JPH06248416A - Modifying method by mixed gas penetration - Google Patents
Modifying method by mixed gas penetrationInfo
- Publication number
- JPH06248416A JPH06248416A JP5640593A JP5640593A JPH06248416A JP H06248416 A JPH06248416 A JP H06248416A JP 5640593 A JP5640593 A JP 5640593A JP 5640593 A JP5640593 A JP 5640593A JP H06248416 A JPH06248416 A JP H06248416A
- Authority
- JP
- Japan
- Prior art keywords
- furnace
- gas
- temperature
- minutes
- ammonia
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、金属表面のガス複合浸
透による改善方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for improving a metal surface by gas composite permeation.
【0002】[0002]
【従来の技術】従来、機械部品・工具・治具・金型等の
金属表面の改質方法として、浸炭・窒化・浸硫・浸硼等
改質媒体の元素を金属表層部に浸透・拡散させて表面を
改質する方法は多々提案され、例えば、金属母材を窒化
する方法としては、特公平3−12140号公報とし
て、浸透改質炉内へ金属母材を挿入し、常温で抜気した
後、N2 ガスを炉内に注入し、室温から300〜450
℃へ20〜230分で昇温し、次にN2 とアンモニアの
混合ガス中で10〜90分で400〜580℃の加熱を
施し、次いでアンモニア,N2 及びCO2 の混合気中で
10〜240分間400〜580℃に保持し、次に混合
気のCO2 濃度を上昇させると共にN2 濃度を低下させ
たもので10〜120分間保持し、さらにN2 を循環さ
せながら冷却するガス混合浸透改質方法が公知である。2. Description of the Related Art Conventionally, as a method of modifying the metal surface of machine parts, tools, jigs, dies, etc., the elements of the modifying medium such as carburizing, nitriding, sulfurizing, and boriding penetrate and diffuse into the metal surface layer. There have been proposed many methods of modifying the surface by nitriding the metal base material. For example, as a method of nitriding the metal base material, as disclosed in Japanese Patent Publication No. 3-12140, the metal base material is inserted into a permeation reforming furnace and removed at room temperature. After the vaporization, N 2 gas is injected into the furnace, and the temperature is 300 to 450 from room temperature.
The temperature is raised to 20 ° C. in 20 to 230 minutes, then heated to 400 to 580 ° C. in a mixed gas of N 2 and ammonia for 10 to 90 minutes, and then 10 minutes in a mixed gas of ammonia, N 2 and CO 2. Gas mixture in which the temperature is kept at 400 to 580 ° C. for 240 minutes, then the CO 2 concentration of the air-fuel mixture is raised and the N 2 concentration is lowered, and held for 10 to 120 minutes, and further cooled while circulating N 2. Penetration modification methods are known.
【0003】また、高温でかつ窒化ガス雰囲気下の炉内
で鋼の表面を予熱した後、硬化せしめる鋼の窒化方法に
おいて、予熱工程中に少なくとも1回以上の真空加熱を
行い、窒化ガスをアンモニアガスと酸素ガスと窒素ガス
からなる3成分ガスとすると共に、窒化ガス中のアンモ
ニアガスの含有率を40〜60容量%の範囲とし、窒化
ガス中の酸素ガスの含有率を0.2〜3容量%の範囲と
し、予熱中に真空加熱処理を行うことにより、炉内に残
存する微量の不純ガス成分を気化洗浄して、鋼の表面の
汚れ等を除去し、鋼を窒化に適するように活性化する方
法が、特開昭62−270761号公報として提案され
ている。Further, in a nitriding method of steel in which the surface of steel is preheated in a furnace at a high temperature and in a nitriding gas atmosphere, and then hardened, vacuum heating is performed at least once during the preheating step, and the nitriding gas is converted into ammonia gas. Gas, oxygen gas, and nitrogen gas are used as a three-component gas, the content rate of ammonia gas in the nitriding gas is in the range of 40 to 60% by volume, and the content rate of oxygen gas in the nitriding gas is 0.2 to 3 By performing vacuum heat treatment during preheating within the range of volume%, a trace amount of impure gas components remaining in the furnace are vaporized and cleaned to remove stains etc. on the surface of the steel and make the steel suitable for nitriding. A method of activation is proposed in JP-A-62-270761.
【0004】浸透改質効果の要因の内で大きな影響を及
ぼすものは、処理温度である。しかしながら、これら従
来の方法は、アンモニア、N2 、CO2 などの混合ガス
を導入する際、常温ガスを一挙に数百度の炉中に導くた
め、浸透改質される金属表面部や炉内雰囲気に大きい温
度勾配が惹起され、炉内の温度の不均一性が生じて浸透
改質の劣化やばらつきの原因となる。Among the factors of the permeation modification effect, the treatment temperature has a great influence. However, in these conventional methods, when a mixed gas of ammonia, N 2 , CO 2, etc. is introduced, the room temperature gas is introduced all at once into the furnace at several hundred degrees, so that the permeation reformed metal surface part and the atmosphere in the furnace are introduced. A large temperature gradient is caused in the furnace, resulting in non-uniform temperature in the furnace, which causes deterioration and dispersion of the permeation reforming.
【0005】[0005]
【発明が解決しようとする課題】本発明の目的は、処理
温度の不均一性による浸透改質の劣化やばらつきを防止
し、熱効率が良く、高価ガスの使用量が少なくて済み、
廉価で、且つ短時間で安定した耐摩,耐熱,耐食の表面
性状が得られ、表面性状を自由に調整できるガス複合浸
透改質方法を提供することにある。The object of the present invention is to prevent deterioration and variation in permeation reforming due to non-uniformity of treatment temperature, to improve thermal efficiency, and to use less expensive gas.
It is an object of the present invention to provide a gas composite permeation reforming method that is inexpensive and can obtain stable surface properties of abrasion resistance, heat resistance, and corrosion resistance in a short time, and that the surface properties can be freely adjusted.
【0006】[0006]
【課題を解決するための手段】本発明のガス複合浸透改
質方法は、上記課題を解決するために、浸透改質炉内へ
金属母材を挿入し、N2 ガスを炉内に注入し、室温から
200〜550℃へ10〜230分で昇温し、アンモニ
ア,N2 及びCO2 の混合または単独ガスの温度を前記
炉内の温度近傍まで上昇させた後に前記炉内に注入し、
次いでアンモニア,N2 及びCO2 の混合気体中で10
〜1800分間350〜590℃に保持し、次に前記混
合気のCO2 濃度を上昇させると共に10〜900分間
保持し、さらにN2 を循環させながら冷却した後、室温
〜300℃で抜気することを特徴とする。In order to solve the above-mentioned problems, a gas composite permeation reforming method of the present invention inserts a metal base material into a permeation reforming furnace and injects N 2 gas into the furnace. Then, the temperature is raised from room temperature to 200 to 550 ° C. in 10 to 230 minutes, and the temperature of a mixture of ammonia, N 2 and CO 2 or a single gas is raised to a temperature close to the temperature in the furnace and then injected into the furnace,
Then, in a mixed gas of ammonia, N 2 and CO 2 , 10
Hold at 350 to 590 ° C. for up to 1800 minutes, then increase the CO 2 concentration of the air-fuel mixture and hold for 10 to 900 minutes, further cool while circulating N 2 , and then degas at room temperature to 300 ° C. It is characterized by
【0007】炉内に注入されるアンモニア,N2 及びC
O2 の混合または単独ガスの加熱には、加熱用フィルタ
ーを備えた予熱器を用い、加熱用フィルターの材質は、
ステンレス、グラファイト、セラミック、または、これ
ら各種のコーティング等よりなり、三角、多角、円、楕
円等の孔が設けられる。Ammonia, N 2 and C injected into the furnace
A preheater equipped with a heating filter is used for mixing O 2 or heating a single gas, and the material of the heating filter is
It is made of stainless steel, graphite, ceramic, or various coatings thereof, and is provided with triangular, polygonal, circular, elliptical, etc. holes.
【0008】なお、前記混合ガス中には、さらにH2 ,
Ar,ENDO,EXO等の一種又は複数種を加えるこ
ともでき、前記連続加熱、混合ガス中での保持、さらに
加熱・保持を多段階行なってより成果をあげることもで
きる。In the mixed gas, H 2 ,
One or more kinds of Ar, ENDO, EXO, etc. can be added, and the above-mentioned continuous heating, holding in a mixed gas, and further heating / holding can be carried out in multiple stages to achieve better results.
【0009】一方、前記昇温及び混合ガス中での温度保
持の間、10-2〜8×10-1mbの減圧による2回以上
の真空加熱及び混合ガスまたは単独ガスの2回以上の所
定時間の前記減圧より高い圧力の減圧による保持を行う
ことにより、被金属の清浄、活性化、浸透性、表面滑度
及び被金属の空洞化が防止されることによる均質性等を
より向上させることができる。On the other hand, during the temperature rising and the temperature holding in the mixed gas, the vacuum heating is performed twice or more by the pressure reduction of 10 -2 to 8 × 10 -1 mb, and the mixed gas or the single gas is specified twice or more. By maintaining the decompression for a time higher than the decompression for a period of time, it is possible to further improve the cleaning, activation, permeability, surface smoothness, and homogeneity of the metal due to the prevention of cavitation of the metal. You can
【0010】[0010]
【発明の効果】本発明のガス複合浸透改質方法による
と、ガス雰囲気中で加熱するので熱効率が良く、加熱時
間が短くて済み、温度保持中の雰囲気の混合ガスの種
類、比率を調整することにより表面化合物層の厚みや性
状を自由に調整配合できる。According to the gas composite permeation reforming method of the present invention, since heating is carried out in a gas atmosphere, the thermal efficiency is good, the heating time is short, and the type and ratio of the mixed gas in the atmosphere while the temperature is maintained are adjusted. As a result, the thickness and properties of the surface compound layer can be freely adjusted and blended.
【0011】アンモニア、N2 、CO2 などのガスを炉
内に導入する際、導入ガスの温度を炉温に近い程度迄加
熱した後、炉内に導入することにより、金属表面部や炉
内雰囲気において、浸透改質効果の要因の内で大きな影
響を及ぼす処理温度が均一化され、浸透改質の劣化やば
らつきが防止される。When a gas such as ammonia, N 2 or CO 2 is introduced into the furnace, the introduced gas is heated to a temperature close to the furnace temperature and then introduced into the furnace so that the metal surface or the furnace In the atmosphere, the treatment temperature, which has a large influence among the factors of the permeation reforming effect, is made uniform, and deterioration and variation of the permeation reforming are prevented.
【0012】これにより、温度調整や各ガスの温度統制
等を簡易に行うことにより、浸透改質の特性を極めて増
大することができる。As a result, the characteristics of permeation reforming can be greatly increased by simply adjusting the temperature and controlling the temperature of each gas.
【0013】大気及び処理ガスには、通常CO2 、C
O、H2 O、O2 、油脂等の不純ガスが含まれているた
め、真空減圧浸透方法によると、炉内を最適な浸透改質
雰囲気とすることが困難であり、さらに、炉内のガスの
置換に長時間を要する弊害があり、このために、改質さ
れる金属表面硬度や深さ、表面性状を施すことが困難で
あったが、予熱中に真空加熱を行うほか、表面改質処理
中に真空引き、減圧処理を行うことにより、気化清浄に
よって改質表面部を活性化させ、汚染、不安定化した不
純微量ガス分を除去するので、ガス混合の純度と精度を
大きく改善して、金属表面の劣化を防止し、精度を上げ
ることができる。The atmosphere and process gas are usually CO 2 , C
Since impure gases such as O, H 2 O, O 2 and oils and fats are contained, it is difficult to create an optimum permeation reforming atmosphere in the furnace according to the vacuum decompression infiltration method. It takes a long time to replace the gas, which makes it difficult to apply the metal surface hardness, depth, and surface texture to be modified.However, in addition to performing vacuum heating during preheating, surface modification By performing vacuuming and depressurizing during the quality treatment, the modified surface is activated by vaporization and cleaning, and contaminants and destabilized impure trace gas components are removed, greatly improving the purity and accuracy of gas mixing. As a result, the deterioration of the metal surface can be prevented and the accuracy can be improved.
【0014】[0014]
【実施例】以下、本発明の実施例を図面に基づいて説明
する。図1は、本発明のガス複合浸透改質方法に用いら
れる装置のブロック図である。図1において、浸透改質
炉1は真空槽を用い、管路4,4とバルブ5,5を介し
て真空ポンプ2につながっている。浸透改質炉1の内部
には、雰囲気の純化を図り酸化を防ぎ、水分及び酸素濃
度を常に低く保つ為の外熱式レトルト等を装備する。ボ
ンベA,B,C,D,Eにはそれぞれ保護ガスとしてア
ンモニア,N2,CO2 ,H2 ,Ar,ENDO,EX
O等が封入されており、浸透改質炉1内に、反応段階に
応じて、管路4,4とバルブ5,5及び予熱器3を介し
て手動又は自動で、N2 ガスのみ又はN2 ガスに他のガ
スを混合させて炉内に注入する。このガスの選択は、金
属母材の材質,寸法,形状,改質層の性状に応じて行な
う。予熱器3は、例えば、導入管内部断面に、メッシュ
状の金属を配し、このメッシュ状の金属を加熱する。加
熱源としては、例えば、高周波発生器とコイルとにより
誘導電流によって加熱を行う高周波加熱法等を採用する
と、装置の構成が簡単で安価となり、効率がよい。ま
た、自動で行う場合には、浸透改質炉1に温度検出手段
と、該温度検出手段の検出信号に基いて予熱器3を可動
する制御部とを設ける。Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a block diagram of an apparatus used in the gas composite permeation reforming method of the present invention. In FIG. 1, the permeation reforming furnace 1 uses a vacuum tank, and is connected to a vacuum pump 2 via conduits 4 and 4 and valves 5 and 5. The permeation reforming furnace 1 is equipped with an external heating type retort or the like for purifying the atmosphere, preventing oxidation, and keeping the moisture and oxygen concentrations low at all times. Cylinder A, B, C, D, ammonia as each protective gas is E, N 2, CO 2, H 2, Ar, ENDO, EX
O or the like is enclosed in the permeation reforming furnace 1 manually or automatically via the conduits 4 and 4, the valves 5 and 5 and the preheater 3 depending on the reaction stage, and only N 2 gas or N 2 gas is supplied. 2 Gas is mixed with other gas and injected into the furnace. This gas is selected according to the material, size and shape of the metal base material and the properties of the reforming layer. The preheater 3, for example, arranges a mesh-shaped metal on the inner cross section of the introduction pipe and heats the mesh-shaped metal. As a heating source, for example, if a high frequency heating method in which heating is performed by an induction current by a high frequency generator and a coil is adopted, the configuration of the device is simple and inexpensive, and the efficiency is high. Further, in the case of automatic operation, the permeation reforming furnace 1 is provided with a temperature detecting means and a control section for moving the preheater 3 based on a detection signal of the temperature detecting means.
【0015】また、炉1内には送風機が備えてあり、高
効率に均一な雰囲気循環を施すと共に、例えば、ボンベ
BよりN2 を注入し、循環させて冷却し、調質と効率化
が図れる。Further, a blower is provided in the furnace 1 so as to efficiently and uniformly circulate the atmosphere, and for example, N 2 is injected from the cylinder B and circulated and cooled to improve the quality and efficiency. Can be achieved.
【0016】なお、温度−時間の関係は、0.5〜1
0時間で350℃〜590℃まで直線的に昇温させ、そ
のまま数時間350℃〜590℃保持する一方、この
間、2回以上の真空加熱及び混合ガスまたは単独ガスの
2回以上の所定時間の10-2〜8×10-1mbの減圧よ
り高い圧力の減圧による保持を行い、その後抜気し、N
2 ガス急冷又は徐冷する。The relationship between temperature and time is 0.5 to 1
The temperature is linearly raised from 350 ° C. to 590 ° C. in 0 hours and kept at 350 ° C. to 590 ° C. for several hours as it is, while the vacuum heating is performed twice or more and the mixed gas or the single gas is heated twice or more for a predetermined time. A decompression of a pressure higher than the decompression of 10 -2 to 8 x 10 -1 mb is performed, and then degassing is performed,
2 Cool rapidly or slowly.
【0017】本発明の手順を代表例について図7に示さ
れる処理中における熱サイクルと浸透改質炉内の圧力サ
イクルとの関係を参照して説明すると、次の通りであ
る。The procedure of the present invention will be described with reference to the relationship between the thermal cycle during processing and the pressure cycle in the permeation reforming furnace shown in FIG. 7 as a typical example.
【0018】(1) 炉内へ金属母材を挿入する。(1) Insert the metal base material into the furnace.
【0019】(2) 2〜12N m3 /hr(総量2〜22
N m3 )のN2 を注入し、その上で常温から200〜5
50℃へ10〜230分で昇温させる。(2) 2 to 12 Nm 3 / hr (total amount 2 to 22)
N m 3 ) N 2 is injected, and then 200 to 5 from room temperature.
The temperature is raised to 50 ° C. in 10 to 230 minutes.
【0020】(3) 200〜550℃への昇温過程にお
いて、10-2〜8×10-1mbの排気減圧処理を2回行
う。(3) In the process of raising the temperature to 200 to 550 ° C., the exhaust pressure reduction treatment of 10 −2 to 8 × 10 −1 mb is performed twice.
【0021】(4) 予め200〜500℃に昇温したア
ンモニア1〜8N m3 /hr,N2 1〜8N m3 /hr,C
O2 0.1〜2N m3 /hrの混合気を炉内に供給し、こ
の混合気中で10〜1200分間400〜590℃で保
持する。(総量:アンモニア2〜16N m3 ,N2 2〜
16N m3 ,CO2 0.1N m3 〜3N m3 ) (5) 350〜590℃の保持期間中において、10-2
〜8×10-1mbの排気減圧処理を2回行う。[0021] (4) in advance of ammonia was heated to 200~500 ℃ 1~8N m 3 / hr, N 2 1~8N m 3 / hr, C
A mixture of O 2 0.1 to 2 Nm 3 / hr is supplied into the furnace, and the mixture is kept at 400 to 590 ° C. for 10 to 1200 minutes. (Total amount: Ammonia 2 to 16 N m 3 , N 2 2 to
In 16N m 3, CO 2 0.1N m 3 ~3N m 3) (5) 350~590 during the holding period of ° C., 10 -2
Exhaust depressurization treatment of 8 × 10 −1 mb is performed twice.
【0022】(6) 更に10〜900分間、CO2 濃度
を上昇させ保持する。その場合のガス供給量は次の如く
する。N2 1〜6N m3 /hr,アンモニア1〜4N m3
/hr,CO2 0.1〜2N m3 /hr (7) 前記CO2 濃度上昇保持期間において、10-2〜
8×10-1mbの排気減圧処理を2回行う。(6) The CO 2 concentration is increased and maintained for 10 to 900 minutes. The gas supply amount in that case is as follows. N 2 1 to 6 N m 3 / hr, ammonia 1 to 4 N m 3
/ Hr, CO 2 0.1 to 2 N m 3 / hr (7) In the CO 2 concentration rising holding period, 10 -2 to
The exhaust pressure reduction process of 8 × 10 −1 mb is performed twice.
【0023】(8) 前記CO2 濃度上昇保持期間後、抜
気する。(8) After the CO 2 concentration rising holding period, deaeration is performed.
【0024】(9) 室温にした2〜12N m3 /hrのN
2 を置換冷却調質のために炉内に循環させる。(9) 2 to 12 Nm 3 / hr N at room temperature
2 is circulated in the furnace for displacement cooling tempering.
【0025】(10) 前記350〜590℃の保持期
間、CO2 濃度上昇保持期間及び置換冷却調整期間にお
ける保持圧力は常圧以下で、かつ10-2〜8×10-1m
b以上において行う。(10) The holding pressure during the holding period of 350 to 590 ° C., the CO 2 concentration rising holding period and the replacement cooling adjustment period is not higher than atmospheric pressure, and 10 −2 to 8 × 10 −1 m
b or above.
【0026】(11) 室温から300℃の間で抜気す
る。(11) Degas from room temperature to 300 ° C.
【0027】昇温処理中に、排気減圧処理を2回行うこ
とによって、金属母材及び浸透改質炉内が真空加熱さ
れ、金属母材表面に付着する油や水分等が気化し、金属
母材表面が清浄され、排気によって浸透改質炉の外部に
排出されることにより、雰囲気純度が向上される。By performing the exhaust gas depressurization process twice during the temperature raising process, the metal base material and the inside of the permeation reforming furnace are vacuum-heated, and the oil and water adhering to the surface of the metal base material are vaporized, and the metal base material is vaporized. The surface of the material is cleaned and exhausted to the outside of the permeation reforming furnace to improve the atmospheric purity.
【0028】アンモニア、N2 、CO2 などのガスを導
入する際、導入ガスの温度を炉温に近い程度迄加熱した
後、炉内に導入することにより、金属表面部や炉内雰囲
気において、浸透改質効果の要因の内で大きな影響を及
ぼす処理温度が均一化され、浸透改質の劣化やばらつき
が防止される。When introducing a gas such as ammonia, N 2 or CO 2 , the temperature of the introduced gas is heated to a temperature close to the furnace temperature and then introduced into the furnace so that the metal surface portion or the atmosphere in the furnace is Among the factors of the permeation modification effect, the treatment temperature, which has a large effect, is made uniform, and deterioration and variation of the permeation modification are prevented.
【0029】窒化反応中に発生するCO2 、H2 O及び
O2 が酸化反応によって窒化物層中にポーラス部を形成
しようとするが、常圧より低い圧力下で窒化を行うこと
によって、酸素分圧が低くなり、酸化反応が抑制されて
ポーラス部の生成が抑制される。CO 2 , H 2 O and O 2 generated during the nitriding reaction try to form a porous portion in the nitride layer by the oxidation reaction, but by nitriding under a pressure lower than atmospheric pressure, oxygen is generated. The partial pressure becomes low, the oxidation reaction is suppressed, and the generation of the porous portion is suppressed.
【0030】また、この間、排気減圧処理を2回行うこ
とによって、昇温処理中に除去できなかった汚れに対し
て、再清浄を行うと共に、窒化反応中に発生するC
O2 、H2 O及びO2 等の不純ガスも排出されるので、
雰囲気純度が向上される。Further, during this time, the exhaust pressure reduction process is performed twice to reclean the dirt that could not be removed during the temperature rise process, and at the same time, to generate C during the nitriding reaction.
Since impure gases such as O 2 , H 2 O and O 2 are also discharged,
Atmosphere purity is improved.
【0031】従来法のガス〜大気置換ではガス流の性状
により数時間を要することがあるが、本発明により操業
時間を大幅に短縮することができた。また、消費ガスや
電気代の節減が図れた。Although it may take several hours to replace the gas in the conventional method with the atmosphere depending on the nature of the gas flow, the present invention has made it possible to significantly reduce the operating time. In addition, consumption gas and electricity bills were saved.
【0032】さらに、本発明によれば冷却特性を向上さ
せることができる。ガスを用いる冷却は、冷却ガスの圧
力と流速に左右される。このため大気圧から3バール域
の噴流を活用し、冷却を向上させ、時間短縮と母材及び
表面層の調質に資する。このため、元素拡散層の固溶化
を促進・完全化させる。Further, according to the present invention, the cooling characteristic can be improved. Cooling with a gas depends on the pressure and flow rate of the cooling gas. Therefore, by utilizing the jet in the region of 3 bar from atmospheric pressure, cooling is improved, which contributes to shortening the time and refining the base material and the surface layer. Therefore, the solid solution of the element diffusion layer is promoted / completed.
【0033】次に、光輝性の優秀さがある。母材中のT
i,W,Mo,Vなどの活性金属を含む材料では、ガス
吸収による脆化、O2 との親和による酸化が進むので、
これらの防止に有効である。Next, there is an excellent glittering property. T in the base material
In materials containing active metals such as i, W, Mo and V, embrittlement due to gas absorption and oxidation due to affinity with O 2 proceed,
It is effective in preventing these.
【0034】なお、本発明によれば表面あらさを改良す
ることができる。この種表面改質の主目的は表面あらさ
と深く相関しており、これの度合は評価の重要な因子で
ある。According to the present invention, the surface roughness can be improved. The main purpose of this kind of surface modification is deeply correlated with the surface roughness, and the degree of this is an important factor for evaluation.
【0035】この処理の中で主流となっているダイス鋼
・ハイスピード鋼等では、この効果が顕著に表われ、実
験値によると2〜4倍程あらさ(Rmax )の改善が図ら
れた。This effect is remarkably exhibited in die steel, high-speed steel, etc., which are the mainstream in this treatment, and the experimental value shows that the roughness (Rmax) is improved by about 2 to 4 times.
【0036】上述の浸透改質炉には各種センサー・マイ
クロプロセッサーを使用した自動化システムが施されて
おり、品質安定化及び省人をさらに徹底できる。The above-mentioned permeation reforming furnace is provided with an automated system using various sensors and microprocessors, so that quality stabilization and labor saving can be further thoroughly implemented.
【0037】なお、金属母材はバスケットに入れられ、
バスケットが浸透改質炉に挿入されるが、バスケットの
寸法は例えば長さ×縦×横1150mm×650mm×71
0mmである。The metal base material is placed in a basket,
The basket is inserted into the permeation reforming furnace, and the dimensions of the basket are, for example, length x length x width 1150 mm x 650 mm x 71
It is 0 mm.
【0038】本発明のガス複合浸透改質法によれば、元
素が金属の表面で化学反応を起し、生成された元素が金
属に拡散し、固くてかつ靱性のある表層部を形成する。According to the gas composite permeation reforming method of the present invention, the element causes a chemical reaction on the surface of the metal, and the produced element diffuses into the metal to form a hard and tough surface layer portion.
【0039】表層部には強靭な化合物、拡散層には微細
な粒状及び針状の析出物が生じ、有効な性状を示す。A tough compound is formed in the surface layer portion, and fine granular and acicular precipitates are formed in the diffusion layer, showing effective properties.
【0040】本改質方法で得られる特性は次の通りであ
る。The characteristics obtained by this reforming method are as follows.
【0041】(1) 硬さ・深さのばらつきの減少 本改質方法で得られる金属表面は高い熱間強度の保持を
示す。図2は表面からの深さに対する硬さの減少を表し
ている。これらのばらつき削減は予備加熱や真空減圧効
果等によるものである。(1) Reduction of hardness / depth variation The metal surface obtained by the present reforming method exhibits high hot strength retention. FIG. 2 represents the decrease in hardness with depth from the surface. These variations are reduced by preheating, vacuum decompression effect and the like.
【0042】(2) 耐摩耗性の向上 図3はSKD61について他の浸透改質法との比較を示
した一例で、横軸に摩擦時間、縦軸に摩耗量がとってあ
る。図中実線は本発明の処理を施したもの、点線は処理
なしのもの、一点鎖線は特公平3−12140号公報記
載の改質法を施したものを各々示す。本発明によれば、
耐摩耗量は図のように大きく改善されている。また、浸
透深さも大きいので、全体摩耗量としては更に大きい値
を表している。(2) Improvement of wear resistance FIG. 3 is an example showing a comparison of SKD61 with other permeation modification methods. The horizontal axis shows the friction time and the vertical axis shows the amount of wear. In the figure, the solid line shows the product subjected to the treatment of the present invention, the dotted line shows the product without treatment, and the alternate long and short dash line shows the product subjected to the modification method described in Japanese Patent Publication No. 3-12140. According to the invention,
The amount of wear resistance is greatly improved as shown in the figure. Further, since the penetration depth is also large, the total wear amount shows a larger value.
【0043】(3) 摩耗抵抗の軽減 本発明によれば、耐粉体摩耗性能が著しく改善される。
これは摩耗係数が無浸透では0.3〜0.4位のものが
本発明により0.1〜0.2に向上することでも説明で
きる。これにより使用中の温度上昇をくいとめ、製品精
度,寿命等に著しい改善がはかられた。図4は、SKD
61についての一例を示したものであり、横軸に試験荷
重,縦軸に上昇温度がとってある。図中実線は本発明の
処理を施したもの、点線は処理なしのもの、一点鎖線は
特公平3−12140号公報記載の浸透改質法を施した
ものを示す。(3) Reduction of abrasion resistance According to the present invention, the powder abrasion resistance performance is remarkably improved.
This can also be explained by the fact that, when the wear coefficient is impervious, the value of 0.3 to 0.4 is improved to 0.1 to 0.2 by the present invention. As a result, the temperature rise during use was stopped, and significant improvements were made in product accuracy and life. Figure 4 shows SKD
61 shows an example, where the horizontal axis represents the test load and the vertical axis represents the temperature rise. In the figure, the solid line shows the product subjected to the treatment of the present invention, the dotted line shows the product without treatment, and the alternate long and short dash line shows the product subjected to the permeation modification method described in Japanese Patent Publication No. 3-12140.
【0044】(4) 疲労強度の向上 本発明は溝部等複雑形状品にも均質に行える。マトリッ
クスに固溶した元素は、繰返し応力・曲げ応力・回転曲
げ応力下での疲労強度を向上させる。図5は、SKD6
1についての一例を示したものであり、横軸に処理時
間、縦軸に疲労強度がとってある。図中実線は本発明の
処理を施したもの、一点鎖線は特公平3−12140号
公報記載の浸透改質法を施したものを示す。本発明は、
疲労強度の著しい向上効果を表わしている。(4) Improvement of Fatigue Strength The present invention can be applied uniformly to a product having a complicated shape such as a groove. The element dissolved in the matrix improves the fatigue strength under cyclic stress, bending stress and rotational bending stress. Figure 5 shows SKD6
1 is an example, in which the processing time is plotted on the horizontal axis and the fatigue strength is plotted on the vertical axis. In the figure, the solid line shows the product subjected to the treatment of the present invention, and the alternate long and short dash line shows the product subjected to the permeation modification method described in Japanese Patent Publication No. 3-12140. The present invention is
This shows a remarkable improvement effect on fatigue strength.
【0045】(5) クリープ強度の向上 図6はS15C,SNCM3,SKD61について無浸
透品(点線で示す)とと特公平3−12140号公報記
載の浸透改質法による処理品(一点鎖線で示す)と本発
明の処理(実線で示す)とによるクリープ強度の比較を
示したものであり、本発明によれば、何れの鋼種でも著
しいクリープ強度の向上がみられる。(5) Improvement of creep strength FIG. 6 shows S15C, SNCM3 and SKD61 non-penetrating products (shown by dotted lines) and products processed by the permeation reforming method described in Japanese Patent Publication No. 3-12140 (shown by dashed lines). 4) and the treatment of the present invention (shown by the solid line) are compared, and according to the present invention, a remarkable improvement in creep strength is observed in any steel grade.
【0046】(6) 耐食性の向上 他処理品に比して著しい改善がある。塩水テスト,酸テ
スト,アンモニア等の各種腐食テストにおいて、その改
善が立証された。(6) Improvement of corrosion resistance There is a significant improvement over other treated products. Improvements have been proved in various corrosion tests such as salt water test, acid test, and ammonia test.
【0047】(7) 表面あらさの改善 既述のように表面あらさ(Rmax )の改善が図られた。(7) Improvement of surface roughness The surface roughness (Rmax) was improved as described above.
【図1】本発明のガス複合浸透改質方法に用いる装置の
ブロック図FIG. 1 is a block diagram of an apparatus used in the gas composite permeation reforming method of the present invention.
【図2】本発明と従来法について深さに対する硬さの変
化を示した図FIG. 2 is a diagram showing changes in hardness with depth for the present invention and a conventional method.
【図3】本発明と従来法について摩耗時間に対する摩耗
量の変化を示した図FIG. 3 is a diagram showing changes in wear amount with wear time for the present invention and a conventional method.
【図4】本発明と従来法について試験荷重に対する上昇
温度の変化を示した図FIG. 4 is a diagram showing changes in the rising temperature with respect to a test load for the present invention and the conventional method.
【図5】本発明と従来法について処理時間に対する疲労
強度の変化を示した図FIG. 5 is a graph showing changes in fatigue strength with respect to processing time for the present invention and a conventional method.
【図6】本発明と従来法についてクリープ強度の比較を
示した図FIG. 6 is a diagram showing a comparison of creep strength between the present invention and a conventional method.
【図7】本発明の実施例に係る熱サイクル及び圧力サイ
クルを示す図FIG. 7 is a diagram showing a heat cycle and a pressure cycle according to an embodiment of the present invention.
1 浸透改質炉 2 真空ポンプ 3 予熱器 4 管路 5 バルブ 1 Infiltration reforming furnace 2 Vacuum pump 3 Preheater 4 Pipeline 5 Valve
Claims (2)
ガスを炉内に注入し、室温から200〜550℃へ10
〜230分で昇温し、アンモニア,N2 及びCO2 の混
合または単独ガスの温度を前記炉内の温度近傍まで上昇
させた後に前記炉内に注入し、次いでアンモニア,N2
及びCO2 の混合気体中で10〜1800分間350〜
590℃に保持し、次に前記混合気のCO2 濃度を上昇
させると共に10〜900分間保持した後抜気し、さら
にN2 を循環させながら冷却した後、室温〜300℃で
抜気することを特徴とするガス複合浸透改質方法。1. A metal base material is inserted into a permeation reforming furnace, and N 2
Gas is injected into the furnace and the temperature is raised from room temperature to 200 to 550 ° C.
The temperature was raised at 230 minutes, ammonia, is injected into the furnace the temperature of the mixture or a single gas N 2 and CO 2 after raising to a temperature near the furnace, and then ammonia, N 2
And in a mixed gas of CO 2 for 10 to 1800 minutes and 350 to
Holding at 590 ° C., then raising the CO 2 concentration of the mixture and holding for 10 to 900 minutes, then degassing, further cooling while circulating N 2 , and then degassing at room temperature to 300 ° C. A gas composite permeation reforming method characterized by:
間、10-2〜8×10-1mbの減圧による2回以上の真
空加熱及び混合ガスまたは単独ガスの2回以上の所定時
間の前記減圧より高い圧力の減圧による保持を行う請求
項1記載のガス複合浸透改質方法。2. During the temperature rising and the temperature holding in the mixed gas, the vacuum heating is performed twice or more by the reduced pressure of 10 −2 to 8 × 10 −1 mb and the mixed gas or the single gas is specified twice or more. The gas composite permeation reforming method according to claim 1, wherein the holding is performed by reducing the pressure for a time higher than the pressure reducing.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5640593A JPH06248416A (en) | 1993-02-23 | 1993-02-23 | Modifying method by mixed gas penetration |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5640593A JPH06248416A (en) | 1993-02-23 | 1993-02-23 | Modifying method by mixed gas penetration |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH06248416A true JPH06248416A (en) | 1994-09-06 |
Family
ID=13026266
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5640593A Pending JPH06248416A (en) | 1993-02-23 | 1993-02-23 | Modifying method by mixed gas penetration |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH06248416A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024027702A1 (en) * | 2022-08-01 | 2024-02-08 | 元心科技(深圳)有限公司 | Method for modifying entire metal workpiece, and gas guide assembly and device for modification |
-
1993
- 1993-02-23 JP JP5640593A patent/JPH06248416A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024027702A1 (en) * | 2022-08-01 | 2024-02-08 | 元心科技(深圳)有限公司 | Method for modifying entire metal workpiece, and gas guide assembly and device for modification |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100707220B1 (en) | Modified low temperature case hardening processes | |
JP2007046088A (en) | Nitrided quenched part, and method for producing the same | |
EP0465333B1 (en) | Method and installation for the cementation of metallic alloy articles at low pressure | |
US4160680A (en) | Vacuum carburizing | |
JPH0790541A (en) | Mixed gas penetration modifying method and device therefor | |
JP3867376B2 (en) | Manufacturing method of rolling member | |
JP2007238969A (en) | Nitriding method | |
JP6228403B2 (en) | Surface hardening method and surface hardening structure of carbon steel | |
JP6587886B2 (en) | Manufacturing method of nitrided steel member | |
US20100139812A1 (en) | Case hardening titanium and its alloys | |
JP3460075B2 (en) | Metal carburizing method | |
JPH06248416A (en) | Modifying method by mixed gas penetration | |
RU2291227C1 (en) | Construction-steel parts surface hardening method | |
JPH02145759A (en) | Method for carburizing steel | |
KR101738503B1 (en) | Method for heat treatment for reducing deformation of cold-work articles | |
JP2005068491A (en) | Surface hardening treatment method for titanium material | |
JPH01212748A (en) | Rapid carburizing treatment for steel | |
JPH0312140B2 (en) | ||
KR100988702B1 (en) | A quenched nitride and the method of manufacture thereof | |
KR100526389B1 (en) | Method for heat treatment in gasnitriding | |
RU2756547C1 (en) | Method for nitriding corrosion-resistant and high-alloy steels | |
US5194096A (en) | Carburizing treatment of a steel with reduction of the hydrogen content in the carburized layer | |
TWI360579B (en) | ||
JP4858071B2 (en) | Steel surface treatment method and surface-treated steel material | |
JP3995178B2 (en) | Gas nitriding treatment method for maraging steel |