JP5577573B2 - Vacuum carburizing method and vacuum carburizing apparatus - Google Patents

Vacuum carburizing method and vacuum carburizing apparatus Download PDF

Info

Publication number
JP5577573B2
JP5577573B2 JP2008222520A JP2008222520A JP5577573B2 JP 5577573 B2 JP5577573 B2 JP 5577573B2 JP 2008222520 A JP2008222520 A JP 2008222520A JP 2008222520 A JP2008222520 A JP 2008222520A JP 5577573 B2 JP5577573 B2 JP 5577573B2
Authority
JP
Japan
Prior art keywords
carburizing
heating chamber
workpiece
temperature
diffusion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008222520A
Other languages
Japanese (ja)
Other versions
JP2010053431A (en
Inventor
和彦 勝俣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2008222520A priority Critical patent/JP5577573B2/en
Publication of JP2010053431A publication Critical patent/JP2010053431A/en
Application granted granted Critical
Publication of JP5577573B2 publication Critical patent/JP5577573B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、真空浸炭処理方法および真空浸炭処理装置に関し、特に高合金鋼に用いて好適な真空浸炭処理方法および真空浸炭処理装置に関するものである。   The present invention relates to a vacuum carburizing treatment method and a vacuum carburizing treatment apparatus, and more particularly to a vacuum carburizing treatment method and a vacuum carburizing treatment apparatus suitable for use in high alloy steel.

高合金鋼の表面硬化法は、焼入れ、焼戻し等の調質が一般的である。また、それ以上の硬度が必要とされる場合には、窒化処理、PVDコーティング処理等の表面処理が行われることがある。ところが、これらの方法は、母材の組織に対して異質物を付着させる方法であるため、剥離等の問題があった。これに対して、真空浸炭処理は、母材自体を強化させる処理であるため、剥離の心配が少ない方法である。   In the surface hardening method of high alloy steel, tempering such as quenching and tempering is generally used. In addition, when higher hardness is required, surface treatment such as nitriding treatment or PVD coating treatment may be performed. However, since these methods are methods for attaching foreign substances to the structure of the base material, there are problems such as peeling. On the other hand, the vacuum carburizing process is a process that reinforces the base material itself, and is therefore a method with less fear of peeling.

真空浸炭処理は、金属製の被処理物の表層部に浸炭させて焼入れすることにより表層部の硬度を高める浸炭処理の一つである。真空浸炭処理には、下記の特許文献1や特許文献2に記載のものがある。
特許文献1に示す真空浸炭処理は、被処理物を加熱室において極低圧状態で所定温度に加熱し、加熱室内にアセチレン等の浸炭用ガスを装入して被処理物に浸炭させた後、浸炭用ガスの供給を停止し、再び加熱室内を極低圧状態にすることにより被処理物の表面近くの炭素を内部へ拡散させ、焼入れ温度まで降温させてから油冷するものである。
特許文献2に示す真空浸炭処理は、被処理物の表面(特に角部)の過剰な浸炭を改善するために、特許文献1のような真空浸炭処理における拡散の初期で、炉(特許文献1における加熱室と同等)内に脱炭性ガスを導入し、被処理物の表面のセメンタイトを減少又は除去するものである。
また、特許文献3には、プラズマ浸炭法の一つが開示されている。
特開平8−325701号公報 特開2004−115893号公報 特開平10−158780号公報
The vacuum carburizing process is one of the carburizing processes for increasing the hardness of the surface layer part by carburizing and quenching the surface layer part of the metal workpiece. Examples of the vacuum carburizing treatment include those described in Patent Document 1 and Patent Document 2 below.
In the vacuum carburizing process shown in Patent Document 1, the workpiece is heated to a predetermined temperature in an extremely low pressure state in the heating chamber, and after the carburizing gas such as acetylene is charged in the heating chamber and the workpiece is carburized, The supply of the carburizing gas is stopped, and the heating chamber is again brought into an extremely low pressure state to diffuse carbon near the surface of the object to be processed into the interior, cool down to the quenching temperature, and then cool with oil.
The vacuum carburizing process shown in Patent Document 2 is a furnace (Patent Document 1) at the initial stage of diffusion in the vacuum carburizing process as in Patent Document 1 in order to improve excessive carburization of the surface (especially corners) of the workpiece. The decarburizing gas is introduced into the heating chamber) to reduce or remove cementite on the surface of the workpiece.
Patent Document 3 discloses one of plasma carburizing methods.
JP-A-8-325701 JP 2004-115893 A JP-A-10-158780

しかしながら、上記の特許文献1〜3に記載の方法では、母材への炭素の含有量が充分でなく、所望の硬度が得られない虞があった。また、表面硬化層が浅く、靱性の改善が不充分であるという問題があった。   However, in the methods described in Patent Documents 1 to 3, the content of carbon in the base material is not sufficient, and the desired hardness may not be obtained. In addition, there is a problem that the hardened surface layer is shallow and the improvement of toughness is insufficient.

本発明は、上記の課題を解決するためになされたものであり、被処理物の硬度や靱性を充分に向上させ得る真空浸炭処理方法および真空浸炭処理装置を提供することを目的とする。   The present invention has been made to solve the above problems, and an object of the present invention is to provide a vacuum carburizing method and a vacuum carburizing apparatus that can sufficiently improve the hardness and toughness of an object to be processed.

上記の目的を達成するために、本発明の真空浸炭処理方法は、加熱室内の被処理物を所定の温度にまで昇温させる昇温工程と、前記被処理物の温度が前記所定の温度に到達した状態で、前記被処理物を収容した前記加熱室内を極低圧雰囲気まで減圧した状態から浸炭用ガスを前記加熱室内に供給することにより前記被処理物を浸炭させる浸炭工程と、前記浸炭工程の後、前記浸炭用ガスの供給を停止して前記浸炭用ガスの構成元素である炭素を前記被処理物の表面から内部へ拡散させる拡散工程と、前記拡散工程の後、前記被処理物を冷却する冷却工程と、を備え、前記浸炭工程と前記拡散工程とを交互に複数回繰り返すことを特徴とする。   In order to achieve the above object, a vacuum carburizing method according to the present invention includes a temperature raising step of raising the temperature of a workpiece in a heating chamber to a predetermined temperature, and the temperature of the workpiece to the predetermined temperature. A carburizing step of carburizing the workpiece by supplying a carburizing gas into the heating chamber from a state where the heating chamber containing the workpiece is decompressed to an extremely low pressure atmosphere in a state of reaching the workpiece; and the carburizing step Thereafter, the supply of the carburizing gas is stopped and a diffusion step of diffusing carbon, which is a constituent element of the carburizing gas, from the surface to the inside of the object to be processed, and after the diffusion step, the object to be processed is A cooling step for cooling, wherein the carburizing step and the diffusion step are alternately repeated a plurality of times.

本発明の真空浸炭処理方法において、質量%で、C:0.31%〜0.6%、Si:0.1%〜0.6%、Mn:0.3%〜1.0%、Ni:0.05%〜0.6%、Cr:3.0%〜5.0%未満、MoまたはWのいずれか1種または2種をMo当量(Mo+1/2W):0.8%〜4.0%、VまたはNbのいずれか1種または2種をV当量(V+1/2Nb):0.5%〜1.5%、残部がFeおよび不可避的不純物からなる高合金鋼を前記被処理物とすることが望ましい。   In the vacuum carburizing method of the present invention, in mass%, C: 0.31% to 0.6%, Si: 0.1% to 0.6%, Mn: 0.3% to 1.0%, Ni : 0.05% to 0.6%, Cr: 3.0% to less than 5.0%, one or two of Mo or W is equivalent to Mo (Mo + 1 / 2W): 0.8% to 4 0.0%, V or Nb, one or two of them is equivalent to V (V + 1 / 2Nb): 0.5% to 1.5%, and the high-alloy steel consisting of Fe and inevitable impurities in the balance is treated. It is desirable to make it.

あるいは、質量%で、C:0.8%〜1.6%、Si:0.4%以下、Mn:0.6%以下、P:0.03%以下、S:0.03%以下、Cr:8.0%〜13.0%、Mo:0.8%〜2.0%、V:0.2%〜0.5%、Cu:0.25%未満、Ni:0.5%以下の高炭素材鋼を前記被処理物とすることが望ましい。   Alternatively, in mass%, C: 0.8% to 1.6%, Si: 0.4% or less, Mn: 0.6% or less, P: 0.03% or less, S: 0.03% or less, Cr: 8.0% to 13.0%, Mo: 0.8% to 2.0%, V: 0.2% to 0.5%, Cu: less than 0.25%, Ni: 0.5% It is desirable to use the following high carbon steel as the workpiece.

本発明の真空浸炭処理方法において、複数回繰り返したうちの最後の前記拡散工程の全てもしくは一部において、窒素ガス雰囲気下で処理を行うようにしても良い。   In the vacuum carburizing method according to the present invention, the treatment may be performed in a nitrogen gas atmosphere in all or a part of the last diffusion step among a plurality of repetitions.

また、前記浸炭工程と前記拡散工程とを交互に複数回繰り返し、冷却工程を経た後、前記被処理物を再度加熱する再加熱工程をさらに備えてもよい。   The carburizing step and the diffusion step may be alternately repeated a plurality of times, and after a cooling step, a reheating step of reheating the object to be processed may be further provided.

さらに、前記再加熱工程が、前記被処理物を所定の温度まで昇温させる昇温工程と、前記被処理物を前記所定の温度に保持する保持工程と、を含み、前記保持工程の全てもしくは一部において、窒素ガス雰囲気下で処理を行うようにしても良い。   Furthermore, the reheating step includes a temperature raising step for raising the temperature of the object to be processed to a predetermined temperature, and a holding step for holding the object to be processed at the predetermined temperature. In some cases, the treatment may be performed in a nitrogen gas atmosphere.

本発明の第1の真空浸炭処理装置は、加熱器を有する加熱室と、冷却器を有する冷却室と、前記加熱室内の被処理物が所定の温度に到達した状態で、前記被処理物を収容した前記加熱室内を極低圧雰囲気まで減圧した状態から浸炭用ガスを前記加熱室内に供給することにより前記被処理物を浸炭させ、前記浸炭用ガスの供給を停止して前記浸炭用ガスの構成元素である炭素を前記被処理物の表面から内部へ拡散させ、前記浸炭と前記拡散とを交互に複数回繰り返した後、前記冷却室内で前記被処理物を冷却するように、前記加熱室および前記冷却室を制御する制御手段と、を備えたことを特徴とする。   In a first vacuum carburizing apparatus of the present invention, a workpiece having a heating chamber having a heater, a cooling chamber having a cooler, and a workpiece to be processed in the heating chamber having reached a predetermined temperature. The carburizing gas is supplied to the heating chamber from a state where the accommodated heating chamber is depressurized to an extremely low pressure atmosphere, so that the workpiece is carburized, and the supply of the carburizing gas is stopped to configure the carburizing gas. After the element carbon is diffused from the surface of the object to be processed to the inside, the carburization and the diffusion are alternately repeated a plurality of times, and then the object to be processed is cooled in the cooling chamber. And a control means for controlling the cooling chamber.

本発明の第2の真空浸炭処理装置は、加熱器および冷却器を有する加熱室と、前記加熱室内の被処理物が所定の温度に到達した状態で、前記被処理物を収容した前記加熱室内を極低圧雰囲気まで減圧した状態から浸炭用ガスを前記加熱室内に供給することにより前記被処理物を浸炭させ、前記浸炭用ガスの供給を停止して前記浸炭用ガスの構成元素である炭素を前記被処理物の表面から内部へ拡散させ、前記浸炭と前記拡散とを交互に複数回繰り返した後、前記加熱室内で前記被処理物を冷却するように、前記加熱室を制御する制御手段と、を備えたことを特徴とする。   The second vacuum carburizing apparatus of the present invention includes a heating chamber having a heater and a cooler, and the heating chamber in which the workpiece is accommodated in a state where the workpiece in the heating chamber has reached a predetermined temperature. The carburized gas is supplied into the heating chamber from a state where the pressure is reduced to an extremely low pressure atmosphere, the workpiece is carburized, the supply of the carburizing gas is stopped, and carbon which is a constituent element of the carburizing gas is added. Control means for controlling the heating chamber so as to cool the workpiece in the heating chamber after diffusing from the surface of the workpiece to the inside and repeating the carburization and the diffusion alternately a plurality of times; , Provided.

一般に、単純に1回の浸炭処理のみを行った場合、被処理物の母材内に主たる構成元素である鉄(Fe)以外に炭素(C)等の親和力の強い元素が含まれるため、固溶化が生じやすく、表面のみに炭素が溜まりやすい傾向がある。これに対して、本発明の真空浸炭処理方法によれば、浸炭工程と拡散工程とを交互に複数回繰り返すことによって、第1回目の浸炭工程で被処理物の表面に浸入した炭素が次の拡散工程で被処理物内部に拡散し、第2回目の浸炭工程で再度表面から炭素が補給され、表面の炭素濃度が上昇した後、その炭素が次の拡散工程で被処理物内部に拡散する。このとき、第2回目の拡散工程において、第1回目の浸炭工程で被処理物中に浸入した炭素は2回の拡散処理を受けるため、さらに被処理物内部へと拡散していく。このような挙動が複数回繰り返される。   In general, when only a single carburizing process is performed, a strong affinity element such as carbon (C) is included in addition to iron (Fe), which is the main constituent element, in the base material of the workpiece. Solubilization tends to occur and carbon tends to accumulate only on the surface. On the other hand, according to the vacuum carburizing treatment method of the present invention, by repeating the carburizing step and the diffusion step a plurality of times alternately, the carbon that has entered the surface of the workpiece in the first carburizing step is It diffuses inside the object to be processed in the diffusion process, carbon is replenished from the surface again in the second carburizing process, and after the carbon concentration on the surface rises, the carbon diffuses inside the object to be processed in the next diffusion process. . At this time, in the second diffusion step, the carbon that has entered the workpiece in the first carburizing step undergoes two diffusion treatments, and thus further diffuses into the workpiece. Such behavior is repeated a plurality of times.

すなわち、本発明の真空浸炭処理方法によれば、浸炭工程と拡散工程のセットを複数回繰り返すことによって、各回の浸炭工程で被処理物の表面から炭素が補給されつつ、各回の拡散工程で炭素が被処理物の表面から内部へと移動する。これにより、被処理物中の炭素濃度プロファイルは全体的に濃度が上昇する方向に移動しながら、勾配がなだらかになっていく。その結果、被処理物の母材への炭素含有量のレベルを維持しながら、表面硬化層を深く形成できるため、表面剥離を生じさせることなく、硬度や靱性に優れた被処理物を得ることができる。   That is, according to the vacuum carburizing treatment method of the present invention, by repeating the set of the carburizing step and the diffusion step a plurality of times, the carbon is replenished from the surface of the workpiece in each carburizing step, and the carbon in each diffusion step. Moves from the surface of the workpiece to the inside. Thereby, the gradient of the carbon concentration profile in the object to be processed becomes gentle while moving in the direction in which the concentration increases as a whole. As a result, the surface hardened layer can be formed deeply while maintaining the level of carbon content in the base material of the object to be processed, so that the object to be processed having excellent hardness and toughness can be obtained without causing surface peeling. Can do.

また、被処理物として上記組成を有する高合金鋼を用いた場合、炭素以外の添加元素により、炭素の拡散を阻害しない、焼入れ性、靱性が向上する、微細な炭化物を析出させる等の作用が得られるため、本発明の被処理物として好ましい。   In addition, when a high alloy steel having the above composition is used as an object to be treated, the additive elements other than carbon do not inhibit the diffusion of carbon, improve hardenability and toughness, and precipitate fine carbides. Since it is obtained, it is preferable as an object to be processed of the present invention.

また、最後の拡散工程や再加熱工程中の保持工程の全てもしくは一部において、窒素ガス雰囲気下で処理を行った場合、被処理物の表面に窒化クロム等の窒化物が形成されるため、表面硬度や耐摩耗性を向上させることができる。   Further, in all or part of the last diffusion step and the holding step in the reheating step, when processing is performed in a nitrogen gas atmosphere, nitride such as chromium nitride is formed on the surface of the object to be processed. Surface hardness and wear resistance can be improved.

また、浸炭工程と拡散工程とを交互に複数回繰り返し、冷却工程を経た後、被処理物の再加熱を行った場合には、被処理物中の炭素濃度勾配をよりなだらかにすることができ、被処理物の靱性を向上させることができる。   In addition, when the workpiece is reheated after repeating the carburizing step and the diffusion step a plurality of times alternately and passing through the cooling step, the carbon concentration gradient in the workpiece can be made gentler. The toughness of the workpiece can be improved.

本発明の第1、第2の真空浸炭処理装置によれば、上記本発明の真空浸炭処理方法と同様、浸炭工程と拡散工程を交互に複数回繰り返すように加熱室や冷却室が制御されているため、母材への炭素含有量を充分に大きくできるとともに、表面硬化層が深く形成でき、硬度や靱性に優れた被処理物を得ることができる。   According to the first and second vacuum carburizing apparatuses of the present invention, the heating chamber and the cooling chamber are controlled so that the carburizing process and the diffusion process are alternately repeated a plurality of times, as in the vacuum carburizing process of the present invention. Therefore, the carbon content in the base material can be sufficiently increased, the surface hardened layer can be formed deeply, and a workpiece having excellent hardness and toughness can be obtained.

以下、図面を参照して、本発明に係る真空浸炭処理装置および真空浸炭処理方法の一実施形態について説明する。
なお、以下の各図面において、各部材を認識可能な大きさとするために、各部材の縮尺を適宜変更している。
Hereinafter, an embodiment of a vacuum carburizing apparatus and a vacuum carburizing method according to the present invention will be described with reference to the drawings.
In each of the following drawings, the scale of each member is appropriately changed in order to make each member a recognizable size.

図1は、本実施形態の真空浸炭処理装置の構成を示した断面図である。
本実施形態の真空浸炭処理装置は、図1に示すように、ケース1、加熱室2および冷却室3を備え、加熱と冷却とを別室で行う2室型の装置である。ケース1は、略円筒形であって、軸線を水平にして設置され、軸線方向略中央で区切った一方に加熱室2が収納され、他方は冷却室3とされている。また、ケース1の軸線方向略中央部には、冷却室3の入口3aを開閉する扉11を昇降させることにより、冷却室3を開放状態または密閉状態とする開閉機構12が設けられている。
FIG. 1 is a cross-sectional view showing the configuration of the vacuum carburizing apparatus of the present embodiment.
As shown in FIG. 1, the vacuum carburizing apparatus of the present embodiment is a two-chamber type apparatus that includes a case 1, a heating chamber 2, and a cooling chamber 3, and performs heating and cooling in separate chambers. The case 1 has a substantially cylindrical shape, is installed with the axis line horizontal, the heating chamber 2 is accommodated at one side separated by the approximate center in the axial direction, and the other is a cooling chamber 3. An opening / closing mechanism 12 that opens or closes the cooling chamber 3 by raising and lowering the door 11 that opens and closes the inlet 3 a of the cooling chamber 3 is provided at a substantially central portion in the axial direction of the case 1.

加熱室2は、断熱隔壁21、加熱器22、電源部23(図3に示す)、冷却器24および載置台25を備えている。ここで、図2は、加熱器22の形状を示す斜視図である。図3は、断熱隔壁21に対する加熱器22の取付構造および加熱器22と電源部23との電気的接続を示す模式図である。   The heating chamber 2 includes a heat insulating partition wall 21, a heater 22, a power supply unit 23 (shown in FIG. 3), a cooler 24, and a mounting table 25. Here, FIG. 2 is a perspective view showing the shape of the heater 22. FIG. 3 is a schematic diagram showing an attachment structure of the heater 22 to the heat insulating partition wall 21 and an electrical connection between the heater 22 and the power supply unit 23.

断熱隔壁21は、図3に示すように、金属製の外郭21aとグラファイト製の内郭21bとの間に断熱材21cが介在されて形成されている。また、図1に示すように、断熱隔壁21の上面および下面には、それぞれ扉21d、21eが設けられている。   As shown in FIG. 3, the heat insulating partition 21 is formed by interposing a heat insulating material 21c between a metal outer wall 21a and a graphite inner wall 21b. Moreover, as shown in FIG. 1, doors 21d and 21e are provided on the upper and lower surfaces of the heat insulating partition wall 21, respectively.

加熱器22は、図2に示すように、同型の3つのヒータH1〜H3から構成されている。各ヒータH1〜H3は、中空細軸部g1、中実細軸部g2、中実太軸部g3、コネクタc1〜c3、給電軸部mから構成されている。中空細軸部g1、中実細軸部g2および中実太軸部g3は、グラファイト製である。給電軸部mは、金属製である。
コネクタc1は、直方体状の形状をしており、長手方向に2等分したそれぞれの領域に1つずつ互いに逆向きの接続部a1、b1を備えており、中空細軸部g1と中実細軸部g2とを通電可能に接続する。コネクタc2は、2つの接続部a2、b2が互いに直交方向を向くようにL字型の形状をしており、中空細軸部g1同士を通電可能に接続する。コネクタc3は、2つの同方向を向く接続部a3、b3を離間させて連結したものであって、中空細軸部g1同士を通電可能に接続する。
As shown in FIG. 2, the heater 22 includes three heaters H1 to H3 of the same type. Each of the heaters H1 to H3 includes a hollow thin shaft portion g1, a solid thin shaft portion g2, a solid thick shaft portion g3, connectors c1 to c3, and a power feeding shaft portion m. The hollow thin shaft portion g1, the solid thin shaft portion g2 and the solid thin shaft portion g3 are made of graphite. The feeding shaft portion m is made of metal.
The connector c1 has a rectangular parallelepiped shape, and is provided with connecting portions a1 and b1 that are opposite to each other in each of the regions divided in half in the longitudinal direction, and has a hollow thin shaft portion g1 and a solid thin portion. The shaft part g2 is connected to be energized. The connector c2 has an L shape so that the two connection portions a2 and b2 face each other in the orthogonal direction, and connects the hollow thin shaft portions g1 to each other so as to be energized. The connector c3 is formed by connecting two connection portions a3 and b3 facing in the same direction so as to be separated from each other, and connects the hollow thin shaft portions g1 so as to be energized.

中空細軸部g1は、4本で矩形を作るように配され、矩形の3つの角がコネクタc2により接続されている。上記矩形の残る1つの角を形成する2本の中空細軸部g1の各端部のうちの一方には、コネクタc1によって中実細軸部g2が接続され、他方はコネクタc3の接続部a3、b3の一方に取り付けられている。中実細軸部g2のコネクタc1に取り付けられた端部と逆側の端部は、中実太軸部g3の一端部に接続されており、中実太軸部g3の他端部には、給電軸部mが取り付けられている。   The hollow thin shaft portion g1 is arranged so as to form a rectangle with four pieces, and three corners of the rectangle are connected by a connector c2. The solid thin shaft portion g2 is connected to one end of each of the two hollow thin shaft portions g1 forming one remaining corner of the rectangle by the connector c1, and the other is the connection portion a3 of the connector c3. , B3. The end opposite to the end attached to the connector c1 of the solid thin shaft portion g2 is connected to one end portion of the solid thick shaft portion g3, and the other end portion of the solid thick shaft portion g3 is connected to the other end portion of the solid thick shaft portion g3. A feeding shaft portion m is attached.

上記のような4本の中空細軸部g1、中実細軸部g2、中実太軸部g3、コネクタc1、3個のコネクタc2および給電軸部mからなる構成が、対をなし、コネクタc3によって接続されることにより、各ヒータH1〜H3が構成されている。
なお、中空細軸部g1、中実細軸部g2及び中実太軸部g3は、各々の断面積の差異によって発熱し易さを変えたものであって、中空細軸部g1、中実細軸部g2、中実太軸部g3の順に発熱し易く、中実太軸部g3は発熱しにくい。
The four hollow thin shaft portions g1, the solid thin shaft portion g2, the solid thick shaft portion g3, the connector c1, the three connectors c2, and the power feeding shaft portion m as described above form a pair. Each heater H1-H3 is comprised by connecting by c3.
The hollow thin shaft portion g1, the solid thin shaft portion g2, and the solid thin shaft portion g3 have different easiness to generate heat due to the difference in their cross-sectional areas. Heat is likely to be generated in the order of the thin shaft portion g2 and the solid thick shaft portion g3, and the solid thick shaft portion g3 is difficult to generate heat.

図3に示すように、給電軸部mは中空であり、内部に冷却管tが収納されている。冷却管tには、通電による温度上昇を抑える冷却水が循環される。
ヒータH1〜H3は、断熱隔壁21の一部に設けられたヒータ支持部26によって支持されている。ヒータ支持部26は、セラミックス製であって、内径が中実太軸部g3の径よりも大きい略円筒形に形成されており、円筒の軸方向を断熱隔壁21の厚さ方向に平行に、各端部を断熱隔壁21の内側と外側とにそれぞれ位置させるように固定されている。断熱隔壁21の外側に位置する端部には、円筒の内径よりも小径である中実太軸部g3の径と同径の開口26aが設けられており、この開口26aに中実太軸部g3が嵌合されることにより、各ヒータH1〜H3が支持されている。
As shown in FIG. 3, the power supply shaft portion m is hollow, and a cooling pipe t is accommodated therein. Cooling water that suppresses a temperature rise due to energization is circulated through the cooling pipe t.
The heaters H <b> 1 to H <b> 3 are supported by a heater support portion 26 provided in a part of the heat insulating partition wall 21. The heater support portion 26 is made of ceramics and is formed in a substantially cylindrical shape whose inner diameter is larger than the diameter of the solid thick shaft portion g3, and the axial direction of the cylinder is parallel to the thickness direction of the heat insulating partition wall 21. It fixes so that each edge part may be located in the inner side and the outer side of the heat insulation partition 21, respectively. An opening 26a having the same diameter as that of the solid thick shaft portion g3, which is smaller than the inner diameter of the cylinder, is provided at an end located outside the heat insulating partition wall 21. The solid thick shaft portion is provided in the opening 26a. Each heater H1-H3 is supported by g3 being fitted.

また、給電軸部mは、ケース1に設けられた開口1aからケース1外へ導出されている。開口1aと給電軸部mとの隙間は、シール材1bで塞がれることにより密閉されている。給電軸部mには、電源部23が接続されている。
電源部23は、電源23a、ブレーカ23b、サイリスタ23c、温度調節計23d、変圧器23e、抵抗器23fおよび電流計23gを有している。
Further, the feeding shaft portion m is led out of the case 1 through an opening 1 a provided in the case 1. A gap between the opening 1a and the power feeding shaft portion m is sealed by being closed with a sealing material 1b. A power supply unit 23 is connected to the power supply shaft unit m.
The power supply unit 23 includes a power supply 23a, a breaker 23b, a thyristor 23c, a temperature controller 23d, a transformer 23e, a resistor 23f, and an ammeter 23g.

電源23aは、ブレーカ23b、サイリスタ23cおよび変圧器23eを介して給電軸部mに接続されており、給電軸部mに電力を供給する。ブレーカ23bは、回路への負荷が許容範囲を超えたときに電力を遮断し、回路に過負荷がかかることを防止するものである。
サイリスタ23cは、温度調節計23dと協働して、ヒータH1〜H3の温度が所定温度に達するまで回路を導通状態にし、ヒータH1〜H3の温度が所定温度に達すると導通を解除する。変圧器23eは、電源23aから給電される電力の電圧を所定の値に変換する。
抵抗器23fおよび電流計23gは、変圧器23eと給電軸部mとの間の回路から分岐してアースされる回路の途中に配設されている。電流計23gは、地絡電流を測定する。
The power source 23a is connected to the power supply shaft portion m through the breaker 23b, the thyristor 23c, and the transformer 23e, and supplies power to the power supply shaft portion m. The breaker 23b cuts off power when the load on the circuit exceeds the allowable range, and prevents the circuit from being overloaded.
The thyristor 23c cooperates with the temperature controller 23d to turn on the circuit until the temperature of the heaters H1 to H3 reaches a predetermined temperature, and releases the conduction when the temperature of the heaters H1 to H3 reaches the predetermined temperature. The transformer 23e converts the voltage of power supplied from the power source 23a into a predetermined value.
The resistor 23f and the ammeter 23g are disposed in the middle of a circuit that is branched from the circuit between the transformer 23e and the feeding shaft portion m and grounded. The ammeter 23g measures the ground fault current.

冷却器24は、図1に示すように、断熱隔壁21の上部に設けられており、熱交換器24aおよびファン24bを有している。熱交換器24aは、加熱室2で加熱された気体から熱を排除するものである。ファン24bは、加熱室2内およびケース1内の気体を循環させるものである。加熱室2内を冷却する際には、断熱隔壁21の扉21d、21eを開放して、加熱室2内およびケース1内の気体をファン24bで循環させながら熱交換器24aで冷却することにより、加熱室2内の温度及び加熱室2内の被処理物Wの温度を低下させる。   As shown in FIG. 1, the cooler 24 is provided in the upper part of the heat insulation partition 21, and has the heat exchanger 24a and the fan 24b. The heat exchanger 24 a is for removing heat from the gas heated in the heating chamber 2. The fan 24b circulates the gas in the heating chamber 2 and the case 1. When cooling the inside of the heating chamber 2, the doors 21d and 21e of the heat insulating partition wall 21 are opened, and the gas in the heating chamber 2 and the case 1 is circulated by the fan 24b and cooled by the heat exchanger 24a. The temperature in the heating chamber 2 and the temperature of the workpiece W in the heating chamber 2 are decreased.

載置台25は、矩形のフレームと、複数本のローラとを有して構成されており、各ローラは、回転軸線をフレームの対向する2辺に平行に並列されて、フレームの他の2辺に両端を回転自在に支持されている。このような載置台25は、各ローラの回転軸線が搬送方向に直交するように設置されて、被処理物Wの移送を円滑にする。被処理物Wは、載置台25に載置されることにより、下面側からも均一に加熱される。
なお、真空状態では、温度が高いほど、蒸気圧が低い物質から順に蒸発するので、加熱室2内で高温に晒される上記各部は、1300℃程度まで加熱室2の温度を昇温させても蒸発しない物質で製作したものを用いる。
The mounting table 25 is configured to have a rectangular frame and a plurality of rollers, and each roller is arranged in parallel with two opposite sides of the frame, and the other two sides of the frame. The two ends are supported rotatably. Such a mounting table 25 is installed so that the rotation axis of each roller is orthogonal to the transport direction, and facilitates the transfer of the workpiece W. The workpiece W is evenly heated from the lower surface side by being placed on the placement table 25.
In the vacuum state, the higher the temperature, the lower the vapor pressure is evaporated in order, so that each part exposed to a high temperature in the heating chamber 2 can increase the temperature of the heating chamber 2 to about 1300 ° C. Use a material that does not evaporate.

冷却室3は、被処理物Wを冷却するための部屋であって、冷却器31、整流板32および載置台33を備えている。
冷却器31は、熱交換器31aおよびファン31bを有している。熱交換器31aは、冷却室3内の気体から熱を排除するものである。ファン31bは、冷却室3内で気体を高圧で循環させるものである。
整流板32は、格子状に間仕切りされた格子箱とパンチングメタルとを組み合わせたものであって、冷却室3内の被処理物Wが載置される位置の上下に配設されて、冷却室3内の気体の流れ方向を整えるものである。載置台33は、加熱室2内に設置された載置台25と略同構造であって、かつ、載置台25と同じ高さに配置されている。
The cooling chamber 3 is a room for cooling the workpiece W, and includes a cooler 31, a current plate 32, and a mounting table 33.
The cooler 31 includes a heat exchanger 31a and a fan 31b. The heat exchanger 31 a is for removing heat from the gas in the cooling chamber 3. The fan 31 b circulates gas at a high pressure in the cooling chamber 3.
The rectifying plate 32 is a combination of a lattice box partitioned in a lattice shape and punching metal, and is disposed above and below the position in the cooling chamber 3 where the workpiece W is placed, The flow direction of the gas in 3 is adjusted. The mounting table 33 has substantially the same structure as the mounting table 25 installed in the heating chamber 2 and is disposed at the same height as the mounting table 25.

本実施形態の真空浸炭処理装置は、その他、図示を省略するが、加熱室2内、冷却室3内の温度、圧力、昇温速度、冷却速度、各工程の処理時間、各種ガス流量等の各種処理条件を制御する制御部(制御手段)を備えている。   The vacuum carburizing apparatus of the present embodiment is omitted in the drawings, but the temperature, pressure, heating rate, cooling rate, processing time of each process, various gas flow rates, etc. in the heating chamber 2 and the cooling chamber 3 are omitted. A control unit (control means) for controlling various processing conditions is provided.

次に、上記構成の真空浸炭処理装置で行う真空浸炭処理方法について、図4を参照して説明する。
図4は、各工程毎の処理時間と処理温度および圧力のプロファイルを示す図である。
ここでは、アルミダイカスト用金型に用いられる熱間金型用鋼(SKD61)もしくは高強度熱間金型用鋼を被処理物とした場合の一例を示す。
Next, a vacuum carburizing method performed by the vacuum carburizing apparatus having the above configuration will be described with reference to FIG.
FIG. 4 is a diagram illustrating a processing time, a processing temperature, and a pressure profile for each process.
Here, an example is shown in which a hot die steel (SKD61) or high strength hot die steel used for an aluminum die casting die is used as a workpiece.

特に被処理物としては、質量%で、C:0.31%〜0.6%、Si:0.1%〜0.6%、Mn:0.3%〜1.0%、Ni:0.05%〜0.6%、Cr:3.0%〜5.0%未満、MoまたはWのいずれか1種または2種をMo当量(Mo+1/2W):0.8%〜4.0%、VまたはNbのいずれか1種または2種をV当量(V+1/2Nb):0.5%〜1.5%、残部がFeおよび不可避的不純物からなる高合金鋼を用いることが望ましい。   In particular, as an object to be processed, C: 0.31% to 0.6%, Si: 0.1% to 0.6%, Mn: 0.3% to 1.0%, Ni: 0% by mass. 0.05% to 0.6%, Cr: 3.0% to less than 5.0%, one or two of Mo or W being Mo equivalent (Mo + 1 / 2W): 0.8% to 4.0 It is desirable to use a high alloy steel in which any one or two of%, V or Nb is V equivalent (V + 1 / 2Nb): 0.5% to 1.5%, and the balance is Fe and inevitable impurities.

Cは、焼入れ焼戻しにより、十分なマトリックス硬度を付与するとともに、Cr、Mo、V、Nbなどと結合して炭化物を形成し、硬度、強度の向上に必要な元素である。ところが、0.31%未満ではその効果が十分に得られず、0.6%を超えると靱性や熱間加工性が低下して好ましくない。   C is an element necessary for improving hardness and strength by imparting a sufficient matrix hardness by quenching and tempering and forming a carbide by combining with Cr, Mo, V, Nb and the like. However, if it is less than 0.31%, the effect cannot be sufficiently obtained, and if it exceeds 0.6%, toughness and hot workability are deteriorated, which is not preferable.

Siは、製鋼時の脱酸剤として必要な元素である。ところが、0.1%未満ではその効果が十分に得られず、0.6%を超えると靱性を低下させ、浸炭時のCの拡散を阻害するため、好ましくない。   Si is an element necessary as a deoxidizer during steelmaking. However, if it is less than 0.1%, the effect cannot be obtained sufficiently, and if it exceeds 0.6%, the toughness is lowered and the diffusion of C during carburization is inhibited, which is not preferable.

Niは、焼入れ性や靱性の向上に寄与する元素である。ところが、0.05%未満ではその効果が十分に得られず、0.6%を超えると被削性を低下させるため、好ましくない。   Ni is an element that contributes to improving hardenability and toughness. However, if it is less than 0.05%, the effect cannot be sufficiently obtained, and if it exceeds 0.6%, the machinability is lowered, which is not preferable.

Crは、硬度や焼入れ性の向上に寄与する元素である。ところが、3.0%未満ではその効果が十分に得られず、5.0%以上であると凝固時に粗大炭化物が生成しやすくなるとともに、浸炭時に粒界炭化物を析出、成長しやすくなり、靱性を低下させるため、好ましくない。   Cr is an element that contributes to improvement in hardness and hardenability. However, if it is less than 3.0%, the effect cannot be sufficiently obtained, and if it is 5.0% or more, coarse carbides are likely to be generated during solidification, and grain boundary carbides are likely to precipitate and grow during carburization, resulting in toughness. Is not preferable.

MoおよびWは、単独または複合で添加することができ、焼戻し時に微細な炭化物を析出して軟化抵抗性、硬度、高温強度を向上させる元素である。また、浸炭時に微細炭化物を析出させ、耐摩耗性、耐溶損性を向上させ、微細炭化物が浸炭中の結晶粒の粗大化を抑制し、靱性の確保に寄与する。ところが、0.8%未満ではその効果が十分に得られず、4.0%を超えると焼戻し時に析出する微細炭化物が多くなり、靱性、熱間加工性を低下させるため、好ましくない。   Mo and W can be added singly or in combination, and are elements that precipitate fine carbides during tempering and improve softening resistance, hardness, and high-temperature strength. In addition, fine carbides are precipitated during carburizing to improve wear resistance and erosion resistance, and the fine carbides suppress the coarsening of crystal grains during carburizing and contribute to securing toughness. However, if it is less than 0.8%, the effect cannot be sufficiently obtained, and if it exceeds 4.0%, the amount of fine carbides precipitated during tempering increases and the toughness and hot workability are deteriorated.

VおよびNbは、単独または複合で添加することができ、焼入れ加熱時に基地に固溶し、焼戻し時に微細な凝集しにくい炭化物を析出し、高温域における軟化抵抗を大きくし、大きな高温強度を付与するとともに、結晶粒の粗大化を抑制し、靱性を確保する作用を有するものである。ところが、0.5%未満ではその効果が十分に得られず、1.5%を超えると靱性、熱間加工性を低下させるため、好ましくない。   V and Nb can be added singly or in combination, and dissolve in the matrix during quenching heating, precipitate fine carbides that do not easily agglomerate during tempering, increase softening resistance in the high temperature range, and provide large high temperature strength. In addition, it has the effect of suppressing the coarsening of crystal grains and ensuring toughness. However, if it is less than 0.5%, the effect cannot be sufficiently obtained, and if it exceeds 1.5%, the toughness and hot workability are deteriorated.

本実施形態の真空浸炭処理は、図4に示すように、A:第1昇温工程、B:昇温間保持工程、C:第2昇温工程、D:浸炭前保持工程、E:第1浸炭工程、F:第1拡散工程、G:第2浸炭工程、H:第2拡散工程、I:冷却工程、の順に行う。   As shown in FIG. 4, the vacuum carburizing process of the present embodiment includes: A: first temperature raising step, B: temperature rising holding step, C: second temperature raising step, D: pre-carburizing holding step, E: first 1 carburizing step, F: first diffusion step, G: second carburizing step, H: second diffusion step, I: cooling step.

昇温、浸炭、拡散工程では、まず、被処理物Wを、加熱室2内のヒータH1〜H3で囲まれる位置に載置する。続いて、加熱室2から排気し、加熱室2内を減圧して真空状態(極低圧雰囲気)とする。ここで、一般的な真空浸炭処理において、「真空」とは大気圧の1/10程度の10kPa以下程度を指すが、本実施形態では1Pa以下を「真空」とした。   In the temperature raising, carburizing, and diffusion steps, first, the workpiece W is placed at a position surrounded by the heaters H1 to H3 in the heating chamber 2. Subsequently, the heating chamber 2 is evacuated and the inside of the heating chamber 2 is depressurized to a vacuum state (very low pressure atmosphere). Here, in a general vacuum carburizing process, “vacuum” refers to about 10 kPa or less, which is about 1/10 of the atmospheric pressure, but in this embodiment, 1 Pa or less is defined as “vacuum”.

次いで、加熱器22に通電して、加熱室2内の温度を昇温させる(第1昇温工程)。1回の昇温工程で一気に目標とする温度(本実施形態では1030℃)まで昇温しても良いが、本実施形態では昇温工程を2回に分け、まずは一旦850℃まで加熱室2内を昇温する。昇温速度は10℃/分とする。   Next, the heater 22 is energized to raise the temperature in the heating chamber 2 (first temperature raising step). Although the temperature may be raised to a target temperature (1030 ° C. in the present embodiment) at a time in one temperature raising step, the temperature raising step is divided into two in this embodiment. Raise the temperature inside. The heating rate is 10 ° C./min.

次いで、加熱室2内を850℃にした状態で40分間保持する(昇温間保持工程)。被処理物Wがある程度の熱容量を持っていても、この保持工程を設けることにより、被処理物Wの温度が加熱室2内の温度に十分に追従しやすくなる。その結果、次の浸炭前保持工程へ移行する際の温度が正確に制御できる。   Next, the heating chamber 2 is held at 850 ° C. for 40 minutes (temperature rising holding step). Even if the workpiece W has a certain heat capacity, the temperature of the workpiece W can easily follow the temperature in the heating chamber 2 by providing this holding step. As a result, the temperature at the time of shifting to the next pre-carburizing holding process can be accurately controlled.

次いで、加熱器22に通電して、加熱室2内の温度を850℃から目標とする1030℃まで昇温させる(第2昇温工程)。第2昇温工程も第1昇温工程と同様、昇温速度は10℃/分とする。   Next, the heater 22 is energized to raise the temperature in the heating chamber 2 from 850 ° C. to the target 1030 ° C. (second temperature raising step). In the second temperature raising step, similarly to the first temperature raising step, the temperature raising rate is 10 ° C./min.

加熱室2内の温度が1030℃に到達したら、浸炭前保持工程へ移行する。
浸炭前保持工程では、加熱室2内の温度を第2昇温工程終了時の温度である1030℃で40分間保持する。この浸炭前保持工程を経ることにより、被処理物Wの温度が表面から内部まで1030℃に均一化される。
When the temperature in the heating chamber 2 reaches 1030 ° C., the process proceeds to the pre-carburizing holding process.
In the pre-carburizing holding step, the temperature in the heating chamber 2 is held at 1030 ° C., which is the temperature at the end of the second temperature raising step, for 40 minutes. By passing through the pre-carburizing holding step, the temperature of the workpiece W is made uniform at 1030 ° C. from the surface to the inside.

次いで、第1浸炭工程では、加熱室2内に例えばアセチレン等の浸炭用ガスを供給する。浸炭用ガスを供給する際のガス流量は例えば5L(リットル)/分とし、浸炭用ガスを加熱室2の両側面および下面から吹き込む。このとき、加熱室内の圧力は浸炭前保持工程での圧力から所定の圧力にまで上昇する。この第1浸炭工程において、被処理物Wは、加熱室2内の1030℃という高温の浸炭用ガス雰囲気に20分間晒されることにより、浸炭処理される。   Next, in the first carburizing step, a carburizing gas such as acetylene is supplied into the heating chamber 2. The gas flow rate when supplying the carburizing gas is, for example, 5 L (liter) / min, and the carburizing gas is blown from both side surfaces and the lower surface of the heating chamber 2. At this time, the pressure in the heating chamber rises from the pressure in the pre-carburizing holding process to a predetermined pressure. In the first carburizing step, the workpiece W is carburized by being exposed to a high temperature carburizing gas atmosphere of 1030 ° C. in the heating chamber 2 for 20 minutes.

次いで、第1拡散工程では、加熱室2内から浸炭用ガスを排気して、浸炭前保持工程までの圧力と同等の真空状態となるように制御する。そして、加熱室2内の温度を第1浸炭工程と同じ1030℃とし、200分間保持する。この第1拡散工程を経ることにより、被処理物Wの表面近傍に浸入した炭素が被処理物Wの表面から内部へと拡散される。   Next, in the first diffusion step, the carburizing gas is exhausted from the inside of the heating chamber 2 and is controlled to be in a vacuum state equivalent to the pressure up to the pre-carburizing holding step. And the temperature in the heating chamber 2 shall be 1030 degreeC same as a 1st carburizing process, and it hold | maintains for 200 minutes. Through this first diffusion step, carbon that has entered the vicinity of the surface of the workpiece W is diffused from the surface of the workpiece W to the inside.

次いで、前の2工程と同様、加熱室2内に浸炭用ガスを供給して第2浸炭工程を行い、加熱室2内から浸炭用ガスを排気して第2拡散工程を行う。この間、加熱室2内の温度は1030℃に保持したままとする。加熱室2内の圧力は、第2浸炭工程は第1浸炭工程と同一、第2拡散工程は第1拡散工程と同一とする。第2浸炭工程での浸炭用ガス流量は第1浸炭工程と同一とする。また、処理時間は、第2浸炭工程は7分、第2拡散工程は85分とし、ともに第1浸炭工程、第1拡散工程よりも短くする。なお、他の処理条件が同じであれば、第1、第2浸炭工程の処理時間と第1、第2拡散工程の処理時間とによって表面炭素濃度、有効浸炭深さ、有効浸炭深さにおける炭素濃度が決まるため、各浸炭工程の処理時間と各拡散工程の処理時間は、所望の炭素濃度プロファイルに応じて適宜設定すればよい。   Next, as in the previous two steps, the carburizing gas is supplied into the heating chamber 2 to perform the second carburizing step, and the carburizing gas is exhausted from the heating chamber 2 to perform the second diffusion step. During this time, the temperature in the heating chamber 2 is kept at 1030 ° C. The pressure in the heating chamber 2 is set so that the second carburizing step is the same as the first carburizing step, and the second diffusion step is the same as the first diffusion step. The gas flow rate for carburizing in the second carburizing step is the same as that in the first carburizing step. The processing time is 7 minutes for the second carburizing step and 85 minutes for the second diffusion step, both of which are shorter than the first carburizing step and the first diffusion step. If other processing conditions are the same, the carbon at the surface carbon concentration, the effective carburization depth, and the effective carburization depth depends on the processing time of the first and second carburizing steps and the processing time of the first and second diffusion steps. Since the concentration is determined, the treatment time for each carburizing step and the treatment time for each diffusion step may be set as appropriate according to the desired carbon concentration profile.

また、浸炭工程と拡散工程を複数回繰り返す場合、最後の拡散工程(本例で言えば第2拡散工程)の全てもしくは一部において、加熱室2内に窒素ガスを導入し、窒素ガス雰囲気下で拡散処理を行うようにしても良い。この場合、その拡散工程において被処理物Wが窒化処理される。被処理物Wの表面に窒化クロム層が生成されることによって、表面硬度および耐摩耗性が向上するという効果が得られる。
仮に浸炭工程と拡散工程を1回ずつしか行わない場合に上記の窒化処理を行うと、被処理物Wの表面に生成された窒化クロム層が高温処理/真空処理下に長時間置かれることとなり、窒化クロム層が変質してしまう虞がある。これに対して、浸炭工程と拡散工程を複数回繰り返す場合にその最後の工程で窒化処理を行えば、被処理物W表面の窒化クロム層が高温処理/真空処理下に長時間置かれるのを回避することができ、窒化クロム層の変質を防止することができる。
When the carburizing step and the diffusion step are repeated a plurality of times, nitrogen gas is introduced into the heating chamber 2 in all or part of the last diffusion step (second diffusion step in this example), Alternatively, the diffusion process may be performed. In this case, the workpiece W is nitrided in the diffusion step. By forming the chromium nitride layer on the surface of the workpiece W, the effect of improving the surface hardness and wear resistance is obtained.
If the above nitriding process is performed when the carburizing process and the diffusion process are performed only once, the chromium nitride layer formed on the surface of the workpiece W will be placed under a high temperature process / vacuum process for a long time. The chromium nitride layer may be altered. On the other hand, when the carburizing step and the diffusion step are repeated a plurality of times, if the nitriding treatment is performed in the last step, the chromium nitride layer on the surface of the workpiece W is left under a high temperature treatment / vacuum treatment for a long time. This can be avoided, and alteration of the chromium nitride layer can be prevented.

最後に、被処理物Wを冷却室3へ移送して、被処理物Wを1030℃の高温から常温まで冷却する(冷却工程)。本実施形態では、冷却室3内に不活性ガスである窒素ガスを上方から供給するとともに、冷却器31のファン31bにより例えば3bar程度の高圧で窒素ガスを循環させ、被処理物Wを強制冷却する。   Finally, the workpiece W is transferred to the cooling chamber 3 and the workpiece W is cooled from a high temperature of 1030 ° C. to room temperature (cooling step). In the present embodiment, nitrogen gas, which is an inert gas, is supplied into the cooling chamber 3 from above, and the nitrogen gas is circulated at a high pressure of, for example, about 3 bar by the fan 31b of the cooler 31 to forcibly cool the workpiece W. To do.

以上の工程で本実施形態の真空浸炭処理は完了する。ただし、上記の冷却工程の後、図5に示すように、被処理物Wを再度加熱する再加熱工程を行っても良い。この例では、再加熱工程は、被処理物Wを昇温速度10℃/分で常温から850℃まで昇温した後(第1昇温工程)、850℃で40分間保持し(昇温間保持工程)、その後、昇温速度10℃/分で850℃から1030℃まで昇温(第2昇温工程)した後、1030℃で40分間保持する(保持工程)。このように、再加熱工程を追加することにより被処理物W中の炭素濃度勾配をなだらかにすることができ、被処理物Wの靱性をより向上させることができる。   The vacuum carburizing process of this embodiment is completed by the above process. However, after the cooling step, a reheating step of heating the workpiece W again may be performed as shown in FIG. In this example, in the reheating step, the workpiece W is heated from room temperature to 850 ° C. at a temperature rising rate of 10 ° C./min (first temperature rising step) and then held at 850 ° C. for 40 minutes (during the temperature rising). Holding step), and then the temperature is raised from 850 ° C. to 1030 ° C. at a temperature raising rate of 10 ° C./min (second temperature raising step), and then held at 1030 ° C. for 40 minutes (holding step). Thus, by adding the reheating step, the carbon concentration gradient in the workpiece W can be made gentle, and the toughness of the workpiece W can be further improved.

(追加)
また、上記の再加熱工程を追加した場合には、最後の保持工程の全てもしくは一部において、上記と同様、窒素ガス雰囲気下で処理を行うようにしても良い。この場合、その保持工程において被処理物Wが窒化処理されるため、表面硬度や耐摩耗性が向上する、といった上記と同様の効果が得られる。
(add to)
Further, when the above reheating step is added, the treatment may be performed in a nitrogen gas atmosphere in the same manner as described above in all or part of the last holding step. In this case, since the workpiece W is nitrided in the holding step, the same effects as described above, such as improvement in surface hardness and wear resistance, can be obtained.

本実施形態の真空浸炭処理装置を用いた真空浸炭処理によれば、浸炭工程と拡散工程を交互に2回繰り返すことによって、各回の浸炭工程で被処理物Wの表面から炭素が補給されつつ、各回の拡散工程で炭素が被処理物Wの表面から内部へと移動する。これにより、被処理物W中の炭素濃度プロファイルは全体的に濃度が上昇する方向に移動しながら、勾配がなだらかになっていく。その結果、被処理物Wの母材への炭素含有量のレベルを全体的に維持しながら、表面硬化層を深く形成できるため、表面剥離を生じさせることなく、硬度や靱性に優れた被処理物を得ることができる。   According to the vacuum carburizing process using the vacuum carburizing apparatus of the present embodiment, carbon is replenished from the surface of the workpiece W in each carburizing process by alternately repeating the carburizing process and the diffusion process twice. In each diffusion step, carbon moves from the surface of the workpiece W to the inside. Thereby, the gradient of the carbon concentration profile in the workpiece W becomes gentle while moving in the direction in which the concentration increases as a whole. As a result, the surface hardened layer can be formed deeply while maintaining the level of the carbon content in the base material of the object to be processed W, so that the object is excellent in hardness and toughness without causing surface peeling. You can get things.

本発明者は、浸炭工程と拡散工程を1回ずつのみ行う従来の方法と、本実施形態の方法とで被処理物中の炭素濃度プロファイルがどれ位異なるかをシミュレーションにより求めた。図6は、そのシミュレーション結果を示すグラフである。図6の横軸は被処理物の表面からの深さ(mm)、縦軸は炭素濃度(質量%)である。符号A1、A2で示す曲線は浸炭、拡散をそれぞれ1回ずつ行った従来の方法の炭素濃度プロファイルを示しており、符号A1は浸炭:40分、拡散:45分のサンプル、符号A2は浸炭:60分、拡散:300分のサンプルを示している。符号B1、B2で示す曲線は浸炭、拡散のセットを2回行った本実施形態の方法の炭素濃度プロファイルを示しており、符号B1は第1浸炭:20分、第1拡散:200分、第2浸炭:7分、第2拡散:85分のサンプル、符号B2はB1のサンプルの熱処理に再加熱工程を追加したサンプルを示している。上述した以外の条件は上記実施形態で示した通りとする。   The inventor has determined by simulation how much the carbon concentration profile in the workpiece is different between the conventional method in which the carburizing step and the diffusion step are performed only once, and the method of the present embodiment. FIG. 6 is a graph showing the simulation results. The horizontal axis in FIG. 6 is the depth (mm) from the surface of the workpiece, and the vertical axis is the carbon concentration (mass%). Curves indicated by reference signs A1 and A2 indicate carbon concentration profiles of a conventional method in which carburization and diffusion are performed once, respectively, reference sign A1 indicates a carburization: 40 minutes, diffusion: 45 minutes sample, reference sign A2 indicates carburization: A sample of 60 minutes and diffusion: 300 minutes is shown. Curves indicated by reference numerals B1 and B2 indicate the carbon concentration profile of the method of the present embodiment in which carburization and diffusion are set twice, and reference numeral B1 indicates the first carburization: 20 minutes, the first diffusion: 200 minutes, 2 Carburization: Sample for 7 minutes, Second diffusion: Sample for 85 minutes, B2 indicates a sample obtained by adding a reheating step to the heat treatment of the sample of B1. Conditions other than those described above are as described in the above embodiment.

図6に示すように、浸炭、拡散をそれぞれ1回ずつ行った従来のサンプルA1では、表面濃度こそ0.85%以上と高いものの、表面からの深さが深くなるに従って濃度が急激に低下し、深さ2mmの位置では0.4%以下にまで低下していることが判る。このため、この条件で処理した被処理物では、硬度や靱性の改善が十分でなく、炭素濃度が急激に変化している箇所で剥離が生じる虞がある。これに対して、浸炭、拡散を交互に2回行った本実施形態のサンプルB1では、表面濃度がサンプルA1より低いものの、0.7%程度のレベルを確保できていることに加え、濃度勾配がサンプルA1に比べて十分になだらかになっていることが判る。これにより、硬度や靱性が向上し、剥離の発生を抑えることができる。また、再加熱を追加したサンプルB2では、濃度勾配がサンプルB1に比べて更になだらかになっており、同等の効果を得ることができる。一方、従来のサンプルA2でも、サンプルB1、B2と同様のなだらかな濃度勾配が得られるが、浸炭:60分、拡散:300分という多大な処理時間が必要であり、生産性に劣るという欠点がある。   As shown in FIG. 6, in the conventional sample A1 in which carburization and diffusion are performed once each, the surface concentration is as high as 0.85% or more, but the concentration rapidly decreases as the depth from the surface increases. It can be seen that the depth is reduced to 0.4% or less at the position of 2 mm in depth. For this reason, in the to-be-processed object processed on these conditions, improvement of hardness or toughness is not enough, and there exists a possibility that peeling may arise in the location where carbon concentration is changing rapidly. On the other hand, in the sample B1 of this embodiment in which carburization and diffusion were alternately performed twice, although the surface concentration is lower than the sample A1, a level of about 0.7% can be secured, and the concentration gradient It can be seen that is sufficiently smooth compared to sample A1. Thereby, hardness and toughness can be improved and occurrence of peeling can be suppressed. Further, in the sample B2 to which reheating is added, the concentration gradient is further gentler than that of the sample B1, and the same effect can be obtained. On the other hand, with the conventional sample A2, a gentle concentration gradient similar to that of the samples B1 and B2 can be obtained. However, a long processing time of carburization: 60 minutes and diffusion: 300 minutes is necessary, and the productivity is inferior. is there.

上記実施形態では、被処理物Wの材料として熱間金型用鋼(SKD61)や高強度熱間金型用鋼の例を挙げたが、その他、高炭素熱間金型用鋼であるSKD11を用いることもできる。SKD11は、質量%で、C:0.8%〜1.6%、Si:0.4%以下、Mn:0.6%以下、P:0.03%以下、S:0.03%以下、Cr:8.0%〜13.0%、Mo:0.8%〜2.0%、V:0.2%〜0.5%、Cu:0.25%未満、Ni:0.5%以下の各種元素から構成される。   In the said embodiment, although the example of steel for hot metal mold | die (SKD61) and steel for high intensity | strength hot metal mold | die was given as a material of the to-be-processed object W, SKD11 which is steel for high carbon hot metal mold | die other than that. Can also be used. SKD11 is mass%, C: 0.8% to 1.6%, Si: 0.4% or less, Mn: 0.6% or less, P: 0.03% or less, S: 0.03% or less Cr: 8.0% to 13.0%, Mo: 0.8% to 2.0%, V: 0.2% to 0.5%, Cu: less than 0.25%, Ni: 0.5 % Of various elements.

このSKD11を用いる場合、効果を上げるために、通常の焼入れ温度(一般的に1025℃〜1050℃)よりも+50℃程度高い温度で処理することが望ましい。ところが、そのような温度で処理すると、Acm点(炭素固溶限界値)が大きくなり、表面の炭素濃度が上昇する一方、結晶粒度の肥大化が生じてしまう。この場合、再加熱工程が必須となる。すなわち、焼入れ後に一旦冷却し、再加熱後に一般的な焼入れ温度に保持し、急冷することによって、過昇温による結晶粒の肥大化は解消され、焼入れ組織が得られる。   When using this SKD11, in order to increase the effect, it is desirable to perform the treatment at a temperature higher by about + 50 ° C. than the normal quenching temperature (generally 1025 ° C. to 1050 ° C.). However, when treated at such a temperature, the Acm point (carbon solid solution limit value) increases, and the carbon concentration on the surface increases, while the crystal grain size increases. In this case, a reheating step is essential. That is, by cooling once after quenching, holding at a general quenching temperature after reheating, and quenching, crystal grain enlargement due to excessive temperature rise is eliminated, and a quenched structure is obtained.

SKD11のような高炭素材に浸炭処理を行う場合、表面付近の炭素濃度がすぐに飽和状態となり、一定量以上の炭素を浸炭させることができなくなってしまう。そこで、以下の手順を繰り返すことにより浸炭させる炭素の量を増やすことが可能となる。
(1)高炭素材に対して浸炭処理を行う(表面付近の炭素濃度が飽和状態となる)。
(2)拡散処理を行い、表面付近に浸炭した炭素を被処理材の内部まで拡散させる。これにより、被処理材表面の炭素濃度が飽和状態ではなくなる。
(3)被処理材表面の炭素濃度が飽和状態でなくなるため、もう一度浸炭処理を行うことにより、表面付近への浸炭が可能となる。
(4)以上の(1)〜(3)の工程を繰り返すことにより所望の量の炭素を浸炭させることができる。
When carburizing a high carbon material such as SKD11, the carbon concentration near the surface immediately becomes saturated, and a certain amount or more of carbon cannot be carburized. Therefore, it is possible to increase the amount of carbon to be carburized by repeating the following procedure.
(1) Carburizing the high carbon material (the carbon concentration near the surface is saturated).
(2) Diffusion treatment is performed to diffuse carbon that has been carburized near the surface to the inside of the material to be treated. Thereby, the carbon concentration on the surface of the material to be processed is not saturated.
(3) Since the carbon concentration on the surface of the material to be processed is no longer saturated, carburizing to the vicinity of the surface becomes possible by performing the carburizing process again.
(4) A desired amount of carbon can be carburized by repeating the above steps (1) to (3).

なお、SKD61の場合は、「炭素の含有量が0.6%を超えると靱性や熱間加工性が低下して好ましくない」ことを述べた(段落[0032]参照)。これに対し、SKD11では、浸炭した炭素がCr、Mo、Vなどと結合して炭化物を形成し、硬度や強度が向上する。特にCrの含有量がSKD61よりも多いため、炭素の含有量が0.6%を超えていても問題はない。すなわち、「炭素の含有量が0.6%を超えると靱性や熱間加工性が低下して好ましくない」との記載は、SKD61特有の事情を述べたものである。   In the case of SKD61, it was stated that “if the carbon content exceeds 0.6%, the toughness and hot workability are lowered, which is not preferable” (see paragraph [0032]). On the other hand, in SKD11, carburized carbon combines with Cr, Mo, V, etc. to form a carbide, and the hardness and strength are improved. In particular, since the Cr content is higher than that of SKD61, there is no problem even if the carbon content exceeds 0.6%. That is, the description “if the carbon content exceeds 0.6% is not preferable because the toughness and hot workability are deteriorated” describes the circumstances specific to SKD61.

上記実施形態では、図1に示す2室型の真空浸炭処理装置を用いて説明したが、他の形態の真空浸炭処理装置を用いて、上記実施形態のように浸炭工程、拡散工程を交互に繰り返す真空浸炭処理を行うことも可能である。
図7は、真空浸炭処理装置の形態の例を示す模式図である。図7に示すように、真空浸炭処理装置の形態には、上記実施形態の2室型の他、単室型、連続型、搬送装置別体型等がある。
単室型は、冷却専用室なしで加熱室のみで構成され、加熱室内に冷却器を備えた形態である。単室型は、冷却器が加熱室内にあるため、温度低下速度が遅いので、焼入れ性のよい鋼材が処理対象材料であるとき、利用可能である。
In the above embodiment, the two-chamber type vacuum carburizing apparatus shown in FIG. 1 has been described. However, the carburizing process and the diffusion process are alternately performed using the vacuum carburizing apparatus of another embodiment as in the above embodiment. It is also possible to perform repeated vacuum carburization.
FIG. 7 is a schematic view showing an example of a form of a vacuum carburizing apparatus. As shown in FIG. 7, the vacuum carburizing apparatus includes a single chamber type, a continuous type, and a separate type of transfer device in addition to the two-chamber type of the above embodiment.
The single chamber type is a configuration in which only a heating chamber is provided without a cooling dedicated chamber, and a cooler is provided in the heating chamber. Since the cooler is in the heating chamber, the single chamber type can be used when a steel material with good hardenability is the material to be treated because the temperature decreasing rate is slow.

連続型は、多数の被処理物Wを連続的に真空浸炭処理する場合に用いる形態で、予熱室、第1加熱室、第2加熱室および冷却室を備えている。第2加熱室には、冷却器が備えられている。このような連続型では、例えば、予熱室で予熱(昇温)工程を行い、第1加熱室で浸炭前保持工程、浸炭工程および拡散工程を行い、第2加熱室で焼ならし工程、再加熱工程および焼入れ前保持工程を行い、冷却室で焼入れ工程を行うという手順で真空浸炭処理を行う。被処理物Wが工程の進行に伴って処理室を順次移動していくので、多数の被処理物Wの真空浸炭処理を次々と進めることができる。   The continuous type is a form used when a large number of workpieces W are continuously vacuum carburized, and includes a preheating chamber, a first heating chamber, a second heating chamber, and a cooling chamber. The second heating chamber is provided with a cooler. In such a continuous type, for example, a preheating (temperature raising) process is performed in the preheating chamber, a pre-carburizing holding process, a carburizing process and a diffusion process are performed in the first heating chamber, and a normalizing process, A vacuum carburizing process is performed by a procedure of performing a heating process and a pre-quenching holding process and performing a quenching process in a cooling chamber. Since the workpieces W sequentially move in the processing chamber as the process proceeds, vacuum carburization of a large number of workpieces W can be performed one after another.

搬送装置別体型は、上記実施形態の加熱室2と冷却室3とを同一のケース1内に設けず別体とし、更に両処理室間を移動する被処理物Wを搬送する搬送装置を設けたものである。真空浸炭処理の各工程は、上記実施形態と同様に、予熱工程〜焼入れ前保持工程までを加熱室で行い、焼入れ工程を冷却室で行う。
ここで、加熱室は、1台に限らず複数台設置してもよい。真空浸炭処理において、冷却室を要する時間よりも加熱室を要する時間の方が長いので、加熱室と冷却室との台数が1:1であると冷却室の空き時間が長くなる。ところが、加熱室を被処理物の数に応じて増設し、冷却室へ複数の加熱室から順次被処理物が搬送されるようにすることにより、冷却室の空き時間を減らし、冷却室を有効に活用できる。その場合、効率良く真空浸炭処理を行うことができる。なお、複数台の加熱室を設ける場合にはそのうち少なくとも1台を冷却器付きとし、その他の加熱器は冷却器無しとしてもよい。
In the separate type of transfer device, the heating chamber 2 and the cooling chamber 3 of the above-described embodiment are not provided in the same case 1, but are provided separately, and a transfer device for transferring the workpiece W moving between the two processing chambers is provided. It is a thing. Each process of the vacuum carburizing process is performed in the heating chamber from the preheating process to the pre-quenching holding process in the same manner as in the above embodiment, and the quenching process is performed in the cooling chamber.
Here, the number of heating chambers is not limited to one, and a plurality of heating chambers may be installed. In the vacuum carburizing process, the time required for the heating chamber is longer than the time required for the cooling chamber. Therefore, if the number of heating chambers and cooling chambers is 1: 1, the free time of the cooling chamber becomes longer. However, the number of heating chambers is increased according to the number of objects to be processed, and the objects to be processed are sequentially transferred from the multiple heating chambers to the cooling chamber, thereby reducing the free time of the cooling chamber and effectively using the cooling chamber. it can. In that case, the vacuum carburizing process can be performed efficiently. When a plurality of heating chambers are provided, at least one of them may be provided with a cooler, and the other heaters may be provided without a cooler.

搬送装置別体型の例としては、図示したものの他に、主容器および準備室を更に備えるものが考えられる。主容器は、例えば円筒形の密閉容器であって、この円筒形の主容器の外周面に放射状に、1乃至複数の加熱室、冷却室および準備室が連結され、主容器内に搬送装置が収納される。搬送装置は、加熱室、冷却室および準備室のいずれかと連結される位置の間で主容器内を回転する。   As an example of the separate type of the transport device, in addition to the illustrated one, one further including a main container and a preparation chamber can be considered. The main container is, for example, a cylindrical sealed container, and one or more heating chambers, cooling chambers, and a preparation chamber are radially connected to the outer peripheral surface of the cylindrical main container, and a transfer device is provided in the main container. Stored. The transfer device rotates in the main container between positions connected to any of the heating chamber, the cooling chamber, and the preparation chamber.

このような真空浸炭処理装置においては、準備室に被処理物を入れると、搬送装置が準備室から加熱室へ被処理物を搬送し、また、加熱室から冷却室へ被処理物を搬送し、冷却室から準備室へ被処理物を搬送する。そして、準備室から被処理物を取り出せばよい。
上記真空浸炭処理装置によれば、被処理物は各室間を搬送される際は常に主容器内を通るので、被処理物が準備室に入れられてから真空浸炭処理を施されて準備室から取り出されるまで確実に外気に触れないようにすることができる。また、被処理物が加熱室や冷却室内に装入されている間に、別の処理物を準備室から出し入れすることができるので、複数個の被処理物の真空浸炭処理にあたって、真空浸炭処理装置の各室を有効に活用することができる。
なお、上記主容器の形状は一例であって、主容器は、搬送装置を収納するとともに加熱室、冷却室および準備室が連結されたものであればよい。
In such a vacuum carburizing apparatus, when a workpiece is put into the preparation chamber, the transfer device transfers the workpiece from the preparation chamber to the heating chamber, and also transfers the workpiece from the heating chamber to the cooling chamber. Then, the workpiece is transferred from the cooling chamber to the preparation chamber. And what is necessary is just to take out a to-be-processed object from a preparation room.
According to the vacuum carburizing apparatus, since the object to be processed always passes through the main container when being transported between the chambers, the object to be processed is subjected to the vacuum carburizing process after being put into the preparation chamber, and the preparation chamber It is possible to ensure that the outside air is not touched until it is taken out. In addition, while another object to be processed can be taken in and out of the preparation chamber while the object to be processed is charged in the heating chamber or the cooling chamber, a vacuum carburizing process is performed when vacuum carburizing a plurality of objects to be processed. Each room of the device can be used effectively.
The shape of the main container is an example, and the main container may be any container that houses the transfer device and is connected to the heating chamber, the cooling chamber, and the preparation chamber.

さらに、搬送装置を加熱器及び/又は冷却器付きのものにすることにより、被処理物の温度を管理しながら加熱室と冷却室との間を搬送することができる。また、被処理物の搬送にあたって加熱室あるいは冷却室と搬送装置とを連通させる際、搬送装置の加熱器(あるいは冷却器)により、加熱室内の温度(あるいは冷却室内の温度)と搬送装置内の温度とを同程度に合わせることができる。そして、搬送装置の冷却器によって、真空浸炭処理後の被処理物を常温まで冷却することができる。   Furthermore, by using a transfer device with a heater and / or a cooler, it is possible to transfer between the heating chamber and the cooling chamber while controlling the temperature of the object to be processed. Further, when the heating chamber or the cooling chamber and the transfer device are communicated with each other when the workpiece is transferred, the heater (or cooler) of the transfer device and the temperature in the heating chamber (or the temperature in the cooling chamber) The temperature can be adjusted to the same level. And the to-be-processed object after a vacuum carburizing process can be cooled to normal temperature with the cooler of a conveying apparatus.

なお、図8に示すように、加熱器22の構成要素として、対流加熱用ファンFと対流加熱用ファンFを回転駆動するモータMとをさらに設けてもよい。対流加熱用ファンFおよびモータMは、ガス対流装置を構成する。
このような構成において、例えば昇温工程のように低温状態から昇温させる際に、加熱室2に不活性ガスを装入して被処理物Wを不活性雰囲気下におき、モータMにより対流加熱用ファンFを回転駆動させながらヒータH1〜H3に通電して発熱させることにより、被処理物Wを素早く均一に昇温させることができる。
また、上記実施形態では、高圧の気体を循環させて被処理物Wを冷却する冷却器31としたが、実施にあたっては、冷却器は、油冷により被処理物Wを冷却するものであってもよい。
As shown in FIG. 8, a convection heating fan F and a motor M that rotationally drives the convection heating fan F may be further provided as components of the heater 22. The convection heating fan F and the motor M constitute a gas convection device.
In such a configuration, for example, when the temperature is raised from a low temperature as in the temperature raising step, an inert gas is charged into the heating chamber 2 to place the workpiece W in an inert atmosphere and convection is performed by the motor M. By energizing the heaters H1 to H3 and generating heat while rotating the heating fan F, the workpiece W can be quickly heated uniformly.
Moreover, in the said embodiment, although it was set as the cooler 31 which circulates high pressure gas and cooled the to-be-processed object W, in implementation, a cooler cools the to-be-processed object W by oil cooling, Also good.

なお、本発明の技術範囲は上記実施の形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。例えば上記実施形態では浸炭工程と拡散工程を交互に2回繰り返したが、3回以上繰り返しても良い。このとき、各浸炭工程、各拡散工程の処理時間は同じでも異なっていても良く、目標とする濃度プロファイルが得られるように適宜設定することができる。   The technical scope of the present invention is not limited to the above embodiment, and various modifications can be made without departing from the spirit of the present invention. For example, in the above embodiment, the carburizing step and the diffusion step are alternately repeated twice, but may be repeated three times or more. At this time, the processing time of each carburizing step and each diffusion step may be the same or different, and can be appropriately set so as to obtain a target concentration profile.

本発明の一実施形態の真空浸炭処理装置の構成を示した断面図である。It is sectional drawing which showed the structure of the vacuum carburizing apparatus of one Embodiment of this invention. 同真空浸炭処理装置における加熱器の形状を示す斜視図である。It is a perspective view which shows the shape of the heater in the vacuum carburizing apparatus. 同真空浸炭処理装置における断熱隔壁に対する加熱器の取付構造及び加熱器と電源部との電気的接続を示す模式図である。It is a schematic diagram which shows the attachment structure of the heater with respect to the heat insulation partition in the vacuum carburizing apparatus, and the electrical connection of a heater and a power supply part. 各工程毎の処理時間と処理温度及び圧力のプロファイルを示す図である。It is a figure which shows the profile of the process time for every process, process temperature, and pressure. 再加熱工程の処理時間と処理温度及び圧力のプロファイルを示す図である。It is a figure which shows the profile of the process time of a reheating process, process temperature, and a pressure. 被処理物中の炭素濃度プロファイルのシミュレーション結果を示す図である。It is a figure which shows the simulation result of the carbon concentration profile in a to-be-processed object. 本発明の一実施形態における真空浸炭処理装置の他の形態の例を示す模式図である。It is a schematic diagram which shows the example of the other form of the vacuum carburizing processing apparatus in one Embodiment of this invention. 他の実施形態における真空浸炭処理装置の構成を示した断面図である。It is sectional drawing which showed the structure of the vacuum carburizing processing apparatus in other embodiment.

符号の説明Explanation of symbols

1…ケース、11…扉、12…開閉機構、1a…開口、1b…シール材、2…加熱室、21…断熱隔壁、21a…外郭、21b…内郭、21c…断熱材、21d、21e…扉、22…加熱器、H1〜H3…ヒータ、g1…中空細軸部、g2…中実細軸部、g3…中実太軸部、m…給電軸部、t…冷却管、c1〜c3…コネクタ、a1、b1、a2、b2、a3、b3…接続部、23…電源部、23a…電源、23b…ブレーカ、23c…サイリスタ、23d…温度調節計、23e…変圧器、23f…抵抗器、23g…電流計、 24…冷却器、24a…熱交換器、24b…ファン、25…載置台、26…ヒータ支持部、26a…開口、3…冷却室、3a…入口、31…冷却器、31a…熱交換器、31b…ファン、32…整流板、33…載置台、W…被処理物、F…対流加熱用ファン、M…モータ。   DESCRIPTION OF SYMBOLS 1 ... Case, 11 ... Door, 12 ... Opening / closing mechanism, 1a ... Opening, 1b ... Sealing material, 2 ... Heating chamber, 21 ... Heat insulation partition, 21a ... Outer shell, 21b ... Inner shell, 21c ... Heat insulation material, 21d, 21e ... Door, 22 ... Heater, H1-H3 ... Heater, g1 ... Hollow thin shaft portion, g2 ... Solid thin shaft portion, g3 ... Solid thick shaft portion, m ... Feeding shaft portion, t ... Cooling pipe, c1-c3 Connector, a1, b1, a2, b2, a3, b3 ... Connection part, 23 ... Power supply part, 23a ... Power supply, 23b ... Breaker, 23c ... Thyristor, 23d ... Temperature controller, 23e ... Transformer, 23f ... Resistor , 23g ... ammeter, 24 ... cooler, 24a ... heat exchanger, 24b ... fan, 25 ... mounting table, 26 ... heater support, 26a ... opening, 3 ... cooling chamber, 3a ... inlet, 31 ... cooler, 31a ... heat exchanger, 31b ... fan, 32 ... rectifying plate, 33 ... mounting , W ... object to be processed, F ... convection heating fan, M ... motor.

Claims (7)

加熱室内の被処理物を所定の温度にまで昇温させる昇温工程と、
前記被処理物の温度が前記所定の温度に到達した状態で、前記被処理物を収容した前記加熱室内を1Pa以下まで減圧した状態から浸炭用ガスを前記加熱室内に供給することにより前記被処理物を浸炭させる浸炭工程と、
前記浸炭工程の後、前記浸炭用ガスの供給を停止して前記浸炭用ガスの構成元素である炭素を前記被処理物の表面から内部へ拡散させる拡散工程と、
前記拡散工程の後、前記被処理物を冷却する冷却工程と、を備え、
前記浸炭工程と前記拡散工程とを交互に複数回繰り返し、
複数回繰り返したうちの最後の前記拡散工程の全てもしくは一部において、窒素ガス雰囲気下で処理を行うことを特徴とする真空浸炭処理方法。
A temperature raising step for raising the temperature of the workpiece in the heating chamber to a predetermined temperature;
In a state where the temperature of the object to be processed has reached the predetermined temperature, the carburizing gas is supplied into the heating chamber from a state where the pressure in the heating chamber containing the object to be processed is reduced to 1 Pa or less. Carburizing process for carburizing things,
After the carburizing step, the diffusion step of stopping the supply of the carburizing gas and diffusing carbon, which is a constituent element of the carburizing gas, from the surface of the workpiece to the inside;
A cooling step for cooling the workpiece after the diffusion step,
Just repeat a plurality of times and the diffusion step and the carburization step alternately,
A vacuum carburizing method characterized in that processing is performed in a nitrogen gas atmosphere in all or part of the last diffusion step among a plurality of repetitions .
質量%で、C:0.31%〜0.6%、Si:0.1%〜0.6%、Mn:0.3%〜1.0%、Ni:0.05%〜0.6%、Cr:3.0%〜5.0%未満、MoまたはWのいずれか1種または2種をMo当量(Mo+1/2W):0.8%〜4.0%、VまたはNbのいずれか1種または2種をV当量(V+1/2Nb):0.5%〜1.5%、残部がFeおよび不可避的不純物からなる高合金鋼を前記被処理物とすることを特徴とする請求項1に記載の真空浸炭処理方法。   In mass%, C: 0.31% to 0.6%, Si: 0.1% to 0.6%, Mn: 0.3% to 1.0%, Ni: 0.05% to 0.6 %, Cr: 3.0% to less than 5.0%, one or two of Mo or W is equivalent to Mo (Mo + 1 / 2W): 0.8% to 4.0%, either V or Nb One or two of them is a V equivalent (V + 1 / 2Nb): 0.5% to 1.5%, and a high alloy steel consisting of Fe and inevitable impurities as the balance is used as the workpiece. Item 2. The vacuum carburizing method according to Item 1. 質量%で、C:0.8%〜1.6%、Si:0.4%以下、Mn:0.6%以下、P:0.03%以下、S:0.03%以下、Cr:8.0%〜13.0%、Mo:0.8%〜2.0%、V:0.2%〜0.5%、Cu:0.25%未満、Ni:0.5%以下の高炭素材鋼を前記被処理物とすることを特徴とする請求項1に記載の真空浸炭処理方法。   In mass%, C: 0.8% to 1.6%, Si: 0.4% or less, Mn: 0.6% or less, P: 0.03% or less, S: 0.03% or less, Cr: 8.0% to 13.0%, Mo: 0.8% to 2.0%, V: 0.2% to 0.5%, Cu: less than 0.25%, Ni: 0.5% or less 2. The vacuum carburizing method according to claim 1, wherein high-carbon steel is used as the workpiece. 前記浸炭工程と前記拡散工程とを交互に複数回繰り返し、冷却工程を経た後、前記被処理物を再度加熱する再加熱工程をさらに備えたことを特徴とする請求項1ないし3のいずれか一項に記載の真空浸炭処理方法。 4. The method according to claim 1 , further comprising a reheating step in which the carburizing step and the diffusion step are alternately repeated a plurality of times, and after the cooling step, the workpiece is heated again. The vacuum carburizing method according to item. 前記再加熱工程が、前記被処理物を所定の温度まで昇温させる昇温工程と、前記被処理物を前記所定の温度に保持する保持工程と、を含み、前記保持工程の全てもしくは一部において、窒素ガス雰囲気下で処理を行うことを特徴とする請求項4に記載の真空浸炭処理方法。 The reheating step includes a temperature raising step for raising the temperature of the workpiece to a predetermined temperature, and a holding step for holding the workpiece at the predetermined temperature, and all or part of the holding step. 5. The vacuum carburizing method according to claim 4, wherein the treatment is performed in a nitrogen gas atmosphere . 加熱器を有する加熱室と、A heating chamber having a heater;
冷却器を有する冷却室と、A cooling chamber having a cooler;
前記加熱室内の被処理物が所定の温度に到達した状態で、前記被処理物を収容した前記加熱室内を1Pa以下まで減圧した状態から浸炭用ガスを前記加熱室内に供給することにより前記被処理物を浸炭させ、前記浸炭用ガスの供給を停止して前記浸炭用ガスの構成元素である炭素を前記被処理物の表面から内部へ拡散させ、前記浸炭と前記拡散とを交互に複数回繰り返すと共に最後の前記拡散の全てもしくは一部を窒素ガス雰囲気下で行った後、前記冷却室内で前記被処理物を冷却するように、前記加熱室および前記冷却室を制御する制御手段と、を備えたことを特徴とする真空浸炭処理装置。In a state where the object to be processed in the heating chamber reaches a predetermined temperature, the carburizing gas is supplied into the heating chamber from a state where the pressure in the heating chamber containing the object to be processed is reduced to 1 Pa or less. Carburize the object, stop the supply of the carburizing gas to diffuse carbon, which is a constituent element of the carburizing gas, from the surface of the workpiece to the inside, and repeat the carburizing and the diffusion a plurality of times alternately. And a control means for controlling the heating chamber and the cooling chamber so that the object to be processed is cooled in the cooling chamber after all or part of the last diffusion is performed in a nitrogen gas atmosphere. A vacuum carburizing apparatus characterized by that.
加熱器および冷却器を有する加熱室と、A heating chamber having a heater and a cooler;
前記加熱室内の被処理物が所定の温度に到達した状態で、前記被処理物を収容した前記加熱室内を1Pa以下まで減圧した状態から浸炭用ガスを前記加熱室内に供給することにより前記被処理物を浸炭させ、前記浸炭用ガスの供給を停止して前記浸炭用ガスの構成元素である炭素を前記被処理物の表面から内部へ拡散させ、前記浸炭と前記拡散とを交互に複数回繰り返すと共に最後の前記拡散の全てもしくは一部を窒素ガス雰囲気下で行った後、前記加熱室内で前記被処理物を冷却するように、前記加熱室を制御する制御手段と、を備えたことを特徴とする真空浸炭処理装置。In a state where the object to be processed in the heating chamber reaches a predetermined temperature, the carburizing gas is supplied into the heating chamber from a state where the pressure in the heating chamber containing the object to be processed is reduced to 1 Pa or less. Carburize the object, stop the supply of the carburizing gas to diffuse carbon, which is a constituent element of the carburizing gas, from the surface of the workpiece to the inside, and repeat the carburizing and the diffusion a plurality of times alternately. And a control means for controlling the heating chamber so that the object to be treated is cooled in the heating chamber after all or part of the last diffusion is performed in a nitrogen gas atmosphere. Vacuum carburizing treatment equipment.
JP2008222520A 2008-08-29 2008-08-29 Vacuum carburizing method and vacuum carburizing apparatus Expired - Fee Related JP5577573B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008222520A JP5577573B2 (en) 2008-08-29 2008-08-29 Vacuum carburizing method and vacuum carburizing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008222520A JP5577573B2 (en) 2008-08-29 2008-08-29 Vacuum carburizing method and vacuum carburizing apparatus

Publications (2)

Publication Number Publication Date
JP2010053431A JP2010053431A (en) 2010-03-11
JP5577573B2 true JP5577573B2 (en) 2014-08-27

Family

ID=42069649

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008222520A Expired - Fee Related JP5577573B2 (en) 2008-08-29 2008-08-29 Vacuum carburizing method and vacuum carburizing apparatus

Country Status (1)

Country Link
JP (1) JP5577573B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10557180B2 (en) 2015-05-01 2020-02-11 Ihi Corporation Heat treating device

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2771090C (en) 2009-08-07 2017-07-11 Swagelok Company Low temperature carburization under soft vacuum
CA2861180A1 (en) 2012-01-20 2013-07-25 Swagelok Company Concurrent flow of activating gas in low temperature carburization
KR101446134B1 (en) 2013-12-19 2014-10-07 주식회사 세아베스틸 Supercarburizing steel for machine structure with high anti-pitting fatigue strength and supercarburizing heat treatment method
CN103668041A (en) * 2013-12-30 2014-03-26 金陵科技学院 Vacuum carburizing method based on natural gas
JP6406883B2 (en) * 2014-06-06 2018-10-17 高砂工業株式会社 Vacuum heat treatment system
MX2018011654A (en) 2016-03-30 2018-12-19 Nhk Spring Co Ltd Hollow stabilizer production method and hollow stabilizer production device.
WO2019087732A1 (en) * 2017-11-06 2019-05-09 株式会社Ihi Carburization device
JP2019131867A (en) * 2018-02-01 2019-08-08 株式会社日立製作所 Slurry for surface hardening and structural material manufactured using the same
CN113913733A (en) * 2021-10-09 2022-01-11 上海丰东热处理工程有限公司 Vacuum carburizing heat treatment process for low-carbon high-alloy steel
CN115537633B (en) * 2022-08-30 2023-03-21 成都先进金属材料产业技术研究院股份有限公司 Hot work die steel and production method thereof

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5629667A (en) * 1979-08-16 1981-03-25 Daido Steel Co Ltd Preparation of metal mold
JPS58126975A (en) * 1982-01-22 1983-07-28 Komatsu Ltd Carburizing method by vacuum carburizing furnace
JPH0717986B2 (en) * 1985-03-16 1995-03-01 大同特殊鋼株式会社 Alloy tool steel
FR2681332B1 (en) * 1991-09-13 1994-06-10 Innovatique Sa METHOD AND DEVICE FOR CEMENTING STEEL IN A LOW PRESSURE ATMOSPHERE.
JPH0760315A (en) * 1993-08-30 1995-03-07 Sumitomo Metal Ind Ltd Method for dergenerating tool covered with carbide
JP2963869B2 (en) * 1995-03-29 1999-10-18 株式会社日本ヘイズ Vacuum carburizing method and apparatus and carburized product
JP3302967B2 (en) * 1999-04-13 2002-07-15 株式会社不二越 Continuous vacuum carburizing method and apparatus
JP2000336469A (en) * 1999-05-28 2000-12-05 Nachi Fujikoshi Corp Vacuum carburizing method and device
JP2004346412A (en) * 2003-05-26 2004-12-09 Chugai Ro Co Ltd Continuous vacuum carburizing furnace
JP2008045178A (en) * 2006-08-18 2008-02-28 Daido Steel Co Ltd Carburizing steel and carburized member
JP4458079B2 (en) * 2006-09-27 2010-04-28 株式会社Ihi Vacuum carburizing equipment

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10557180B2 (en) 2015-05-01 2020-02-11 Ihi Corporation Heat treating device

Also Published As

Publication number Publication date
JP2010053431A (en) 2010-03-11

Similar Documents

Publication Publication Date Title
JP5577573B2 (en) Vacuum carburizing method and vacuum carburizing apparatus
US8152935B2 (en) Vacuum carburization method and vacuum carburization apparatus
CN105385980B (en) A kind of Technology for Heating Processing of effectively control gear material Nitriding porosity layer
KR101959985B1 (en) Method of heat treatment of metal parts
US4160680A (en) Vacuum carburizing
JP6406883B2 (en) Vacuum heat treatment system
JP7163642B2 (en) Carburizing and quenching equipment and carburizing and quenching method
US20050104266A1 (en) Vacuum furnace with pressurized intensive water quench tank
JP2007093161A (en) Continuous heat treatment furnace
US6428742B1 (en) Method for heat-treating metallic workpieces
JP5944797B2 (en) Iron-based alloy material and method for producing the same
JP6228403B2 (en) Surface hardening method and surface hardening structure of carbon steel
JP5988985B2 (en) Method for manufacturing camshaft for internal combustion engine
JP4724596B2 (en) Vacuum slow cooling device and steel member heat treatment device
US2142139A (en) Hardening process for high speed steel tools and other articles
JP3289949B2 (en) Closed circulation gas quenching device and gas quenching method
JP2001020016A (en) Heat treatment method of metallic member
JPH0312140B2 (en)
JP2005060760A (en) Quenching method by gas cooling
KR20200102566A (en) The method of carburizing
JP2005133212A (en) Heat treatment system
JP5817173B2 (en) Gas quenching method
JP4665418B2 (en) Hearth roll for heat treatment
CN106893969A (en) The ionic nitriding Technology for Heating Processing of FV520B materials
Minarski et al. Quenching steel parts in 20-bar helium

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110627

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130718

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130813

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131009

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140610

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140623

R151 Written notification of patent or utility model registration

Ref document number: 5577573

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees