JPH03120304A - Method and apparatus for manufacturing metal fine powder - Google Patents

Method and apparatus for manufacturing metal fine powder

Info

Publication number
JPH03120304A
JPH03120304A JP25831989A JP25831989A JPH03120304A JP H03120304 A JPH03120304 A JP H03120304A JP 25831989 A JP25831989 A JP 25831989A JP 25831989 A JP25831989 A JP 25831989A JP H03120304 A JPH03120304 A JP H03120304A
Authority
JP
Japan
Prior art keywords
molten metal
pressure
pouring pipe
temperature
pouring tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25831989A
Other languages
Japanese (ja)
Inventor
Hiroyuki Ikeda
浩之 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP25831989A priority Critical patent/JPH03120304A/en
Publication of JPH03120304A publication Critical patent/JPH03120304A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

PURPOSE:To continue flowing-out of molten metal from a pouring tube and to stably execute manufacture of metal powder by adjusting pressure for pressurizing the molten metal surface in a vessel according to the temp. of the pouring tube at the time of allowing the molten metal to flow out from the pouring tube at bottom part of the vessel and solidifying to powdery metal state with gas jet through an atomizing method. CONSTITUTION:The storing vessel 3 charging the molten metal 5 is put in a closed melting chamber 4 and the molten metal 5 is supplied into the atomizing nozzle 7 from the pouring tube 2 arranged at the bottom part thereof and inert gas of N2, etc., is injected to the molten metal flow from injection holes 9 for gas jet arranged as annular to the nozzle 7 to make the fine metal powder state and this powder is stored in an atomizing tank 6. When the pouring tube 2 is cooled by the outer air, the temp. is measured with thermocouple 15 attached to the pouring tube 2 and compared with the preset temp. and the high pressure gas is introduced into the melting chamber 4 with a pressure control device 14 according to the temp. difference to pressurize the surface of molten metal 5 and the flowing-out molten metal rate from the pouring tube 2 is made to suitable and it is prevented that the molten metal in the pouring tube 2 is solidified and cloggs the tube 2 and the metal powder manufacturing work is stabilized.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、高温の溶融金属材料を棒状あるいは板状に流
下させ、これに高流速のガスジェットを衝突させて微粒
化することにより金属微粉末を製造する方法および装置
に関するものである。
Detailed Description of the Invention (Industrial Application Field) The present invention produces metal fine particles by causing a high-temperature molten metal material to flow down in the shape of a rod or plate, and colliding it with a high-velocity gas jet to atomize it. The present invention relates to a method and apparatus for producing powder.

(従来の技術) ガスアトマイズ法は、高温の溶融金属材料を棒状あるい
は板状に流下させ、これにある角度をもヮて高流速のガ
スジェットを噴射・衝突させることにより当該溶融金属
材料を微粒化するとともに冷却することにより金属粉末
を大量に生産する方法である。
(Prior art) In the gas atomization method, high-temperature molten metal material is made to flow down in the form of a rod or plate, and a high-velocity gas jet is injected and collided with the material at a certain angle to atomize the molten metal material. This is a method for producing metal powder in large quantities by heating and cooling it.

(発明が解決しようとする課題) アトマイズ法によって高温の溶融金属材料から粉末材料
を生成する設備においては、一般に溶融金属材料は3〜
8IIIlの小口径の注湯管部分を通してアトマイズノ
ズルに供給されるので、そのような小口径の注湯管部分
を溶融金属材料が通過する時の温度低下が大きく流動性
を失うことによって固化・閉塞トラブルが発生しやすい
。また、熔融金属材料の通過に伴って注湯管部分に析出
物が堆積して閉塞に至ることも多い。
(Problems to be Solved by the Invention) In equipment that generates powder material from high-temperature molten metal material by the atomization method, the molten metal material is generally
Since the molten metal material is supplied to the atomizing nozzle through the small-diameter pouring pipe section of 8IIIl, the temperature drop when the molten metal material passes through such a small-diameter pouring pipe section is large and fluidity is lost, resulting in solidification and blockage. Trouble is likely to occur. Further, as the molten metal material passes through, precipitates often accumulate in the pouring pipe, resulting in blockage.

閉塞に至らなくても−I?I融金属の流下量が変わるこ
とによって相対的にアトマイズガスの量が多くなり、得
られる金属微粒子の特性が大きくバラツクことになる。
Even if it does not lead to occlusion-I? As the amount of I-molten metal flowing down changes, the amount of atomizing gas becomes relatively large, and the characteristics of the obtained metal fine particles vary greatly.

ところで、従来技術として特開昭63−65004号に
は溶解チャンバー内の圧力を制御する方法が開示されて
いるが、その目的は溶解チャンバーの圧力を単独で調整
すること、つまり背後から加圧することにより十分な背
圧を与えて注湯管からの溶融金属流の自由落下を確保す
ることである。したがって、溶解チャンバーの圧力調整
もアトマイズチャンバー内の圧力にたいして十分な圧差
を得るようにするのである。
By the way, as a prior art, Japanese Patent Application Laid-Open No. 63-65004 discloses a method for controlling the pressure in the dissolution chamber, but the purpose of this is to adjust the pressure in the dissolution chamber independently, that is, to apply pressure from behind. The objective is to provide sufficient back pressure to ensure free fall of the molten metal stream from the pouring pipe. Therefore, the pressure in the dissolution chamber is adjusted to provide a sufficient pressure difference with respect to the pressure in the atomization chamber.

特に、かかる従来技術は注湯管が小口径の場合加圧した
溶融金属材料を安定して通過させる方法であるが、−a
の金属粉末製造に際してはその加圧が大きすぎると溶融
金属材料の流量が過大となって微細な粉末を生成できな
いという問題がある。
In particular, this prior art is a method for stably passing pressurized molten metal material when the pouring pipe has a small diameter, but -a
When producing metal powder, there is a problem that if the pressure is too high, the flow rate of the molten metal material becomes too large and fine powder cannot be produced.

しかも、かかる従来技術には閉塞を防止する具体的方法
は開示されていない。
Moreover, such prior art does not disclose a specific method for preventing blockage.

本発明は、上記問題点を解消し、効率よく安定して微細
金属粉末を生産する方法およびその装置を提供すること
を目的とするものである。
An object of the present invention is to solve the above-mentioned problems and provide a method and apparatus for producing fine metal powder efficiently and stably.

(課題を解決するための手段) 上記目的を達成するため、種々研究を重ねた結果、以下
の構成によって本発明が完成された。
(Means for Solving the Problems) In order to achieve the above object, as a result of various studies, the present invention was completed with the following configuration.

すなわち、本発明は、流下する溶融金属流に高速のガス
ジェットを噴射して衝突させることにより当該溶融金属
材料を微粒化する方法および装置において、溶融金属材
料の貯留容器をガスシールできる溶解チャンバー内に収
納して適正な圧力を該溶解チャンバー内の溶融金属材料
の自由表面に印加できる手段と、溶融金属材料を貯留容
器から流出させてアトマイズノズルに小径の溶湯流とし
て供給する管状部材、すなわち注湯管の壁部温度を検知
する手段と、この検知した温度と予め設定した温度とを
比較してその温度差に応じて前記溶解チャンバー内の溶
融金属材料の自由表面に印加する圧力を調整して前記注
湯管の閉塞を防止するとともに注湯管からの流量を一定
とすることを特徴とする金属粉末の製造方法および装置
に関するものである。
That is, the present invention provides a method and apparatus for atomizing a molten metal material by injecting and colliding a high-speed gas jet into a flowing molten metal stream, in which a storage container for the molten metal material can be gas-sealed in a melting chamber. a tubular member, i.e., an atomizing nozzle; means for detecting the wall temperature of the hot water pipe; the detected temperature is compared with a preset temperature; and the pressure applied to the free surface of the molten metal material in the melting chamber is adjusted according to the temperature difference; The present invention relates to a method and apparatus for producing metal powder, characterized in that the molten metal pouring pipe is prevented from clogging and the flow rate from the molten metal pouring pipe is kept constant.

(作用) 本発明の構成および作用を詳細に説明する。(effect) The structure and operation of the present invention will be explained in detail.

アトマイズ法によって高温の溶融金属材料から粉末材料
を製造する場合、一般に溶融金属材料は3〜8m+wの
小口径の注湯管部分を通してアトマイズノズルに供給さ
れるので、これら小口径の注湯管を溶融金属材料が通過
する時の温度低下が大きく流動性を失うことによって溶
融金属の固化、さらには注湯管の閉塞トラブルが発生す
る。すなわち温度低下によって粘性が増加すると溶融金
属材料の2tfiが減少しその結果として更に注湯管の
温度が低下して溶融金属材料が固化して注湯管を閉塞す
るのである。
When producing a powder material from high-temperature molten metal material by the atomization method, the molten metal material is generally supplied to the atomizing nozzle through a small-diameter pouring pipe section of 3 to 8 m+W. When the metal material passes through, the temperature drop is large and fluidity is lost, causing solidification of the molten metal and further problems such as clogging of the pouring pipe. That is, when the viscosity increases due to a decrease in temperature, the 2tfi of the molten metal material decreases, and as a result, the temperature of the pouring pipe further decreases, causing the molten metal material to solidify and block the pouring pipe.

そこでこれを防止する方法として、本発明では、溶融金
属材料収納容器、つまり貯留容器からアトマイズノズル
の間で溶融金属の温度が最も低下する注湯管での壁部温
度を検知して予め設定した温度値以下となったとき貯留
容器を収納している溶解チャンバーを高圧ガスで加圧し
て溶融金属材料自由表面の圧力がアトマイズタンクに対
して高圧となるようにして注湯管を流れる熔融金属材料
の流量を見掛は上場前して注湯管の温度低下、つまり注
湯管の内壁面への溶融金属の凝着を防止するのである。
Therefore, as a method to prevent this, the present invention detects and presets the wall temperature of the molten metal material storage container, that is, the wall temperature of the pouring pipe where the temperature of the molten metal decreases the most between the storage container and the atomizing nozzle. When the temperature drops below the temperature value, the melting chamber containing the storage container is pressurized with high pressure gas so that the pressure on the free surface of the molten metal material becomes high pressure with respect to the atomization tank, and the molten metal material flows through the pouring pipe. The apparent flow rate is to prevent the temperature of the molten metal pouring pipe from dropping before listing, that is, to prevent molten metal from adhering to the inner wall surface of the molten metal pouring pipe.

このように、本発明の好適態様によれば、溶解チャンバ
ーとアトマイズタンクの圧力は監視される。なお、アト
マイズ中、アトマイズタンクlは大量の7トマイズガス
の流入によりアトマイズタンク内の圧力はアトマイズ前
よりも高圧になるのが普通であり、また操業条件によっ
てはアトマイズタンク内の圧力はアトマイズ中に変動す
ることもある、このときアトマイズタンク内の圧力を無
視して溶解チャンバーを加圧すれば溶解チャンバーとア
トマイズタンクとの圧力差が所望以下の値になることは
十分起こりうることであり、溶融金属材料の自由表面に
かかるみかけの圧力が少なくなるため溶融金属流の流量
は安定しない。このためアトマイズする都度に溶解チャ
ンバーとアトマイズタンクの圧力差を検知し、溶融金属
材料の流量を制?11することが好ましい、このような
圧力差の検知手段を設けることによりアトマイズ中の溶
解チャンバー内の溶湯金属材料のアトマイズタンク内へ
の流下に伴う体積の減少による圧力減少にも関係な(適
正な圧力を印加できるといった効果も期待できる。
Thus, according to a preferred embodiment of the invention, the pressure in the dissolution chamber and the atomization tank is monitored. During atomization, the pressure inside the atomization tank is normally higher than before atomization due to the inflow of a large amount of atomization gas, and depending on the operating conditions, the pressure inside the atomization tank may fluctuate during atomization. At this time, if the pressure inside the atomization tank is ignored and the melting chamber is pressurized, it is quite possible that the pressure difference between the melting chamber and the atomization tank will be lower than the desired value, and the molten metal The flow rate of the molten metal stream is less stable because the apparent pressure on the free surface of the material is reduced. Therefore, each time it is atomized, the pressure difference between the melting chamber and the atomization tank is detected and the flow rate of the molten metal material is controlled. 11, it is preferable to provide a means for detecting such a pressure difference, so that the pressure decrease due to the volume reduction accompanying the flow of the molten metal material in the melting chamber into the atomization tank during atomization (appropriate The effect of being able to apply pressure can also be expected.

ここに、注湯管の内壁面への溶融金属の凝着つまり断面
積減少ということであるから、溶解チャンバーの圧力を
増加して見掛は上の熔融金属の流量を増加することは常
に一定流量を確保することを意味する゛。
Here, since the molten metal adheres to the inner wall surface of the pouring pipe, which means a reduction in the cross-sectional area, increasing the pressure in the melting chamber and increasing the apparent flow rate of the molten metal is always constant. This means ensuring the flow rate.

注湯管の温度検知は直接溶融金属材料に触れる管状材料
の外側に密着させた金属製のバイブを配設して該金属製
パイプに熱電対を設置して行うのが適切である。
It is appropriate to detect the temperature of the pouring pipe by arranging a metal vibrator tightly attached to the outside of the tubular material that directly touches the molten metal material, and installing a thermocouple on the metal pipe.

前記金属製パイプに配設した熱電対によって検知した温
度から熱伝達計算によって注湯管内を流れる溶融金属材
料の温度を推定し当該材料の液相線温度より一般的に1
00〜300°C高温となるよう熔解チャンバーを高圧
ガスで加圧して溶融金属材料自由表面の圧力がアトマイ
ズタンクに対して高圧となるようにして注湯管を流れる
溶融金属材料の流量を増して温度低下を防止する。この
とき検知温度と設定値との差に応じた加圧度の設定には
例えば比例制御を用いればよい。
The temperature of the molten metal material flowing in the pouring pipe is estimated by heat transfer calculation from the temperature detected by the thermocouple installed in the metal pipe, and the temperature is generally 1 from the liquidus temperature of the material.
The melting chamber is pressurized with high pressure gas to reach a high temperature of 00 to 300°C, and the pressure on the free surface of the molten metal material becomes high pressure with respect to the atomization tank, thereby increasing the flow rate of the molten metal material flowing through the pouring pipe. Prevent temperature drop. At this time, proportional control may be used, for example, to set the degree of pressurization according to the difference between the detected temperature and the set value.

(実施例) 本発明を実施例により具体的に説明する。(Example) The present invention will be specifically explained with reference to Examples.

実施例1 第1図、第2図および第3図は本発明にかかる装置の概
略図である。
Example 1 FIGS. 1, 2 and 3 are schematic diagrams of an apparatus according to the present invention.

本発明にかかる金属微粉末の製造装置1は、注湯管2を
備えた貯留容器3を収容する溶解チャンバー4と、該溶
解チャンバー4から注湯管2を経て供給される熔融金属
5を噴霧微粉化させるアトマイズタンク6と、前記溶解
チャンバー4の内圧の制御手段と、該溶解チャンバー4
とアトマイズタンク6との圧力差の検知装置10と、溶
融金属5の噴霧中に熔融金属の流れる注湯管2の壁部温
度の検知手段11と壁部温度と設定温度値との差に応じ
て前記溶解チャンバー4内の圧力を調整する手段13.
13とを備えている0図示例ではこの圧力調整手段は弁
I3.13から構成される。
The metal fine powder manufacturing apparatus 1 according to the present invention includes a melting chamber 4 that accommodates a storage container 3 equipped with a pouring pipe 2, and a molten metal 5 that is supplied from the melting chamber 4 through the pouring pipe 2 and is sprayed. an atomization tank 6 for pulverization, a means for controlling the internal pressure of the dissolution chamber 4, and a dissolution chamber 4;
and the atomization tank 6, and the detection means 11 for the wall temperature of the pouring pipe 2 through which the molten metal flows during spraying of the molten metal 5, depending on the difference between the wall temperature and the set temperature value. 13. means for adjusting the pressure within the lysis chamber 4;
In the illustrated example, this pressure regulating means is constituted by a valve I3.13.

図中、粉末回収タンクをも兼ねるアトマイズタンク6の
上部にはアトマイズノズル7が設置されている。該アト
マイズノズル7の中央部には、アトマイズノズル7の上
方に設置された溶融金属を収容する貯留容器3の底部に
設けられた流下注入用開口8が設けられており、この流
下注入用開口8を通って前記溶融金M5が注湯管2を経
てアトマイズノズル7に供給され、噴霧される。粉末と
なった金属は前記のアトマイズタンク6の下方に集めら
れる。
In the figure, an atomizing nozzle 7 is installed above an atomizing tank 6 that also serves as a powder recovery tank. In the center of the atomizing nozzle 7, there is provided a downstream injection opening 8, which is provided at the bottom of the storage container 3 which is placed above the atomizing nozzle 7 and accommodates molten metal. The molten gold M5 is supplied to the atomizing nozzle 7 via the pouring pipe 2 and is atomized. The powdered metal is collected below the atomization tank 6.

第2図に示されているようにアトマイズノズル7の溶融
金属流下用開口8°の周囲にはガスジェットの噴射孔9
が環状に配置されており、これらの噴射孔9は溶融金属
流下用開口8”を通って流下してくる溶融金j[10に
対して所定の交差角θをもって設置され、例えば高圧窒
素ガスなどを前記溶融金属10に向けて噴射衝突させ、
粉化して粉末とするものである。
As shown in FIG. 2, gas jet injection holes 9 are located around the molten metal flow opening 8° of the atomizing nozzle 7.
are arranged in an annular shape, and these injection holes 9 are installed at a predetermined intersection angle θ with respect to the molten metal J[10 flowing down through the molten metal flow opening 8'', and are injected with, for example, high-pressure nitrogen gas to inject and collide toward the molten metal 10,
It is pulverized into powder.

第3図に示すように、注湯管2は直接溶融金属5に触れ
る管状部材2゛の外側に密着させて金属製パイプ16を
配設して成り、該金属製パイプ16の外側もしくは内部
に熱電対15を設置してその温度を検知するのが好まし
い。
As shown in FIG. 3, the pouring pipe 2 is composed of a metal pipe 16 disposed in close contact with the outside of a tubular member 2'' that directly touches the molten metal 5. Preferably, a thermocouple 15 is installed to detect the temperature.

前記金属製バイ116に配設した熱電対15によって検
知した温度から熱伝達計算によって注湯管内を流れる溶
融金属5の温度を推定し当該金属の液相vA湿温度り一
般的に100〜300℃高温となるよう溶解チャンバー
4を高圧ガスで加圧して溶融金属材料自由表面の圧力が
アトマイズタンク6に対して高圧となるようにして注湯
管2を流れる溶融金属10の流量を見掛は上増して温度
低下による閉塞を防止する。加圧に際してはアトマイズ
タンク6内の圧力と溶解チャンバー4内の圧力との差を
圧力計によって測定する。このとき検知温度と設定値と
の差に応じた加圧度の設定には例えば比例制御を用いる
The temperature of the molten metal 5 flowing in the pouring pipe is estimated by heat transfer calculation from the temperature detected by the thermocouple 15 disposed in the metal pipe 116, and the liquid phase vA humidity temperature of the metal is generally 100 to 300°C. The flow rate of the molten metal 10 flowing through the pouring pipe 2 is increased by pressurizing the melting chamber 4 with high pressure gas so that the pressure on the free surface of the molten metal material becomes high with respect to the atomization tank 6. This also prevents blockage due to temperature drop. When pressurizing, the difference between the pressure in the atomization tank 6 and the pressure in the dissolution chamber 4 is measured using a pressure gauge. At this time, proportional control, for example, is used to set the degree of pressurization according to the difference between the detected temperature and the set value.

例えば、注湯管の温度が低下し設定値との差がある値を
越えると溶解チャンバーとアトマイズタンクの圧力差を
検知し、圧力制御装置を作動させて圧力を溶解チャンバ
ーに加えることにより、溶融金属を注湯管から滞りなく
排出させるようにしてもよい、それでもなお温度が低下
する場合、溶解チャンバーとアトマイズタンクの圧力差
を検知しながら圧力制御装置により設定値との差に比例
して溶解チャンバーを加圧する。
For example, when the temperature of the pouring pipe decreases and the difference from the set value exceeds a certain value, the pressure difference between the melting chamber and the atomization tank is detected, and the pressure control device is activated to apply pressure to the melting chamber to melt the melt. The metal may be discharged smoothly from the pouring pipe, but if the temperature still drops, the pressure control device detects the pressure difference between the melting chamber and the atomization tank and melts the metal in proportion to the difference from the set value. Pressurize the chamber.

第4図には注湯管2内を流れる溶融金属5の温度と設定
値との差とそれに応じた加圧力との関係を示している。
FIG. 4 shows the relationship between the difference between the temperature of the molten metal 5 flowing in the pouring pipe 2 and a set value, and the corresponding pressing force.

溶融金属5が注湯管2を流れていくうちに温度が下がり
溶融金属5の温度と設定値との差がある値以下になると
、加圧装置14の弁13の操作によって溶解チャンバー
4内に高圧ガスを導入し溶融金属5を押し出す。閉塞防
止と一定流MflI保が行い得る。
As the molten metal 5 flows through the pouring pipe 2, the temperature decreases and when the difference between the temperature of the molten metal 5 and the set value becomes less than a certain value, the valve 13 of the pressurizing device 14 is operated to cause the molten metal 5 to flow into the melting chamber 4. High pressure gas is introduced to push out the molten metal 5. Prevention of occlusion and constant flow MflI can be achieved.

実施例2 注湯管2内の溶融温度の経時的な変化は、第5図のよう
になることが別途実験により分かったので、溶解チャン
バー4を第4図に基づいて第6図のように所定の温度に
なるように加圧力を調整できるよう圧力制御装置14に
プリセットしておき、アトマイズ開始とともに圧力調整
−溶湯流量制御を行った。
Example 2 It was found through a separate experiment that the melting temperature within the pouring pipe 2 changes over time as shown in Figure 5, so the melting chamber 4 was constructed as shown in Figure 6 based on Figure 4. The pressure control device 14 was preset so that the pressurizing force could be adjusted to a predetermined temperature, and pressure adjustment and molten metal flow rate control were performed at the start of atomization.

第1表および第2表には、第1図〜第3図に示す本発明
にかかる装置・方法、ならびに従来技術でそれぞれステ
ンレス鋼粉末を製造したときの結果を示す。
Tables 1 and 2 show the results when stainless steel powder was produced using the apparatus and method according to the present invention shown in FIGS. 1 to 3, and the conventional technology, respectively.

第1表 第2表 (発明の効果) 本発明は以上説明したように構成されているので吹上な
どによる装置損傷等のトラブルを全く発生せず、注湯管
内にて溶融金属が凝固閉塞することもなく安定して溶融
金属材料から微細な真球状粉末を生成でき、効率の良い
操業が可能となり生産性が向上し、産業上きわめて有益
である。
Table 1 Table 2 (Effects of the Invention) Since the present invention is configured as explained above, troubles such as equipment damage due to blow-up etc. do not occur at all, and molten metal solidifies and blocks in the pouring pipe. It is possible to stably generate fine, true spherical powder from molten metal material without any heat, enabling efficient operation and improving productivity, which is extremely useful industrially.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明方法による粉末製造装置の概略構成図
; 第2図は、本発明方法による粉末製造装置の構成部材で
あるアトマイズノズルと二重円筒の縦断面図; 第3図は、本発明方法による注湯管への熱電対取付側説
明図; 第4図は、溶湯温度と設定値との差に対応した加圧力の
関係説明図; 第5図は、アトマイズ開始後の時間と溶湯温度の関係説
明図:および 第6図は、アトマイズ開始後の時間と加圧度の関係説明
図である。 l:金属@わ)末の製造装置 2:注湯管 3:貯留容器 4:溶解チャンバー 5=溶融金属 6:アトマイズタンク 7:アトマイズノズル 8:流下注入用開口 II:温度検知手段 13:圧力検知手段 15;熱電対 16二金属製パイプ
FIG. 1 is a schematic configuration diagram of a powder manufacturing apparatus according to the method of the present invention; FIG. 2 is a longitudinal cross-sectional view of an atomizing nozzle and a double cylinder, which are the constituent members of the powder manufacturing apparatus according to the method of the present invention; FIG. An explanatory diagram of the thermocouple attachment side to the pouring pipe according to the method of the present invention; Figure 4 is an explanatory diagram of the relationship between the pressurizing force corresponding to the difference between the molten metal temperature and the set value; Figure 5 is an explanatory diagram of the relationship between the time after the start of atomization and the An explanatory diagram of the relationship between molten metal temperature: and FIG. 6 is an explanatory diagram of the relationship between the time after the start of atomization and the degree of pressurization. l: Metal @W) powder manufacturing equipment 2: Molten pouring pipe 3: Storage container 4: Melting chamber 5 = Molten metal 6: Atomizing tank 7: Atomizing nozzle 8: Downward injection opening II: Temperature detection means 13: Pressure detection Means 15; Thermocouple 16 Two metal pipes

Claims (2)

【特許請求の範囲】[Claims] (1)溶融金属材料を収容する貯留容器から注湯管を経
て流下する溶融金属流にアトマイズノズルからガスジェ
ットを噴射して衝突させることにより当該溶融金属材料
を微粒化する際に、前記貯留容器内の溶融金属材料の自
由表面に圧力を印加可能とするとともに、前記注湯管の
壁部温度を検知し、検知した温度と予め設定した温度と
の温度差に応じて前記圧力を調整して前記注湯管の閉塞
を防止するとともに前記溶融金属流の流量の一定化を図
ることを特徴とする金属微粉末の製造方法。
(1) When atomizing the molten metal material by injecting a gas jet from an atomizing nozzle and colliding with the molten metal stream flowing down from the storage container containing the molten metal material through the pouring pipe, the storage container A pressure can be applied to the free surface of the molten metal material in the pouring pipe, and the wall temperature of the pouring pipe is detected, and the pressure is adjusted according to the temperature difference between the detected temperature and a preset temperature. A method for producing fine metal powder, characterized by preventing clogging of the pouring pipe and stabilizing the flow rate of the molten metal flow.
(2)注湯管を備えた貯留容器を収容する溶解チャンバ
ーと、該貯留容器から注湯管を経て供給される溶融金属
を噴霧微粉化させるアトマイズノズルを備えたアトマイ
ズタンクと、前記溶解チャンバーの内圧の制御手段と、
該溶解チャンバーとアトマイズタンクとの圧力差の検知
手段と、溶融金属の噴霧中に溶融金属の流れる注湯管の
壁部温度を検知する手段と、その壁部温度と設定温度値
との差に応じて前記溶解チャンバー内の圧力を調整する
手段を備えた、金属微粉末の製造装置。
(2) a melting chamber that accommodates a storage container equipped with a pouring pipe; an atomization tank equipped with an atomizing nozzle that atomizes the molten metal supplied from the storage container via the pouring pipe; means for controlling internal pressure;
means for detecting the pressure difference between the melting chamber and the atomizing tank; means for detecting the wall temperature of the pouring pipe through which the molten metal flows during spraying; An apparatus for producing fine metal powder, comprising means for adjusting the pressure in the melting chamber accordingly.
JP25831989A 1989-10-03 1989-10-03 Method and apparatus for manufacturing metal fine powder Pending JPH03120304A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25831989A JPH03120304A (en) 1989-10-03 1989-10-03 Method and apparatus for manufacturing metal fine powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25831989A JPH03120304A (en) 1989-10-03 1989-10-03 Method and apparatus for manufacturing metal fine powder

Publications (1)

Publication Number Publication Date
JPH03120304A true JPH03120304A (en) 1991-05-22

Family

ID=17318593

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25831989A Pending JPH03120304A (en) 1989-10-03 1989-10-03 Method and apparatus for manufacturing metal fine powder

Country Status (1)

Country Link
JP (1) JPH03120304A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0622337U (en) * 1992-05-29 1994-03-22 日新技研株式会社 Powder production equipment
JPH0622343U (en) * 1992-05-29 1994-03-22 日新技研株式会社 Powder production equipment
JPWO2008117822A1 (en) * 2007-03-27 2010-07-15 京セラ株式会社 Cutting insert, cutting tool, and work material cutting method using the same
CN106694894A (en) * 2016-12-27 2017-05-24 深圳微纳增材技术有限公司 High-activity metal superfine powder preparation device and method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0622337U (en) * 1992-05-29 1994-03-22 日新技研株式会社 Powder production equipment
JPH0622343U (en) * 1992-05-29 1994-03-22 日新技研株式会社 Powder production equipment
JPWO2008117822A1 (en) * 2007-03-27 2010-07-15 京セラ株式会社 Cutting insert, cutting tool, and work material cutting method using the same
US8678717B2 (en) 2007-03-27 2014-03-25 Kyocera Corporation Cutting insert, cutting tool, and method of cutting work material using cutting tool
CN106694894A (en) * 2016-12-27 2017-05-24 深圳微纳增材技术有限公司 High-activity metal superfine powder preparation device and method

Similar Documents

Publication Publication Date Title
AU636569B2 (en) Atomising apparatus and process
US4897111A (en) Method for the manufacture of powders from molten materials
EP0682578B1 (en) Production of powder
US6481638B1 (en) Method and device for producing fine powder by atomizing molten material with gases
JPS5910961B2 (en) Youyukinzokuobiriyukasuruhouhou Oyobi Souchi
Schade et al. Atomization
JPH03120304A (en) Method and apparatus for manufacturing metal fine powder
KR20020009668A (en) method and apparatus for producing fine powder from molten liquid by high-pressure spray
US3533136A (en) Apparatus for producing metal powder
US4780130A (en) Process to increase yield of fines in gas atomized metal powder using melt overpressure
EP4019167A1 (en) Atomisation of metallic melts using liquid co2
US4374633A (en) Apparatus for the continuous manufacture of finely divided metals, particularly magnesium
JP2580616B2 (en) Method for producing spherical metal powder
JPH04276006A (en) Production of metal powder
JPH02115307A (en) Method for atomizing molten metal and pouring apparatus used to this method
JP2003512280A (en) Method and apparatus for producing powder formed from substantially spherical particles
JPS6244508A (en) Apparatus for producing powder
CA2273808A1 (en) Method and apparatus for granulating bee wax
JPH02228407A (en) Manufacture of metal powder
JP2528333B2 (en) Liquid spray method
JPS5919533A (en) Granulation of molten substance
JP2823972B2 (en) Molten metal outflow nozzle and method for producing metal powder
JP2023111851A (en) Apparatus for manufacturing metal powder and method for controlling the same
JPH01319608A (en) Production of spheroidal metal powder
KR20230117514A (en) Metal powder production apparatus and control method of the same