JPS5919533A - Granulation of molten substance - Google Patents

Granulation of molten substance

Info

Publication number
JPS5919533A
JPS5919533A JP57128998A JP12899882A JPS5919533A JP S5919533 A JPS5919533 A JP S5919533A JP 57128998 A JP57128998 A JP 57128998A JP 12899882 A JP12899882 A JP 12899882A JP S5919533 A JPS5919533 A JP S5919533A
Authority
JP
Japan
Prior art keywords
gas
nozzles
particles
amount
comminuted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57128998A
Other languages
Japanese (ja)
Inventor
Masami Fujiura
藤浦 正己
Michiaki Sakakibara
榊原 路「あ」
Masanobu Muranaka
村中 正信
Hideo Kato
秀男 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP57128998A priority Critical patent/JPS5919533A/en
Publication of JPS5919533A publication Critical patent/JPS5919533A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B2400/00Treatment of slags originating from iron or steel processes
    • C21B2400/02Physical or chemical treatment of slags
    • C21B2400/022Methods of cooling or quenching molten slag
    • C21B2400/026Methods of cooling or quenching molten slag using air, inert gases or removable conductive bodies
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B2400/00Treatment of slags originating from iron or steel processes
    • C21B2400/05Apparatus features
    • C21B2400/062Jet nozzles or pressurised fluids for cooling, fragmenting or atomising slag
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies

Landscapes

  • Manufacture Of Iron (AREA)
  • Glanulating (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

PURPOSE:To uniformize a heat exchange amount, by a method wherein the flow amounts of gases injected from upper and lower nozzles are alternately varied while a molten substance is flowed downwardly between both nozzles to vary the flight pattern of comminuted particles to eliminate the excessive accumulation of semi-solidified particles. CONSTITUTION:A molten substance 1 such as shaft furnace molten slag is flowed downwardly between gas jet nozzles 2, 3 having mutually independent gas supply systems and comminuted by gases injected from the nozzles 2, 3. In this atomizing method, only the amount of a gas injected from either one of the gas nozzles is varied with the elapse of time or the amounts of gases injected from both gas nozzles are alternately varied to change the scattered distribution formed in a comminuted state. As the result, the excessive accumulation of semi- solidified particles is eliminated while a welding and lump forming phenomenon is avoided and a heat exchange amount at each part is uniformized and the uniform cooling of particles and the level-up of a gas temp. can be attained.

Description

【発明の詳細な説明】 本発明はガス・アトマイズ法にてe、細化された粒子の
1故分布全制御する方法に関するものであるO 例えば、高炉から排出されるスラグのように高温で溶融
状態であるが温度が低下すると固体化するような物質を
ガス・アトマイズ法にて微細化し、粒状固体として得ろ
と同時に該物質が保有する熱を回収しようとする試みが
行われている。一般に、ガス・アトマイズ法は、供給さ
れる浴融物を〃スノズルから噴出する高速気体によって
吹きちぎって微細化するものである。微細化され粒状化
した該物質は窒中全飛翔中に冷却され、冷却の進行と共
に半凝固粒となり、やがて固体となる。高温で排出され
た溶融物の凝固点が低いものとか又はアトマイズされた
後の粒径が大きいものは固形化し難く、空中で冷却固化
しようとすると、7・1n空時間全多くとらねばならな
い。そこで固形化するためには落下距離を大きくするか
、若しくは大量の気体で粒子全遠方に飛ばすことによっ
て必要な滞空時間?得るしかないが、いずれの方法を取
るにしても、設備が大規模化し、熱回収を考える場合に
余り効率的とは云えない。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for completely controlling the distribution of fine particles in the gas atomization method. Attempts have been made to use a gas atomization method to atomize substances that solidify as the temperature decreases, obtain them as granular solids, and at the same time recover the heat held by the substances. Generally, in the gas atomization method, a supplied bath melt is blown off and atomized by high-speed gas ejected from a snorzzle. The fine and granular material is cooled while flying through nitrogen, becomes semi-solid particles as the cooling progresses, and eventually becomes solid. If the melt discharged at high temperature has a low freezing point or if the particle size after atomization is large, it is difficult to solidify, and if you try to cool and solidify it in the air, you will have to take a total of 7.1n free time. So, in order to solidify, do we have to increase the falling distance or use a large amount of gas to blow all the particles far away? However, no matter which method is used, the equipment becomes large-scale and cannot be said to be very efficient when considering heat recovery.

このようなことから、設備をコン・ぞクトにし、且つ熱
回収も充分行えるような半凝固状の両温粒子の捕集方法
全工夫する必要がある。半凝固粒子は適正量を捕集し、
速やかな冷却をしないと粒子が相互に再融着して塊化し
てしまい、所ホの粒子が得られないばかりか、熱回収も
満足に出来ない。
For this reason, it is necessary to devise a method for collecting semi-solidified bithermal particles that makes the equipment compact and allows for sufficient heat recovery. Semi-solidified particles collect the appropriate amount,
If the cooling is not carried out quickly, the particles will re-fuse with each other and become agglomerated, and not only will it be impossible to obtain the desired particles, but also the heat recovery will not be satisfactory.

第1図は、ガス・アトマイズ法におけるノズル配置の一
例を示しtものである。従来のガス・アトマイズ法では
、溶融物供給蓋と気体量との比は多少の変動はあるが、
はぼ一定に保たれている。
FIG. 1 shows an example of nozzle arrangement in the gas atomization method. In the conventional gas atomization method, the ratio between the melt supply lid and the amount of gas varies slightly;
is kept more or less constant.

従って、溶融物量が一定なら気体ノズルから噴出する気
体量も第2図に示すように一定となり、その結果、微細
化されて飛翔する粒子の飛翔)9ターンは一定となり、
落下後の堆積密度はほぼ第3図に示される如くなる。こ
の画一的・9ターンの場合、ピーク値近傍では粒子相互
−着がしばしば発生し、操業を停止せざるを得ないとい
う問題があった。
Therefore, if the amount of melted material is constant, the amount of gas ejected from the gas nozzle will also be constant as shown in Figure 2, and as a result, the flight of fine particles (9 turns) will be constant,
The deposition density after falling is approximately as shown in FIG. In the case of this uniform 9 turns, there was a problem that particles often adhered to each other near the peak value, and the operation had to be stopped.

又密度の低い部所では熱交換量が少なく、ガス温度が余
り上らない。
Also, in areas with low density, the amount of heat exchange is small, and the gas temperature does not rise much.

本発明はこのような従来法における問題を同時に解決す
る方法として提供されたもので、その要旨とするところ
は、互いに独立した気体供給制御有する気体噴射ノズル
間に溶融物全流下し、該気体ノズルからの噴射気体によ
り溶融物を微細化するガス・アトマイズ方法において、
いずれか片11111]の気体ノズルから噴射する気体
量だけ全経時的に変動させるが、又は双方の気体ノズル
から噴射する気体量全交臣に変動させることによって、
e、細化され、形成された粒子の飛散分布kf化きせる
こと全特徴とする溶融物の粒化方法にある。
The present invention was provided as a method for simultaneously solving the problems in the conventional method, and its gist is that the entire melt flows between gas injection nozzles having mutually independent gas supply controls, and the gas nozzles In the gas atomization method, which atomizes the molten material by using a jet of gas from
By varying the amount of gas injected from the gas nozzle of either piece 11111 over time, or by varying the amount of gas injected from both gas nozzles,
e. A method for granulating a melt, which is characterized in that the scattering distribution of the formed particles is reduced to kf.

以■、本発明を図面にもとづいて更に詳細に説明する。Hereinafter, the present invention will be explained in more detail based on the drawings.

第1図は、ガス・アトマイズ法におけるノズル配置及び
気体制御系の一例を示したものである。
FIG. 1 shows an example of the nozzle arrangement and gas control system in the gas atomization method.

例えば、溶融スラグの場合、樋1によっ−C供給きれ、
上下に配置した気体ノズル2,3によって微細化され、
粒状物4となって飛翔する。気体ノズル2,3に供給さ
れる気体は、夫々独立した供給配管及び調節弁5.6に
よって制御されている。
For example, in the case of molten slag, -C is not supplied by gutter 1,
It is made finer by the gas nozzles 2 and 3 placed above and below,
It becomes particulate matter 4 and flies. The gas supplied to the gas nozzles 2, 3 is controlled by independent supply piping and control valves 5.6.

弁5,6を制御する制御器7には、ノズル2,3に供給
されるエア量の相関が取れるようeこlっており、スラ
グ量に対し、エア量を適正配分することができる。本発
明例ではこの上下ノズルに対する供給エア量の配分に経
時変死金与えるようにしたもので、第4図に示すように
経時的に上下気体ノズルのエアiB変化させると、飛翔
粒子の堆積密度パターンは第5図の如く変化する・例え
ば下ノズルのエア量金ケンから(ロ)へ連続的に減少さ
せ、それに促って、上ノズルエア量は←慢からに)へ増
加させることによって、微細化能力が確保芒れると共に
、粒子の飛翔・平り−ンの中心は連続的に(ホ)から(
へ)に変化し、又今度は引続き下ノズルのエア葉音(ロ
)からばつへ増加させ、−万上ノズルエアー量全に)か
ら(ト)へ減少させることによって粒子の飛翔・ぞター
ンの中心は連続的に(へ)から(ホ)に変化し堆積密度
分布の均一化が計られる。この結果、過度な半凝固粒の
堆積がなくなυ、融着塊化現象がなくなると共に各部で
の熱交換量も均一化きれ、粒子の均一冷却とガス温度の
レペルアッグがはかられる。
The controller 7 that controls the valves 5 and 6 is equipped with an e-control so that the amount of air supplied to the nozzles 2 and 3 can be correlated, so that the amount of air can be appropriately distributed to the amount of slag. In the example of the present invention, the distribution of the amount of air supplied to the upper and lower nozzles is given a time-varying dead charge, and as shown in FIG. changes as shown in Fig. 5. For example, by continuously decreasing the air amount of the lower nozzle from (1) to (2), and prompting this to increase the upper nozzle air amount from (2) to As the ability is secured, the center of the particle flight and plane continuously changes from (E) to (
), and then continue to increase the air volume of the lower nozzle from (B) to (G), and then decrease the nozzle air volume from (B) to (G), thereby reducing the center of the particle flight and turn. changes continuously from (f) to (e) to make the deposition density distribution uniform. As a result, there is no excessive accumulation of semi-solidified particles υ, the phenomenon of fusion and agglomeration is eliminated, and the amount of heat exchanged at each part is made uniform, thereby achieving uniform cooling of the particles and leveling of the gas temperature.

以上のように上下のノズル間に浴融物を流下させな、が
ら双方のノズルの噴射気体流量を交立に変動させること
によって微細化された粒子の飛翔パターンを変動させる
例で本発明を説明したが、本発明の実施態様としてはこ
の他に左右の水平方向にノズル?配置して双方のノズル
の気体1tt−交1iに変動させる方法、及び上下若し
くは左右eこノズルを配置していずれか一方のノズルの
気体流量だけ全経時的に変動させる方法があり同様に粒
子の飛翔ノ!ターンを変動させることができる。
As described above, the present invention will be explained using an example in which the flight pattern of fine particles is varied by alternating the injection gas flow rate of both nozzles while causing the bath melt to flow between the upper and lower nozzles. However, as an embodiment of the present invention, there are other nozzles in the left and right horizontal directions. There is a method of arranging the nozzles to vary the gas flow rate of both nozzles to 1tt - 1i, and a method of arranging upper and lower nozzles or left and right e nozzles and varying the gas flow rate of one nozzle over time. Flying! Turns can be varied.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はエア制御フローと、粒化部の説明図、第2図は
従来法による上下ノズル供給エア量の制イ卸ノjターン
金示す図、第3図は従来の制御法による微細化後の粒子
の堆積密度分45を示す図、第4図は本発明による上下
ノズルへの気体供給制御・9ターンを示す図、第5図は
本発明による!lt制御全行った場合の、飛翔粒子の瞬
間的堆積密度パターンrノズルから最遠時と直近時につ
いて示した図である。 l:液供給樋、2:気体下ノズル、3:気体上ノズル、
4.飛翔粒子、5,6:調節弁、7:制御卸器。
Figure 1 is an explanatory diagram of the air control flow and the granulation section. Figure 2 is a diagram showing the control flow of the air amount supplied to the upper and lower nozzles using the conventional method. Figure 3 is a diagram showing the control of the flow rate of air supplied to the upper and lower nozzles using the conventional method. A diagram showing the subsequent particle accumulation density 45, FIG. 4 is a diagram showing nine turns of gas supply control to the upper and lower nozzles according to the present invention, and FIG. 5 is a diagram according to the present invention! FIG. 7 is a diagram showing the instantaneous deposition density pattern of flying particles at the farthest point and the closest point from the r nozzle when all lt control is performed. l: liquid supply gutter, 2: lower gas nozzle, 3: upper gas nozzle,
4. Flying particles, 5, 6: control valve, 7: control device.

Claims (1)

【特許請求の範囲】[Claims] 互いに独立し之気体供給系を有する気体噴射ノズル間に
浴融物を流下し、該気体ノズルからの噴射気体により溶
融物を微細化するガス・アトマイズ方法において、いず
れか片側の気体ノズルから噴射する気体量だけを経時的
に変動させるか、又は双方の気体ノズルから噴射する気
体量を交乱に変動させることによって、微細化嘔れ、形
成された粒子の飛散分布を変化させることを%徴とする
溶融物の粒化方法。
In a gas atomization method in which a bath melt flows down between gas injection nozzles having mutually independent gas supply systems and the melt is atomized by the injection gas from the gas nozzles, injecting from the gas nozzle on either side. By varying only the amount of gas over time or by alternatingly varying the amount of gas injected from both gas nozzles, it is possible to change the scattering distribution of particles formed by atomization. A method of granulating a melt.
JP57128998A 1982-07-26 1982-07-26 Granulation of molten substance Pending JPS5919533A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57128998A JPS5919533A (en) 1982-07-26 1982-07-26 Granulation of molten substance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57128998A JPS5919533A (en) 1982-07-26 1982-07-26 Granulation of molten substance

Publications (1)

Publication Number Publication Date
JPS5919533A true JPS5919533A (en) 1984-02-01

Family

ID=14998605

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57128998A Pending JPS5919533A (en) 1982-07-26 1982-07-26 Granulation of molten substance

Country Status (1)

Country Link
JP (1) JPS5919533A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60214709A (en) * 1975-10-02 1985-10-28 ストウフアーケミカル・カンパニー Herbicidal composition
CN100366389C (en) * 2003-01-17 2008-02-06 Jfe金属材料株式会社 Manufacturing method of high-carbon chromium iron slag grinded by wind power and sand-blast material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60214709A (en) * 1975-10-02 1985-10-28 ストウフアーケミカル・カンパニー Herbicidal composition
CN100366389C (en) * 2003-01-17 2008-02-06 Jfe金属材料株式会社 Manufacturing method of high-carbon chromium iron slag grinded by wind power and sand-blast material

Similar Documents

Publication Publication Date Title
US20240042480A1 (en) Fluid Bed Granulation Process and Apparatus
FI72056B (en) FOERFARANDE FOER FRAMSTAELLNING AV GRANULER UPPBYGGDA AV EN KARNA OCH ETT HOELJE
CN100493783C (en) Method and apparatus for producing fine particles
CA1086914A (en) Process for production of magnetite spheres with an arc heater
JP2002508441A (en) Method and apparatus for producing fine powder by melt atomization using gas
GB1567102A (en) Apparatus and method for cooling particulate slag
JPS5919533A (en) Granulation of molten substance
KR20020009668A (en) method and apparatus for producing fine powder from molten liquid by high-pressure spray
JPS59125742A (en) Heat treating equipment of powder or granular
US4113239A (en) Apparatus for cooling slag
JPH03120304A (en) Method and apparatus for manufacturing metal fine powder
CA2273808A1 (en) Method and apparatus for granulating bee wax
JPH10216499A (en) Improved method of pelletizing and pelletizer
JPH0236538B2 (en)
JP2930655B2 (en) Method and apparatus for producing spherical slag
RU2758047C2 (en) Apparatus for producing spherical metal powders
JP2004298721A (en) Particulate preparation apparatus
JP2003512280A (en) Method and apparatus for producing powder formed from substantially spherical particles
SU921618A1 (en) Apparatus for granulating and/or encapsulating loose materials
KR200218184Y1 (en) Uniformly granulating apparatus for slag granulation of blast furnace
JP3226809B2 (en) Manufacturing method of hollow granule mold flux
JPH0442843A (en) Production of cement and apparatus therefor
AU2021275362A1 (en) Method and device for dry granulation
JPH02129308A (en) Manufacture of metal powder
JPS5922642A (en) Granulating and scattering device for slag particle