most commonly used salt bath reforming method is to use a mixed salt of NaCN and NaCNO as a charging salt, melt it in an external heating furnace, and reform it at a predetermined temperature for a predetermined period of time. Since salts are extremely poisonous, there is a pollution problem, and the social responsibility is called for, which requires a large amount of money for pollution prevention equipment, and at the current state of technology, a perfect prevention method has not yet been established.

(2) 浸炭等による改質方法は、改質温度が高く母
材を損傷し、加熱エネルギーを損耗するという
問題点がある。この方法では通常900℃以上の
高温で数時間保持せねばならず、母材が損傷す
ると共に改質の後熱処理を必要とし、製品の変
形・変寸をひき起し、工数が多くかかる。一方
表面硬さも低い。
(2) Modification methods such as carburization have problems in that the modification temperature is high, damaging the base material and wasting heating energy. This method usually requires holding the product at a high temperature of 900°C or higher for several hours, which damages the base material and requires post-modification heat treatment, which causes deformation and dimensional changes in the product and requires a large number of man-hours. On the other hand, the surface hardness is also low.

(3) 例えば窒素単体気体浸透による改質方法は、
改質時間が長いという問題点がある。当初の炉
内空気の置換を行なつた後、加熱−保持−加熱
−長時間保持−炉中冷却を施すサイクルで長い
ものは100時間以上費し、短いものでも30時間
上を必要とし、従つて、熱エネルギーが大とな
り、多量のガスを消費し多額の操業費がかか
り、また納期も長くかかる。これは気体の性状
が金属への浸透に十分な時間を必要とするため
である。
(3) For example, the reforming method by nitrogen gas infiltration is
There is a problem that the reforming time is long. After the initial air replacement in the furnace, the cycle of heating, holding, heating, long-term holding, and cooling in the furnace takes more than 100 hours, and even short ones require more than 30 hours. As a result, heat energy is large, a large amount of gas is consumed, large operating costs are incurred, and delivery times are long. This is because the nature of the gas requires sufficient time to penetrate into the metal.

(4) 例えば上述の塩浴改質方法では表面改質層は
化合物層に限られるので、表面改質層の厚みは
極めて薄く、1/100mm台であり、層厚みが調整
管理できず、用途的に高圧荷重には耐えられな
いという問題点がある。
(4) For example, in the above-mentioned salt bath modification method, the surface modification layer is limited to a compound layer, so the thickness of the surface modification layer is extremely thin, on the order of 1/100 mm, and the layer thickness cannot be adjusted and controlled. The problem is that it cannot withstand high pressure loads.

(5) 表面改質される母材の形状の中には改質でき
ない形状が存在するという問題点がある。例え
ばイオン窒化による改質方法では、イオンのと
びつきによつて処理品が加熱される。イオンは
直線方向にとぶ直進性のため、イオンの進めな
い陰の部分に表面改質のできない部分が発生す
る。即ち、狭小溝部、微細孔内面、底面、長物
内面などへの均一層形成は極めて困難である。
また、形状が複雑なものへの均一層形成、表面
積や質量差の大きい場合の同時処理も望めな
い。その上、水冷や油冷などによる急速冷却も
できない。
(5) There is a problem that some shapes of the base material whose surface is to be modified cannot be modified. For example, in a reforming method using ion nitriding, the treated product is heated by the ion attack. Since ions travel in a straight line, there are areas where surface modification cannot be performed in the shadow areas where ions cannot travel. That is, it is extremely difficult to form a uniform layer on narrow grooves, the inner surfaces of micropores, the bottom surfaces, the inner surfaces of long objects, and the like.
Furthermore, it is not possible to form a uniform layer on objects with complex shapes, or to perform simultaneous processing on objects with large differences in surface area or mass. Furthermore, rapid cooling using water or oil cooling is not possible.

(6) 母材が限定されるという問題点がある。母材
の中には金属でもAl及びAl合金のように所定
の改質層が得られぬ材質も多い。CrやMoのよ
うな化合(窒素)物形成元素を含む材料が必須
条件となる。
(6) There is a problem that the base material is limited. Among the base materials, there are many materials such as metals such as Al and Al alloys in which the desired modified layer cannot be obtained. A material containing compound (nitrogen) forming elements such as Cr and Mo is essential.

(7) 表面あらさの劣化という問題点がある。特に
塩浴改質方法では表面劣化を来し、表面あらさ
を低下させる。
(7) There is a problem of deterioration of surface roughness. In particular, the salt bath modification method causes surface deterioration and reduces surface roughness.

(8) 処理による熱影響で母材を膨脹・収縮させる
ことによる寸法の狂いを生じさせるという問題
点がある。また、中には表面層に堆積させる層
の厚みにより寸法増加を来し不良となるものも
ある。
(8) There is a problem in that the base material expands and contracts due to the thermal effects of processing, causing dimensional deviations. In addition, some of them are defective due to an increase in size due to the thickness of the layer deposited on the surface layer.

(9) 特許第106622号明細書のもののように、高温
の真空中において金属材料を加熱し、その後窒
素を作用させる窒化法では、900℃もの高温で
加熱しなければならず、価格、時間の面からコ
ストが増大するばかりでなく、金属材料が焼な
まし状態になり、硬度、機械的性質が劣化し、
再度焼入れを行うとさらに材料が劣化し、再び
材料内にガスが含まれて初期状態に戻つてしま
う。
(9) In the nitriding method, as in the specification of Patent No. 106622, in which a metal material is heated in a high-temperature vacuum and then nitrogen is applied, heating must be performed at a high temperature of 900°C, which is costly and time-consuming. Not only does this increase costs, but the metal material becomes annealed and its hardness and mechanical properties deteriorate.
If quenching is performed again, the material will deteriorate further, and gas will be included in the material again, returning it to its initial state.

また、真空加熱は輻射熱のみに依存するた
め、その昇熱速度は対流加熱による昇熱速度の
半分以下であり、非常に熱効率が悪く、真空中
において窒素ガスを流す非効率な窒化を行つて
いるため大量の窒素ガスを必要とし、窒化が不
十分となる。
In addition, since vacuum heating relies only on radiant heat, its heating rate is less than half that of convection heating, resulting in extremely poor thermal efficiency and inefficient nitriding, which involves flowing nitrogen gas in a vacuum. Therefore, a large amount of nitrogen gas is required, resulting in insufficient nitriding.

さらに、合計処理時間に24時間もの長時間を
要していた。
Furthermore, the total processing time was as long as 24 hours.

(10) 単体ガスを浸透させて改質する方法では、用
途に応じて金属材料の表面性状を調整しにく
い。
(10) With the method of reforming by permeating a simple gas, it is difficult to adjust the surface properties of metal materials depending on the application.

[発明が解決すべき課題] 本発明の目的は、上述のような表面改質方法の
問題点を解決し、熱効率が良く、高価ガスの使用
量が少なくて済み、廉価で、且つ短時間で安定し
た耐摩、耐熱、耐食の表面性状が得られ、表面性
状を自由に調整できるガス複合浸透改質方法を提
供することにある。
[Problems to be Solved by the Invention] The purpose of the present invention is to solve the problems of the surface modification method as described above, and to provide a method that has good thermal efficiency, requires less expensive gas, is inexpensive, and can be done in a short time. The object of the present invention is to provide a gas composite permeation reforming method that provides stable wear-resistant, heat-resistant, and corrosion-resistant surface properties and allows the surface properties to be freely adjusted.

[問題点を解決するための手段] 上記問題点を解決するために本発明のガス複合
浸透改質方法は、浸透改質炉内へ金属母材を挿入
し、常温で抜気した後、N2を炉内に注入し、室
温から昇温し、次にN2とアンモニアの混合ガス
中で10〜90分で400〜580℃の加熱を施し、次いで
アンモニア、N2及びCO2の混合気中で10〜240分
間400〜580℃に保持し、次に前記混合気のCO2
度を上昇させると共にN2濃度を低下させたもの
で10〜120分保持し、さらにN2を循環させながら
冷却することを特徴とする。
[Means for Solving the Problems] In order to solve the above problems, the gas composite permeation reforming method of the present invention involves inserting a metal base material into a permeation reforming furnace, degassing it at room temperature, and then applying N 2 is injected into the furnace, heated up from room temperature, then heated to 400-580℃ for 10-90 minutes in a mixed gas of N2 and ammonia, and then heated in a mixed gas of ammonia, N2 and CO2. The mixture was maintained at 400 to 580 °C for 10 to 240 minutes, then held for 10 to 120 minutes in a mixture of increasing CO 2 concentration and decreasing N 2 concentration, and further while circulating N 2 . It is characterized by cooling.

なお、前記混合ガス中には、さらにH2、Ar、
ENDO、EXO等の一種又は複数種を加えること
もでき、前記連続加熱、混合ガス中での保持、さ
らに加熱・保持を多段階行なつてより成果をあげ
ることもできる。
Note that the mixed gas further contains H 2 , Ar,
It is also possible to add one or more of ENDO, EXO, etc., and it is also possible to achieve better results by performing the continuous heating, holding in the mixed gas, and further heating and holding in multiple stages.

[発明の効果] 本発明のガス複合浸透改質方法によると、常温
で抜気して金属母材内の含有ガスを放出しない程
度に炉内を真空にし、その後ガスを注入して加熱
するので、アンモニアガス等の分解促進性を損な
う酸素や、排ガス等を除去して炉内を最適な窒化
ガス雰囲気とし、N2ガスの消費量が少なくてす
み、金属材料の表面が気化洗浄されて窒化に適す
るように活性化され、炉壁汚れも除去でき、金属
材料内の含有ガスを真空加熱によつて取り除く方
法に比べて高度の真空を必要とせず、加熱温度も
低温で良く、材料に悪影響を与える心配がない。
[Effects of the Invention] According to the gas composite permeation reforming method of the present invention, the furnace is evacuated at room temperature to create a vacuum to the extent that the gas contained in the metal base material is not released, and then gas is injected and heated. , removes oxygen and exhaust gases that impair the decomposition of ammonia gas, etc., creating an optimal nitriding gas atmosphere in the furnace, reducing the consumption of N2 gas, and cleaning the surface of metal materials by vaporization to prevent nitriding. It is activated to be suitable for metal materials, can also remove furnace wall stains, does not require a high degree of vacuum compared to the method of removing gases contained in metal materials by vacuum heating, can be heated at low temperatures, and does not have any negative effects on the materials. There is no need to worry about giving.

また、ガス雰囲気中で対流を利用して加熱する
ので熱効率が良く、加熱時間が短くて済み、混合
ガスの種類、比率を調整することにより表面化合
物の厚みや性状を自由に調整配合できる。
Furthermore, since heating is performed using convection in a gas atmosphere, thermal efficiency is high and heating time is short, and by adjusting the type and ratio of the mixed gas, the thickness and properties of the surface compound can be freely adjusted and blended.

さらに、本発明によれば、処理時間が12時間以
下ですむと共に、母材の表層部の硬度を600℃以
下でビツカース900以上にでき、表層部が改質さ
れて、熱間強度、耐摩耗性が向上し、摩耗抵抗が
軽減され、また、疲労強度、クリープ強度、耐食
性が向上し、かつ表面あらさが改善されるという
優れた効果を有し、工業的にその価値は大きい。
Furthermore, according to the present invention, the processing time is 12 hours or less, and the hardness of the surface layer of the base material can be increased to 900 or higher at a temperature of 600°C or less, and the surface layer is modified to improve hot strength and wear resistance. It has excellent effects such as improved properties, reduced wear resistance, improved fatigue strength, creep strength, and corrosion resistance, and improved surface roughness, and is of great industrial value.

[実施例] 以下、本発明の実施例を図面に基づいて説明す
る。
[Example] Hereinafter, an example of the present invention will be described based on the drawings.

第1図は本発明のガス複合浸透改質方法に用い
られる装置のブロツク図である。
FIG. 1 is a block diagram of an apparatus used in the gas composite permeation reforming method of the present invention.

第1図において、浸透改質炉1は真空槽を用
い、管路とバルブ(図示せず)を介して真空ポン
プ2につながつている。浸透改質炉1の内部に
は、雰囲気の純化を図り酸化を防ぎ、水分及び酸
素濃度を常に低く保つ為の外熱式レトルト等を装
備する。ボンベA,B,C,D,Eにはそれぞれ
保護ガスとしてアンモニア、N2、CO2、H2
Ar、ENDO、EXO等が封入されており、浸透改
質炉1内を抜気後、反応段階に応じて、管路とバ
ルブ(図示せず)を介して手動又は自動で、N2
ガスのみ又はN2ガスの他のガスを混合させて炉
内に注入する。このガスの選択は、金属母材の材
質、寸法、形状、改質層の性状に応じて行なう。
In FIG. 1, a osmotic reforming furnace 1 uses a vacuum tank and is connected to a vacuum pump 2 via pipes and valves (not shown). The interior of the permeation reforming furnace 1 is equipped with an external heating retort and the like to purify the atmosphere, prevent oxidation, and keep moisture and oxygen concentrations low at all times. Cylinders A, B, C, D, and E contain ammonia, N 2 , CO 2 , H 2 , and protective gas, respectively.
Ar, ENDO, EXO, etc. are sealed, and after venting the inside of the permeation reforming furnace 1, N 2 is added manually or automatically via pipes and valves (not shown) depending on the reaction stage.
The gas alone or a mixture of other gases such as N2 gas is injected into the furnace. This gas is selected depending on the material, size, and shape of the metal base material, and the properties of the modified layer.

また、炉1内には送風機が備えてあり、高効率
に均一な雰囲気循環を施すと共に、例えば、ボン
ベBよりN2を注入し、循環させて冷却し、調質
と効率化が図れる。
Further, the furnace 1 is equipped with a blower to circulate the atmosphere uniformly with high efficiency. For example, N 2 can be injected from a cylinder B and circulated to cool the furnace and improve refining and efficiency.

なお、温度−時間の関係は、0.5〜10時間で400
℃〜580℃まで直線的に昇温させ、そのまま数時
間保持した後急冷又は徐冷する。
In addition, the relationship between temperature and time is 400 for 0.5 to 10 hours.
The temperature is raised linearly from ℃ to 580℃, held for several hours, and then rapidly or gradually cooled.

発明の手順を代表例について示すと、次の通り
である。
The procedure of the invention is shown below with respect to a typical example.

(1) 炉内へ金属母材を挿入し、抜気する。炉内の
真空度は800〜10-2ミリバールを用いる。
(1) Insert the metal base material into the furnace and vent the air. The degree of vacuum in the furnace is 800 to 10 -2 mbar.

(2) 2〜12Nm3/hr(総量2〜22Nm3)のN2を注
入し、その上で常温から300〜450℃へ20〜230
分で昇温させる。
(2) Inject 2-12Nm 3 /hr (total amount 2-22Nm 3 ) of N 2 and then heat from room temperature to 300-450℃ for 20-230℃.
Let the temperature rise in minutes.

(3) 1〜8Nm3/hrの窒素及び1〜8Nm3/hrのア
ンモニアの混合ガス中で10〜90分で400〜580℃
の連続加熱を施す。(総量:N21〜6Nm3、アン
モニア1〜6Nm3) (4) アンモニア1〜8Nm3/hr、N21〜8Nm3
hr、CO20.1〜2Nm3/hrの混合気中で10〜240分
間400〜580℃で保持する。(総量:アンモニア
2〜16Nm3、N22〜16Nm3、CO20.1Nm3〜3N
m3) (5) 更に10〜120分間、CO2濃度を上昇させN2
度を低下させるため保持する。その場合のガス
供給量は次の如くする。
(3) 400-580℃ for 10-90 minutes in a mixed gas of 1-8Nm 3 /hr nitrogen and 1-8Nm 3 /hr ammonia.
Continuous heating is applied. (Total amount: N 2 1-6Nm 3 , ammonia 1-6Nm 3 ) (4) Ammonia 1-8Nm 3 /hr, N 2 1-8Nm 3 /
hr, and held at 400-580°C for 10-240 minutes in a mixture of CO2 0.1-2Nm3 /hr. (Total amount: ammonia 2 to 16Nm 3 , N 2 2 to 16Nm 3 , CO 2 0.1Nm 3 to 3N
m 3 ) (5) Hold for an additional 10-120 minutes to increase the CO 2 concentration and decrease the N 2 concentration. In that case, the gas supply amount is as follows.

N21〜6Nm3/hr、アンモニア1〜4Nm3
hr、CO20.1〜2Nm3/hr (6) 2〜12Nm3/hrのN2を置換及び冷却調質に
循環させる。
N 2 1-6Nm 3 /hr, ammonia 1-4Nm 3 /
hr, CO 2 0.1-2Nm 3 /hr (6) 2-12Nm 3 /hr of N 2 is circulated for displacement and cooling tempering.

上記は1段処理の場合であるが、2段・3段な
ど多段処理を施すこともできる。これによりガス
単体の混合と温度・時間の選択を容易とし、最
適・効率的組合せにより有効な表面改質を施し、
単相や混合相(例γ′−Fe4N、ε−Fe4〜3N)が得
られる。例えば、2段処理としては0.5〜10時間
で500℃まで直線的に昇温させ、そのまま所定時
間保持した後550℃に昇温させ、そのまま所定時
間保持した後急冷、徐冷する。
Although the above is a case of one-stage processing, multi-stage processing such as two-stage or three-stage processing can also be performed. This makes it easy to mix individual gases and select temperature and time, and performs effective surface modification through optimal and efficient combinations.
A single phase or a mixed phase (eg γ'-F e4 N, ε-F e4~3 N) can be obtained. For example, in a two-stage process, the temperature is linearly raised to 500°C over 0.5 to 10 hours, held for a predetermined time, then raised to 550°C, held for a predetermined time, and then rapidly cooled and slowly cooled.

真空系の活用はいくつかの利点がある。まず雰
囲気純度の向上である。従来法は初期抜気が不十
分なため、雰囲気純度が得られず、所期の改質層
を求められないことが多いが、これは、真空度の
調整により解決できた。
Utilizing a vacuum system has several advantages. First is the improvement of atmosphere purity. In the conventional method, initial air evacuation is insufficient, so atmosphere purity cannot be obtained and the desired modified layer cannot be obtained in many cases, but this can be solved by adjusting the degree of vacuum.

次に従来法のガス〜大気置換ではガス流の性状
により数時間を要することがあるが、本発明によ
り操業時間を大幅に短縮することができた。ま
た、消費ガスの節減が図れた。
Next, the conventional method of replacing gas to atmosphere may take several hours depending on the properties of the gas flow, but the present invention has made it possible to significantly shorten the operating time. Additionally, gas consumption was reduced.

また、この浸透改質炉は他の加熱炉と比較する
と炉体の蓄熱量や放射熱量が少ないので炉温の昇
温速度が速くなる。
Furthermore, compared to other heating furnaces, this osmotic reforming furnace has a smaller amount of heat storage and radiated heat in the furnace body, so the rate of increase in furnace temperature is faster.

なお、従来法は処理後一担別設備へ母材を移動
させて加熱・冷却を施さねばならないが、本発明
の方法は処理後半でそのまま冷却等調質を施すこ
とができるので、品質が向上し、かつ処理時間の
短縮が図れる。特に、材料の疲労強度に及ぼす処
理後の冷却条件の影響は大きく、低合金綱では徐
冷によりγ′(Fe4N)相、粒状のα″(Fe16N2)等
の析出を生み、疲労強度を低下させる。
In addition, in the conventional method, after treatment, the base material must be moved to separate equipment and heated and cooled, but in the method of the present invention, cooling and other tempering can be performed as is in the latter half of the treatment, resulting in improved quality. In addition, the processing time can be shortened. In particular, the influence of post-processing cooling conditions on the fatigue strength of materials is significant; in low-alloy steels, gradual cooling produces precipitation of γ′ (F e4 N) phase, granular α″ (F e16 N 2 ), etc. Decrease fatigue strength.

さらに、本発明によれば冷却特性を向上させる
ことができる。ガスを用いる冷却は、冷却ガスの
圧力と流速に左右される。このため大気圧から3
バール域の噴流を活用し、冷却を向上させ、時間
短縮と母材及び表面層の調質に資する。このた
め、元素拡散層の固溶化を促進・完全化させる。
Furthermore, according to the present invention, cooling characteristics can be improved. Cooling with gas depends on the pressure and flow rate of the cooling gas. Therefore, from atmospheric pressure
Utilizes the jet flow in the burl area to improve cooling, reduce time, and improve the quality of the base material and surface layer. Therefore, solid solution formation of the element diffusion layer is promoted and completed.

次に、光輝性の優秀さがある。母材中のTi、
W、Mo、Vなどの活性金属を含む材料では、ガ
ス吸収による脆化、O2との親和による酸化が進
むので、これらの防止に有効である。
Next, there is the excellent brightness. Ti in the base material,
Materials containing active metals such as W, Mo, and V undergo embrittlement due to gas absorption and oxidation due to affinity with O 2 , so this method is effective in preventing these problems.

なお、本発明によれば表面あらさを改良するこ
とができる。この種表面改質の主目的は表面あら
さと深く相関している。これの度合は評価の重要
な因子である。
Note that according to the present invention, surface roughness can be improved. The main purpose of this type of surface modification is closely related to surface roughness. The degree of this is an important factor in the evaluation.

この処理の中で主流となつているダイス鋼・ハ
イスピード鋼等では、この効果が顕著に表われ、
実験値によると2〜4倍程あらさ(Rnax)の改
善が図られた。
This effect is noticeable in die steel and high-speed steel, which are the mainstream in this process.
According to experimental values, the roughness (R nax ) was improved by a factor of 2 to 4.

上述の浸透改質炉には各種センサー・マイクロ
プロセツサーを使用した自動化システムが施され
ており、品質安定化をさらに徹底できる。
The above-mentioned osmotic reforming furnace is equipped with an automation system that uses various sensors and microprocessors to ensure even more thorough quality stabilization.

なお、金属母材はバスケツトに入れられ、バス
ケツトが浸透改質炉に挿入されるが、バスケツト
の寸法は例えば長さ×縦×横1100mm×650mm×650
mmである。
The metal base material is placed in a basket, and the basket is inserted into the permeation reforming furnace.The dimensions of the basket are, for example, length x length x width 1100mm x 650mm x 650mm.
mm.

本発明のガス複合浸透改質法によれば、元素が
金属の表面で化学反応を起し、生成された元素が
金属に拡散し、固くてかつ靭性のある表層部を形
成する。
According to the gas composite permeation reforming method of the present invention, the elements cause a chemical reaction on the surface of the metal, and the generated elements diffuse into the metal to form a hard and tough surface layer.

表層部には強靭な化合物、拡散層には微細な粒
状及び針状の析出物が生じ、有効な性状を示す。
A tough compound is formed in the surface layer, and fine granular and acicular precipitates are formed in the diffusion layer, showing effective properties.

本改質方法で得られる特性は次の通りである。 The properties obtained by this modification method are as follows.

(1) 熱間強度の向上 本改質方法で得られる表面は高い熱間強度の
保持を示す。第2図はその一例を示したもので
あり、横軸に温度、縦軸に硬さ(ビツカース)
がとつてある。図中実線と二点鎖線はそれぞれ
本発明の1段処理と多段処理を施したもの、ま
た点線は他の浸透改質方法を施したものを示
し、本発明は600℃以下でビツカース900以上の
硬化が得られる。
(1) Improvement in hot strength The surface obtained by this modification method shows high hot strength retention. Figure 2 shows an example, where the horizontal axis shows temperature and the vertical axis shows hardness (Bitzker's).
There is a certain amount. In the figure, the solid line and the two-dotted chain line indicate the one-stage treatment and the multi-stage treatment of the present invention, respectively, and the dotted line indicates the one subjected to other osmotic modification methods. Hardening is obtained.

(2) 耐摩耗性の向上 第3図はSKD61について他の浸透改質法と
の比較を示した一例で、横軸に摩擦時間、縦軸
に摩耗量がとつてある。図中実線と二点鎖線は
それぞれ本発明の1段処理と2段処理を施した
もの、また点線は他の浸透改質法を施したもの
を示す。本発明によれば、耐摩耗量は図のよう
に大きく改善されている。また、浸透深さも大
きいので、全体摩耗量としては更に大きい値を
表している。
(2) Improved wear resistance Figure 3 shows an example of a comparison of SKD61 with other osmotic modification methods, where the horizontal axis shows the friction time and the vertical axis shows the amount of wear. In the figure, the solid line and the two-dot chain line indicate the one-stage treatment and the two-stage treatment of the present invention, respectively, and the dotted line indicates the one subjected to another osmotic modification method. According to the present invention, the wear resistance is greatly improved as shown in the figure. Furthermore, since the penetration depth is large, the total wear amount is even larger.

(3) 摩耗抵抗の軽減 本発明によれば、耐粉体摩耗性能が著しく改
善される。これは摩耗係数が無浸透では0.3〜
0.4位のものが本発明により0.1〜0.2に向上する
ことでも説明できる。これにより使用中の温度
上昇をくいとめ、製品精度、寿命等に著しい改
善がはかられた。第4図は、SKD61についの
一例を示したものであり、横軸に試験荷重、縦
軸に上昇温度がとつてある。図中実線と二線鎖
線はそれぞれ本発明の1段処理と2段処理を施
したもの、また点線は他の浸透改質法を施した
ものを示す。
(3) Reduction of wear resistance According to the present invention, powder wear resistance performance is significantly improved. This means that the wear coefficient is 0.3 to 0.3 for non-penetration.
This can also be explained by the fact that the present invention improves the value from 0.4 to 0.1 to 0.2. This prevents temperature rises during use and significantly improves product accuracy and lifespan. Figure 4 shows an example of SKD61, with the horizontal axis representing the test load and the vertical axis representing the temperature rise. In the figure, the solid line and the double-dashed line indicate the one-stage treatment and the two-stage treatment of the present invention, respectively, and the dotted line indicates the other osmotic modification method.

(4) 疲労強度の向上 本発明は溝部等複雑形状品にも均質に行え
る。マトリツクス固溶した元素は、繰返し応
力・曲げ応力・回転曲げ応力下での疲労強度を
向上させる。第5図は、SKD61についての一
例を示したものであり、横軸に処理時間と、縦
軸に疲労強度がとつてある。図中実線と二点鎖
線はそれぞれ本発明の1段処理と2段処理を施
したものを示す。本発明は、疲労強度の著しい
向上効果を表わしている。
(4) Improving fatigue strength The present invention can be applied uniformly to products with complex shapes such as grooves. Elements dissolved in the matrix improve fatigue strength under repeated stress, bending stress, and rotational bending stress. FIG. 5 shows an example of SKD61, in which the horizontal axis shows processing time and the vertical axis shows fatigue strength. In the figure, the solid line and the two-dot chain line indicate the one-stage processing and the two-stage processing of the present invention, respectively. The present invention exhibits a significant improvement in fatigue strength.

(5) クリープ強度の向上 第6図はS15C、SNCM3、SKD61について
無浸透品(点線で示す)と本発明の1段処理
(実線で示す)、2段処理(二点鎖線で示す)に
よるクリープ強度の比較を示したものであり、
本発明によれば、何れの鋼種でも著しいクリー
プ強度の向上がみられる。
(5) Improvement in creep strength Figure 6 shows the creep properties of S15C, SNCM3, and SKD61 with non-permeable products (indicated by dotted lines), one-stage treatment (indicated by solid lines), and two-stage treatment (indicated by two-dot chain lines) of the present invention. This shows a comparison of strength.
According to the present invention, a remarkable improvement in creep strength can be seen in any steel type.

(6) 耐食性の向上 他処理品に比して著しい改善がある。塩水テ
スト、酸テスト、アンモニア等の各種腐食テス
トにおいて、その改善が立証された。
(6) Improved corrosion resistance Significant improvement compared to other treated products. The improvement was proven in various corrosion tests such as salt water test, acid test, and ammonia test.

(7) 表面あらさの改善 既述のように表面あらさ(Rnax)の改善が
図られた。
(7) Improvement of surface roughness As mentioned above, the surface roughness (R nax ) was improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のガス複合浸透改質方法に用い
る装置のブロツク図、第2図は本発明と従来法に
ついて温度に対する硬さの変化を示した図、第3
図は本発明と従来法について摩耗時間に対する摩
耗量の変化した図、第4図は本発明と従来法につ
いて試験荷重に対する上昇温度の変化を示した
図、第5図は本発明と従来法について処理時間に
対する疲労強度の変化を示した図、第6図は本発
明と従来法についてクリープ強度の比較を示した
図である。 1……浸透改質炉、2……真空ポンプ。
Fig. 1 is a block diagram of the equipment used in the gas composite osmotic reforming method of the present invention, Fig. 2 is a diagram showing changes in hardness with respect to temperature for the present invention and the conventional method, and Fig. 3
Figure 4 shows the change in wear amount with respect to wear time for the present invention and the conventional method. Figure 4 shows the change in temperature rise with respect to the test load for the present invention and the conventional method. Figure 5 shows the change in the temperature rise with respect to the test load for the present invention and the conventional method. FIG. 6 is a diagram showing changes in fatigue strength with respect to processing time, and is a diagram showing a comparison of creep strength between the present invention and the conventional method. 1... Permeation reforming furnace, 2... Vacuum pump.

Claims (1)

【特許請求の範囲】 1 浸透改質炉内へ金属母材を挿入し、常温で抜
気した後、N2ガスを炉内に注入し、室温から300
〜450℃へ20〜230分で昇温し、次にN2とアンモ
ニアの混合ガス中で10〜90分で400〜580℃の加熱
を施し、次いでアンモニア、N2及びCO2の混合
気中で10〜240分間400〜580℃に保持し、次に前
記混合気のCO2濃度を上昇させると共にN2濃度
を低下させたもので10〜120分間保持し、さらに
N2を循環させながら冷却することを特徴とする
ガス混合浸透改質方法。 2 前記加熱、混合ガス中での保持を多段階行な
う特許請求の範囲第1項記載のガス複合浸透改質
方法。
[Claims] 1. A metal base material is inserted into a permeation reforming furnace, and after venting at room temperature, N 2 gas is injected into the furnace, and the metal base material is
Heating to ~450°C in 20-230 minutes, then heating to 400-580°C in 10-90 minutes in a mixture of N2 and ammonia, then in a mixture of ammonia, N2 and CO2. The mixture was held at 400 to 580°C for 10 to 240 minutes, then held at 400 to 580 °C for 10 to 120 minutes with increasing CO 2 concentration and decreasing N 2 concentration, and then
A gas mixture permeation reforming method characterized by cooling while circulating N2 . 2. The gas composite permeation reforming method according to claim 1, wherein the heating and holding in the mixed gas are performed in multiple stages.
JP8893587A 1987-04-13 1987-04-13 Modifying method by mixed gas penetration Granted JPS63255355A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8893587A JPS63255355A (en) 1987-04-13 1987-04-13 Modifying method by mixed gas penetration

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8893587A JPS63255355A (en) 1987-04-13 1987-04-13 Modifying method by mixed gas penetration

Publications (2)

Publication Number Publication Date
JPS63255355A JPS63255355A (en) 1988-10-21
JPH0312140B2 true JPH0312140B2 (en) 1991-02-19

Family

ID=13956746

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8893587A Granted JPS63255355A (en) 1987-04-13 1987-04-13 Modifying method by mixed gas penetration

Country Status (1)

Country Link
JP (1) JPS63255355A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007046088A (en) * 2005-08-09 2007-02-22 Yuki Koshuha:Kk Nitrided quenched part, and method for producing the same

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2753647B2 (en) * 1990-04-17 1998-05-20 トヨタ自動車株式会社 Gas nitrocarburizing method
JPH0784639B2 (en) * 1990-09-04 1995-09-13 日栄鋼材株式会社 Gas composite permeation reforming method
JP5926973B2 (en) * 2012-02-06 2016-05-25 本田技研工業株式会社 Surface treatment method for mold cooling hole and mold

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007046088A (en) * 2005-08-09 2007-02-22 Yuki Koshuha:Kk Nitrided quenched part, and method for producing the same

Also Published As

Publication number Publication date
JPS63255355A (en) 1988-10-21

Similar Documents

Publication Publication Date Title
JP5577573B2 (en) Vacuum carburizing method and vacuum carburizing apparatus
Edenhofer et al. Carburizing of steels
JP6378189B2 (en) Method of nitriding steel member
EP0465333B1 (en) Method and installation for the cementation of metallic alloy articles at low pressure
US4160680A (en) Vacuum carburizing
Hosmani et al. An introduction to surface alloying of metals
JP6194057B2 (en) Surface treatment agent for steel and surface treatment method for steel
US8425691B2 (en) Stainless steel carburization process
JP2021120471A (en) Nitrided steel member, manufacturing method of nitrided steel member and manufacturing apparatus
WO2019131602A1 (en) Nitrided steel member, and method and apparatus for producing nitrided steel member
JPH0790541A (en) Mixed gas penetration modifying method and device therefor
JPH0312140B2 (en)
US6328819B1 (en) Method and use of an apparatus for the thermal treatment, in particular nitriding treatment, of metal workpieces
JP6587886B2 (en) Manufacturing method of nitrided steel member
JP2015025161A (en) Surface hardening method of iron or iron alloy and apparatus of the same, and surface hardening structure of iron or iron alloy
Jacobs et al. Plasma Carburiiing: Theory; Industrial Benefits and Practices
RU2291227C1 (en) Construction-steel parts surface hardening method
US20100139812A1 (en) Case hardening titanium and its alloys
JP3450426B2 (en) Gas sulfide nitriding treatment method
JP5653879B2 (en) Processing method of sintered products
JP2009299122A (en) Nitriding-quenching method, heater for nitriding-quenching and nitriding-quenching apparatus
KR101414253B1 (en) pressure nitriding heat treatment process
JPS63759Y2 (en)
JPH06248416A (en) Modifying method by mixed gas penetration
JPS6033188B2 (en) Metal heat treatment equipment