JPH03118978A - Root submerged arc welding method for extra-thick plate multilayer welding - Google Patents

Root submerged arc welding method for extra-thick plate multilayer welding

Info

Publication number
JPH03118978A
JPH03118978A JP25464089A JP25464089A JPH03118978A JP H03118978 A JPH03118978 A JP H03118978A JP 25464089 A JP25464089 A JP 25464089A JP 25464089 A JP25464089 A JP 25464089A JP H03118978 A JPH03118978 A JP H03118978A
Authority
JP
Japan
Prior art keywords
welding
electrode
wire
submerged arc
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25464089A
Other languages
Japanese (ja)
Other versions
JPH0532155B2 (en
Inventor
Kaoru Hase
薫 長谷
Toshio Yamaguchi
敏男 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP25464089A priority Critical patent/JPH03118978A/en
Publication of JPH03118978A publication Critical patent/JPH03118978A/en
Publication of JPH0532155B2 publication Critical patent/JPH0532155B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Arc Welding In General (AREA)

Abstract

PURPOSE:To prevent the occurrence of weld defects of the joint part root and to improve welding efficiency at the time of performing multilayer welding on extra-thick plates by submerged arc welding by using two electrodes by regulating Y-shaped groove shape dimensions and performing submerged arc welding of the root part under specified welding conditions. CONSTITUTION:In multilayer welding of the extra-thick plates 1 and 1 by submerged arc welding by using the two electrodes of a preceding electrode L and a succeeding electrode T having 5.3-8.0mm<phi> diameter and a wire shape on a Y-shaped groove joint having 1-8mm root face (l) and 40-55 deg. groove angle theta, the root part is subjected to submerged arc welding under the welding conditions of the distance (d) of 40-80mm between the electrodes, a wire tilt angle alpha of -15 deg.-+5 deg. at the preceding electrode L and 0 deg.-+20 deg. at the succeeding electrode T, wire extension length (h) of 40-120mm at the preceding electrode L and 50-120mm at the succeeding electrode T, 1000-2000A current of the L electrode and 800-1800A current of the T electrode, the current different of 100-600A between both electrodes L and T, the current ratio of 0.75-1.0 between both electrodes L and T and the welding speed of 15-45cm/min.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は板厚が60mn+以上の超厚板の多層溶接、特
にボックス柱角継手部の高能率施工が可能な潜弧溶接方
法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to multilayer welding of very thick plates having a thickness of 60 mm+ or more, and particularly to a submerged arc welding method that enables highly efficient construction of box column angle joints.

(従来の技術及び解決しようとする課題)一般に、板厚
が60mm以上のボックス柱角継手部は、従来より、多
層溶接が採用されており、第1図に示すように、10〜
20mn+程度のギャップ(g)を取り、下盛をCO2
ガスシールドアーク溶接により、また上盛を潜弧溶接に
より施工されている。しかし、このような施工法では、
開先断面積が大きく、且つ潜弧溶接に比べてCO2ガス
シールドアーク溶接は非能率的であるため、生産性の向
上はできないという欠点があった。
(Prior art and problems to be solved) Generally, multi-layer welding has been used for box-column corner joints with a plate thickness of 60 mm or more, and as shown in Fig.
Take a gap (g) of about 20mm+ and place the bottom layer with CO2
It is constructed by gas-shielded arc welding, and the upper layer is constructed by submerged arc welding. However, with this construction method,
Since the cross-sectional area of the groove is large and CO2 gas shielded arc welding is less efficient than submerged arc welding, it has the disadvantage that productivity cannot be improved.

一方、開先断面積を小さくした上で、初層から大入熱の
潜弧溶接を用いて多層溶接すれば高能率施工とはなるが
、特に初層の溶接部に欠陥が発生し易く、これを解決す
る方策が見い出されていない。
On the other hand, if the cross-sectional area of the groove is reduced and multi-layer welding is performed using latent arc welding with large heat input from the first layer, highly efficient construction can be achieved, but defects are particularly likely to occur in the welded part of the first layer. No solution has been found to solve this problem.

本発明は、超厚板多層溶接に関する上記従来技術の問題
点を解決するためになされたものであって、特に初層部
を溶接欠陥がなく高能率で潜弧溶接できる溶接方法を提
供することを目的とするものである。
The present invention has been made in order to solve the above-mentioned problems of the prior art regarding multi-layer welding of ultra-thick plates, and in particular to provide a welding method that can perform latent arc welding with high efficiency without welding defects on the first layer. The purpose is to

(課題を解決するための手段) 前述の如く、超厚板の初層から大入熱潜弧溶接を行う場
合には、特に初層の溶接部に欠陥が発生し易いという問
題がある。すなわち、初層溶接部は開先面でビード幅を
制限されるため、溶込みが深くビード幅が狭くなる形状
となり、いわゆる梨型ビード形状による高温割れが発生
し易い。また、初層部は開先幅も狭いため、アンダーカ
ットが発生し易くなり、スラグ剥離性も急激に劣化する
(Means for Solving the Problems) As described above, when high heat input latent arc welding is performed from the first layer of an extremely thick plate, there is a problem in that defects are likely to occur particularly in the welded portion of the first layer. That is, since the bead width of the first layer weld is limited by the groove surface, the weld has a shape where penetration is deep and the bead width is narrow, and hot cracking due to the so-called pear-shaped bead shape is likely to occur. Furthermore, since the groove width in the initial layer portion is narrow, undercuts are likely to occur, and slag removability also deteriorates rapidly.

そこで、初層の潜弧溶接条件及び開先形状等について鋭
意研究を重ねた結果、開先角度40〜55°のY型開先
継手を採用し、ワイヤ傾斜角度。
Therefore, as a result of intensive research on the submerged arc welding conditions for the first layer and the groove shape, we adopted a Y-type groove joint with a groove angle of 40 to 55 degrees, and the wire inclination angle.

ワイヤ突出し長さ、電流電圧、溶接速度等の条件を規制
することにより、経済的(開先断面積が小さい)で効能
率な施工が可能であることを見い出し、ここに本発明を
なしたものである。
It was discovered that economical (small groove cross-sectional area) and efficient construction is possible by regulating conditions such as wire protrusion length, current voltage, welding speed, etc., and the present invention was thus made. It is.

すなわち、本発明は、ルートフェースρ:1〜8mm、
開先角度θ:40〜55°のY型開先継手を、直径5,
3〜8.Ommφのワイヤ状の先行電極(L)及び後行
電極(T)を使用して潜弧溶接する超厚板の多層溶接に
おいて、その初層部を極間距離d=40〜80aI11
1 ワイヤ傾斜角度α(L)=−15°〜+5゜〃   α
(T)=O’〜+20゜ ワイヤ突出し長さh (L)= 40〜120mn+h
 (T)= 50〜120mm (L)極の電流: 1000〜200OA(T)極(7
)IT  :800〜1800A(L)極−(T)極の
電流差:100〜600A(L)極/(T)極の電圧比
:0.75〜1.OO溶接速度: 15〜45cm/m
in の条件で潜弧溶接することを特徴とするものである。
That is, the present invention provides root face ρ: 1 to 8 mm,
A Y-type groove joint with groove angle θ: 40 to 55 degrees, diameter 5,
3-8. In multi-layer welding of very thick plates in latent arc welding using Ommφ wire-shaped leading electrodes (L) and trailing electrodes (T), the initial layer is separated by a distance between electrodes d=40-80aI11
1 Wire inclination angle α (L) = -15° ~ +5°〃 α
(T)=O'~+20゜Wire protrusion length h (L)=40~120mn+h
(T) = 50~120mm (L) pole current: 1000~200OA (T) pole (7
) IT: 800-1800 A (L) pole - (T) pole current difference: 100-600 A (L) pole/(T) pole voltage ratio: 0.75-1. OO welding speed: 15-45cm/m
This method is characterized by submerged arc welding under conditions of in.

以下に本発明を更に詳細に説明する。The present invention will be explained in more detail below.

(作用) 本発明においては、ワイヤ状の先行電極と後行電極の2
電極を使用してY型の開先継手を潜弧溶接する多層溶接
を前提とするものである。
(Function) In the present invention, there are two wire-shaped leading electrodes and trailing electrodes.
This method is based on multilayer welding in which a Y-shaped groove joint is submerged arc welded using an electrode.

この場合、Y型開先継手は、第2図に示すように、ルー
トフェイスaが1〜8mm、開先角度θが40〜55″
′とする必要がある。
In this case, the Y-type groove joint has a root face a of 1 to 8 mm and a groove angle θ of 40 to 55'', as shown in Fig. 2.
′.

ルートフェイスQが1mmよりも少ないと溶込みが細く
深過ぎて溶は落ち、高温割れが発生し易くなり、一方、
Qが8mmよりも多いと溶込み不足が発生し易い。
If the root face Q is less than 1 mm, the penetration will be too thin and deep, and the melt will fall off, making it easy for hot cracks to occur.
When Q is more than 8 mm, insufficient penetration tends to occur.

また、開先角度θが40″′よりも小さいとスラグ剥離
性や耐高温割れ性が劣化し、一方、θが55°よりも大
きいと開先面積が広過ぎて溶接能率が悪く、非経済的で
ある。
In addition, if the groove angle θ is smaller than 40″', slag releasability and hot cracking resistance will deteriorate, while if θ is larger than 55°, the groove area will be too wide and welding efficiency will be poor, making it uneconomical. It is true.

更に、使用する先行電極と後行電極は直径5゜3〜8 
、 O[1110φのワイヤ状のものとする必要がある
。ワイヤ径が5 、3 mmよりも細いと溶込みが過剰
になり、ビード底部のビード幅が狭くなるため、高温割
れ、融合不良、スラグ巻込み等の欠陥が発生し易くなる
。またワイヤ送給速度が早くなり、送給に無理が生じる
。一方、ワイヤ径が8.0mmよりも太いとワイヤが硬
くなり、取り扱いが不便であると共に、ワイヤの矯正も
困難となって所定位置にワイヤを位置させ難く、ズレが
発生し易くなる。
Furthermore, the leading electrode and trailing electrode used have a diameter of 5°3~8.
, O[1110φ wire shape. If the wire diameter is thinner than 5.3 mm, the penetration will be excessive and the bead width at the bottom of the bead will become narrow, making it more likely that defects such as hot cracking, poor fusion, and slag entrainment will occur. Moreover, the wire feeding speed increases, making it difficult to feed the wire. On the other hand, if the wire diameter is larger than 8.0 mm, the wire becomes hard, making it inconvenient to handle, and also making it difficult to straighten the wire, making it difficult to position the wire in a predetermined position, and causing misalignment.

次に、初層の潜弧溶接の条件について説明する。Next, the conditions for submerged arc welding of the first layer will be explained.

少」1肌亙1」4 先行電極(L)と後行電極(T)との極間距離d(第3
図参照)は40〜80mmとする。これにより、先行電
極により形成された溶融金属のプールが半凝固状態のと
きに後行電極により溶融金属のプールが形成されるので
、いわゆるセミワンプール状態で溶融金属が形成され、
高温割れが防止される。
The distance d between the leading electrode (L) and the trailing electrode (T) (the third
(see figure) shall be 40 to 80 mm. As a result, a pool of molten metal is formed by the trailing electrode when the pool of molten metal formed by the leading electrode is in a semi-solidified state, so that the molten metal is formed in a so-called semi-solid state.
High temperature cracking is prevented.

しかし、極間距離dが40++un未満の場合には、ワ
ンプール溶接の状態となり、1電極により溶接する場合
と同様の状態となって高温割れが発生する。一方、極間
距離dが80mmを超えると、いわゆるツープールで溶
接が進行する状態、つまり先行電極によるプールが完全
に凝固した後に後行電極が通過することになり、先行電
極の溶接金属に発生した高温割れが後行電極の通過後に
も消失せずに残存する。
However, if the inter-electrode distance d is less than 40++ un, one-pool welding occurs, which is the same as when welding with one electrode, and hot cracking occurs. On the other hand, if the interelectrode distance d exceeds 80 mm, welding progresses in a so-called two-pool manner, in other words, the trailing electrode passes through after the pool formed by the leading electrode has completely solidified, and this occurs in the weld metal of the leading electrode. The hot crack remains without disappearing even after passing the trailing electrode.

■ワイヤ 1  α 電極を傾斜する場合、第3図に示すように、溶接方向に
対して直角な方向のときをOoとし、後方に倒すときを
(+)とし、前側に倒すときを(−)とすると、先行電
極(L)のワイヤ傾斜角度α(L)は−15°〜+5°
とし、後行電極(T)のワイヤ傾斜角度α(T)は0゜
〜+20°とする。
■Wire 1 α When tilting the electrode, as shown in Figure 3, Oo is when it is perpendicular to the welding direction, (+) is when it is tilted backwards, and (-) is when it is tilted forward. Then, the wire inclination angle α(L) of the leading electrode (L) is -15° to +5°
The wire inclination angle α(T) of the trailing electrode (T) is 0° to +20°.

しかし、先行電極(1、)のワイヤ傾斜角度α(L)を
(−)側に強くするほど溶込みが深くなり、ビード幅が
狭くなるが、α(L)が−15°より小さいと、つまり
−15°より前方に強く傾斜すると溶込みが過剰になる
と共にビード底部のビード幅が狭くなり、ビード形状が
凸になり、高温割れが発生し易くなる。一方、ワイヤ傾
斜角度α(L)が+5°より大きい場合は、溶融金属が
前方に流れると共にスラグが先行し易くなり、溶込みの
不安定。
However, as the wire inclination angle α(L) of the preceding electrode (1,) is made stronger toward the (-) side, the penetration becomes deeper and the bead width becomes narrower, but if α(L) is smaller than -15°, In other words, if the bead is strongly tilted forward beyond -15°, penetration will be excessive, the bead width at the bead bottom will be narrowed, the bead shape will become convex, and hot cracking will easily occur. On the other hand, when the wire inclination angle α(L) is larger than +5°, the molten metal flows forward and the slag tends to advance, resulting in unstable penetration.

融合不良が発生する。Poor fusion occurs.

また、後行電極(T)のワイヤ傾斜角度α(T)が00
より小さいと、ビード幅が狭くなり、ビード形状が凸に
なる。一方、ワイヤ傾斜角度α(T)が+2o°を超え
ると、後行電極(T)の溶込みが浅くなり、先行電極(
L)の溶接金属に高温割れが発生し易くなり、またビー
ド幅が広くなり、アンダーカットが発生するため、スラ
グ剥離性が劣化する。
Also, the wire inclination angle α(T) of the trailing electrode (T) is 00
If it is smaller, the bead width becomes narrower and the bead shape becomes convex. On the other hand, when the wire inclination angle α(T) exceeds +2o°, the penetration of the trailing electrode (T) becomes shallow and the leading electrode (
The weld metal L) is more likely to undergo hot cracking, the bead width becomes wider, and undercuts occur, resulting in poor slag removability.

■ワイヤ  し さh ワイヤ突出し長さは、電極の通電部から開先底部までの
距離h(第3図参照)であるが、一般的に突出し長さが
長い方がジュール熱が多く発生し、ワイヤ溶融速度が速
いため、溶接能率が向上するが、溶接欠陥の防止などの
観点を考慮して適正に決める必要があり、本発明の場合
、先行電極(r、)のワイヤ突出し長さh(L)は40
〜120mmとし、後行電極(T)のワイヤ突出し長さ
h (T)は50〜120mmとする。
■Wire length h The wire protrusion length is the distance h from the current-carrying part of the electrode to the bottom of the groove (see Figure 3), but in general, the longer the protrusion length, the more Joule heat is generated. Since the wire melting speed is high, welding efficiency improves, but it must be determined appropriately taking into consideration the prevention of welding defects, etc. In the case of the present invention, the wire protrusion length h( L) is 40
120 mm, and the wire protrusion length h (T) of the trailing electrode (T) is 50 to 120 mm.

先行電極(L)のワイヤ突出し長さh(L)が40m1
1未満であると、ビード底部のビード幅が狭くなるので
高温割れが発生し易くなる。また、ワイヤの溶融速度が
遅くなり、非能率的である。更には、生成した溶融スラ
グを引きづり易くなり、ビード外観が劣化する。一方、
突出し長さh(L)が120mmを超えると、溶は込み
不足が発生し易い。
The wire protrusion length h (L) of the leading electrode (L) is 40 m1
When it is less than 1, the bead width at the bottom of the bead becomes narrow, making it easy for hot cracking to occur. Also, the melting rate of the wire is slow, which is inefficient. Furthermore, the generated molten slag tends to drag, and the appearance of the bead deteriorates. on the other hand,
When the protrusion length h (L) exceeds 120 mm, insufficient melt penetration tends to occur.

また、後行電極(T)のワイヤ突出し長さh (T)が
50+nm未満であると、ワイヤ溶融速度が遅くなるの
で非能率的であると共に生成した溶融スラグを引きづり
易くなり、ビード外観が劣化する。また(T)極の溶込
みが深くなり、後行電極によるビードに高温割れが発生
し易くなる。一方、突出し長さh(T)が120mmを
超えると、ビード幅が狭くなってオーバーラツプが生じ
、ビード外観が劣化する。また、後先電極の溶込みが不
足するため、先行電極によるビードに高温割れが発生し
易くなる。
Furthermore, if the wire protrusion length h (T) of the trailing electrode (T) is less than 50+ nm, the wire melting speed will be slow, resulting in inefficiency, and the generated molten slag will be easily dragged, resulting in poor bead appearance. to degrade. Furthermore, the penetration of the (T) electrode becomes deep, making it easy for hot cracks to occur in the bead caused by the trailing electrode. On the other hand, if the protrusion length h(T) exceeds 120 mm, the bead width becomes narrow and overlap occurs, deteriorating the bead appearance. Furthermore, since the penetration of the trailing electrode is insufficient, hot cracking is likely to occur in the bead formed by the leading electrode.

麿−町11L波 各電極の電流は高電流とし、先行電極(L)の電流は1
000〜2000A、後行電極(T)の電流は800−
1800Aとする。しかし、先行電極(L)の電流が1
00OA未満では溶込みが不足し。
Maro-cho 11L wave The current of each electrode is high current, and the current of the preceding electrode (L) is 1
000-2000A, the current of the trailing electrode (T) is 800-
It is assumed to be 1800A. However, the current of the leading electrode (L) is 1
If it is less than 00OA, penetration will be insufficient.

また200OAを超えると溶は落ちが生じたり、ビード
形状が劣化すると共に、高温割れが発生する。一方、後
行電極(T)の電流が800A未満であるとビードの広
がりが不足し、オーバラップ及びスラグ巻込みが発生し
、また1800Aを超えると、溶は落ちが生じたり、ビ
ード形状が劣化すると共に、高温割れが発生する。
Moreover, if it exceeds 200 OA, melt dripping occurs, the bead shape deteriorates, and hot cracking occurs. On the other hand, if the current of the trailing electrode (T) is less than 800A, the bead will not spread sufficiently, causing overlap and slag entrainment, and if it exceeds 1800A, the melt will drop or the bead shape will deteriorate. At the same time, hot cracking occurs.

■  電極と  電極の電 高温割れを防止すると共にビード形状を適切なものにす
るために、先行電極(L)と後行電極(′r)との電流
差、すなわち、(先行電極電流)−(後行m極電流)の
値(L−T)を1oO〜6oOAの範囲とする。この差
(L −T)が100Aよりも小さいと後行電極による
ビードに高温割れが発生し、一方、600Aよりも大き
いと先行電極によるビードに高温割れが発生する。
■ In order to prevent electrical hot cracking between the electrodes and to make the bead shape appropriate, the current difference between the leading electrode (L) and the trailing electrode ('r), that is, (leading electrode current) - ( The value (LT) of the trailing m-pole current is in the range of 1oO to 6oOA. If this difference (L - T) is smaller than 100 A, hot cracking occurs in the bead caused by the trailing electrode, while if it is larger than 600 A, hot cracking occurs in the bead caused by the leading electrode.

■   電極と  電 の電圧 一般的に電圧が低い方がビードが深く形成され易く、電
圧が高い方が溶接ビードの広がりが良くなるが、溶接欠
陥の発生防止を考慮して、先行電極と後行電極の電圧差
、すなわち、(先行電極電圧)/(後行電極電圧)の比
を0.75〜1.00の範囲とする。この比の値が0.
75未満ではアンダーカットが発生し易く、スラグ剥離
性が劣化し、また1、00を超えるとオヘパーラップ及
びスラグ巻込みが発生する。
■ Electrode and voltage In general, the lower the voltage, the deeper the bead will be formed, and the higher the voltage, the better the spread of the weld bead. The voltage difference between the electrodes, that is, the ratio of (preceding electrode voltage)/(tracing electrode voltage) is in the range of 0.75 to 1.00. The value of this ratio is 0.
If it is less than 75, undercuts tend to occur and slag removability deteriorates, and if it exceeds 1,00, ohper wrap and slag entrainment occur.

吏」14(濃 溶接速度が15cm/sin未満では速度が遅過ぎてス
ラグが先行し、溶込みが不安定となり、またルート面が
残り、融合不良が発生する。一方。
14 (If the deep welding speed is less than 15 cm/sin, the speed will be too slow and slag will advance, making penetration unstable, and a root surface will remain, resulting in poor fusion.) On the other hand.

45cm/minを超えると高温割れが発生し易くなる
If the speed exceeds 45 cm/min, hot cracking is likely to occur.

層−彦n その他の条件は特に制限されないが、以下の点を考慮す
ることができる。
Although other conditions are not particularly limited, the following points can be considered.

まず、先行電極には直流電圧を印加することが好ましい
。これは溶込みを安定化させるためである。
First, it is preferable to apply a DC voltage to the leading electrode. This is to stabilize penetration.

また、先行電極及び後行電極の双方に3相交流電源を接
続する場合には、先行電極と後行電極の結線方法を逆V
結線にすることが好ましい。これはビード外観及びビー
ド幅を良好にすると共に、溶込みを安定化させるためで
ある。
In addition, when connecting a three-phase AC power source to both the leading electrode and the trailing electrode, the wiring method of the leading electrode and the trailing electrode should be reversed.
It is preferable to use a wire connection. This is to improve the bead appearance and bead width and to stabilize penetration.

更に、アース位置はクレータ−側アースとするのが好ま
しい。これもビード外観及び溶込み等の安定化のためで
ある。
Furthermore, it is preferable that the ground position be the crater side ground. This is also to stabilize the bead appearance and penetration.

フラックスとしては、特に制限されるものではないが、
以下に示す成分を含有する組成(wt%)のフラックス
を使用するのが好ましい。
There are no particular restrictions on the flux, but
It is preferable to use a flux having a composition (wt%) containing the components shown below.

(フラックス組成) SiO□:10〜25%、 A M、O,: 4〜20
%、MgO:10〜25%、CaC0,: 4〜12%
、Mi○/Sin、比:0.9〜1.5゜なお、これら
の成分の限定理由を示すならば以下のとおりである。
(Flux composition) SiO□: 10-25%, AM, O,: 4-20
%, MgO: 10-25%, CaC0,: 4-12%
, Mi○/Sin, ratio: 0.9 to 1.5°.The reasons for limiting these components are as follows.

旦1α− 8io、は酸性成分であり、スラグの粘性を調整するの
に必須の成分であるが、10%未満ではスラグの粘性が
不十分となり、ビード幅が不安定又は不均一となる。一
方、25%を超えるとスラブの粘性が過剰になり、ビー
ドの広がりが不十分になり易い。また、塩基度が低くな
り、大入熱溶接での靭性が劣化し易い。
1α-8io is an acidic component and is an essential component for adjusting the viscosity of the slag, but if it is less than 10%, the viscosity of the slag becomes insufficient and the bead width becomes unstable or non-uniform. On the other hand, if it exceeds 25%, the viscosity of the slab becomes excessive and the bead tends to spread insufficiently. In addition, the basicity becomes low, and the toughness in high heat input welding tends to deteriorate.

flJh Ag2O,は中性成分であり、溶接金属の靭性を損なう
ことなくスラグの粘性及び凝固温度を調整するのに有効
な成分であるが、4%未満ではスラグの粘性及び凝固温
度が低くなり、ビード幅が不均一になる。一方、20%
を超えるとスラグの凝固温度が高温になり過ぎるため、
ビードの広がりが不十分になり易い。
flJh Ag2O, is a neutral component and is an effective component for adjusting the viscosity and solidification temperature of the slag without impairing the toughness of the weld metal, but if it is less than 4%, the viscosity and solidification temperature of the slag will be low, Bead width becomes uneven. On the other hand, 20%
If the temperature exceeds , the solidification temperature of the slag becomes too high.
Beads tend to spread insufficiently.

MgO MgOは塩基性成分であり、溶接金属の靭性を確保しつ
つスラグの粘性を調整するのに有効な成分であるが、1
0%未満ではスラグの粘性が不十分であり、ビード幅が
不均一になり易い。また、塩基度が低くなるため、大入
熱溶接での靭性が劣化し易い。一方、25%を超えると
スラグの粘性が高くなり過ぎ、ポックマーク等のガス欠
陥が発生し易い、また、スラグの剥離性が劣化し、ビー
ド表面にスラグが焼付き易くなる。
MgO MgO is a basic component and is effective in adjusting the viscosity of slag while ensuring the toughness of weld metal.
If it is less than 0%, the viscosity of the slag is insufficient and the bead width tends to become non-uniform. Furthermore, since the basicity is low, the toughness in high heat input welding tends to deteriorate. On the other hand, if it exceeds 25%, the viscosity of the slag becomes too high and gas defects such as pock marks are likely to occur, and the peelability of the slag deteriorates, making it easy for the slag to seize on the bead surface.

旦■冨し CaC0□は溶接中にCaOとCO2とに分解され、C
o2ガスによって溶接部を外気からシールドすると共に
、不純物ガス(Hz又はN2等)の分圧を低下させ、溶
接金属中への侵入を防止するのに有効な成分である。し
かし、4%未満ではCO2ガスによるシールド効果が不
十分であり、溶接金属中の水素及び窒素量が増大し、低
温割れ及び靭性の低下が生じ易い。一方、12%を超え
るとCO2ガスの発生量が過剰になり、ガスが均一に抜
けずに溶接中の吹上げ現象が極めて多くなり、ビード外
観が劣化し易い。
During welding, CaC0□ is decomposed into CaO and CO2, and C
O2 gas is an effective component for shielding the weld zone from the outside air, lowering the partial pressure of impurity gases (such as Hz or N2), and preventing them from entering the weld metal. However, if it is less than 4%, the shielding effect of CO2 gas is insufficient, the amount of hydrogen and nitrogen in the weld metal increases, and cold cracking and toughness are likely to decrease. On the other hand, if it exceeds 12%, the amount of CO2 gas generated will be excessive, and the gas will not be released uniformly, resulting in extremely frequent blow-up phenomena during welding, and the bead appearance will likely deteriorate.

MO/SiO比 MgO/Si○2の比は、塩基度を適切にすると共に、
溶接作業性を確保するために0.9〜1.5にするのが
好ましい。この比の値が0.9未満では塩基度が低過ぎ
るため、大入熱溶接における靭性が低下する。また、ビ
ード表面にアンダーカントが発生し易い。一方、1.5
を超えるとポックマーク及びスラブの焼付きが増加する
MO/SiO ratio The ratio of MgO/Si○2 makes the basicity appropriate, and
In order to ensure welding workability, it is preferable to set the value to 0.9 to 1.5. If the value of this ratio is less than 0.9, the basicity is too low, resulting in a decrease in toughness in high heat input welding. Furthermore, undercant is likely to occur on the bead surface. On the other hand, 1.5
Exceeding this will increase pockmarks and slab burn-in.

その他の成分に関しては、約20〜40%の鉄粉をフラ
ックス中に添加することができる。これにより、溶着速
度を増加させ、溶接入熱を低下させることができる。鉄
粉添加量が20%未満ではこの効果が少なく、また40
%を超えるとスラグの巻き込みが発生し易くなる。
Regarding other ingredients, about 20-40% iron powder can be added into the flux. Thereby, the welding speed can be increased and the welding heat input can be reduced. If the amount of iron powder added is less than 20%, this effect is small;
%, slag becomes more likely to be involved.

また、溶接金属中の[Til含有量が0.005〜0.
030%になるように、フラックス中にFe−Ti合金
及び/又はTiO,等のTi源を添加するか、或いは電
極ワイヤ中に適量のTiを添加することができる。この
場合、フラックス及び電極ワイヤの双方にTi源を添加
してもよい。
Further, the [Til content in the weld metal is 0.005 to 0.
0.30%, a Ti source such as a Fe-Ti alloy and/or TiO can be added to the flux, or an appropriate amount of Ti can be added to the electrode wire. In this case, a Ti source may be added to both the flux and the electrode wire.

更に、溶接金属中の[B]含有量が0.0015〜0.
0050%になるように、フラックス中にFe−B合金
及び/又はB、03を添加することができる。このB源
は電極ワイヤから添加してもよいし、フラックス及びワ
イヤの双方から添加してもよい。
Furthermore, the [B] content in the weld metal is 0.0015 to 0.
Fe--B alloy and/or B, 03 can be added to the flux so that the amount becomes 0.050%. This B source may be added from the electrode wire, or may be added from both the flux and the wire.

このように、溶接金属中に適量のTi及びBを添加する
と、大入熱溶接における靭性を確保することができる。
In this way, by adding appropriate amounts of Ti and B to the weld metal, toughness in high heat input welding can be ensured.

しかし、Ti及びBの含有量がそれぞれ0.005%未
満及び0.0015%未満の場合には靭性向上の効果が
少ない。また、Ti含有量が0.030%を超えると、
逆に靭性が低下してしまう、また、B含有量が0.00
50%を超えると高温割れが発生し易い。
However, when the contents of Ti and B are less than 0.005% and less than 0.0015%, respectively, the effect of improving toughness is small. Moreover, when the Ti content exceeds 0.030%,
On the contrary, the toughness decreases, and the B content is 0.00.
If it exceeds 50%, hot cracking is likely to occur.

次に、本発明の実施例を示す。Next, examples of the present invention will be shown.

(実施例) 供試鋼板として、80m■j、X10X100O寸法の
5M50Bを用いて、第5図に示す形状で第3表及び第
4表に示す寸法のY型開先継手を準備した。
(Example) A Y-shaped groove joint with the shape shown in FIG. 5 and the dimensions shown in Tables 3 and 4 was prepared using 5M50B with dimensions of 80 mJ and X10X100O as a test steel plate.

供試ワイヤとしてJIS  Z  3351  YS−
36相当で第1表に示すワイヤ径及び化学成分のワイヤ
を諌用し、フラックスとしてJIS  Z  3352
  FS−BTI相当(公称サイズ=10X48メツシ
ュ)で第2表に示す化学成分のフラックスを使用して、
第3表及び第4表に示す溶接条件で初層を潜弧溶接した
JIS Z 3351 YS- as the test wire
JIS Z 3352 as a flux by using a wire equivalent to 36 and having the wire diameter and chemical composition shown in Table 1.
Using a flux with chemical components shown in Table 2, equivalent to FS-BTI (nominal size = 10 x 48 mesh),
The first layer was submerged arc welded under the welding conditions shown in Tables 3 and 4.

引続き、2層以降を第4図に示す積層法にて潜弧溶接に
より多層盛した。
Subsequently, the second and subsequent layers were deposited in multiple layers by submerged arc welding using the lamination method shown in FIG.

初層部に関し、全線超音波探傷により検査し、また5断
面のマクロ試験片により内部欠陥を調査すると共に、ビ
ード外観を目視@察した。それらの結果を第3表及び第
4表に併記する。
The initial layer was inspected by full-line ultrasonic flaw detection, internal defects were investigated using five cross-sectional macro test pieces, and the appearance of the bead was visually observed. The results are also listed in Tables 3 and 4.

第3表及び第4表より明らかなように、本発明例&1〜
Nα5はいずれも、内部欠陥がなく、溶接作業性及びビ
ード外観が良好である。
As is clear from Tables 3 and 4, invention examples &1~
All of Nα5 have no internal defects and have good welding workability and bead appearance.

一方、比較例Na 6〜Na 16は、少なくとも内部
欠陥があるか或いは溶接作業性又はビード外観が良くな
い。
On the other hand, Comparative Examples Na 6 to Na 16 have at least internal defects or have poor welding workability or bead appearance.

すなわち、比較例NQ6は、開先角度Oが小さい例であ
るが、高温割れが発生し、またアンダーカットが発生し
、スラグ剥離性が劣っている。
That is, although Comparative Example NQ6 is an example in which the groove angle O is small, hot cracking occurs, undercutting occurs, and the slag removability is poor.

比較例Nα7は、極間距離dが短く、先行電極と後行電
極の電流差がない例であるが、高温割れが発生した。
Comparative example Nα7 is an example in which the interelectrode distance d is short and there is no current difference between the leading electrode and the trailing electrode, but hot cracking occurred.

比較例Na 8は、開先角度θが大きく、先行電極と後
行電極の電圧差が大きい例であるが、一部にスラグ巻込
みが発生し、またオーバーラツプが発生し、スラグ剥離
性が劣っている。
Comparative Example Na 8 is an example in which the groove angle θ is large and the voltage difference between the leading electrode and the trailing electrode is large, but slag entrainment occurs in some parts, overlap occurs, and slag removability is poor. ing.

比較例翫9は、ルートフェイスaが大きく、先行電極の
ワイヤ径が大きく、後行電極の傾斜角度α(T)を大き
くした例であるが、全線に溶込み不足が発生し、またア
ンダーカットが発生したため、スラグ剥離性が劣ってい
る。
Comparative example 9 is an example in which the root face a is large, the wire diameter of the leading electrode is large, and the inclination angle α (T) of the trailing electrode is large, but insufficient penetration occurs in the entire wire, and undercuts occur. Because of this, the slag removability is poor.

比較例Nα1oは、先行電極と後行電極の電流差が大き
く且つ電圧比が小さい例であるが、全線に高温割れが発
生し、またアンダーカットが発生したため、スラグ剥離
性が劣っている。
Comparative example Nα1o is an example in which the current difference between the leading electrode and the trailing electrode is large and the voltage ratio is small, but hot cracking occurred in all the wires and undercutting occurred, so the slag removability was poor.

比較例勲11は、ルートフェイスQがなく、極間距離が
大きく且つ先行電極のワイヤ径が小さい場合の例である
が、全線に高温割れが発生した。
Comparative Example No. 11 is an example in which there is no root face Q, the distance between poles is large, and the wire diameter of the leading electrode is small, and hot cracking occurred in all the wires.

比較例Nα12は、先行電極と後行電極のワイヤ突出し
長さが共に長い例であるが、一部にスラグ巻込み、溶込
み不足、オーバーラツプが発生した。
Comparative example Nα12 is an example in which the wire protrusion lengths of both the leading electrode and the trailing electrode are long, but slag entrainment, insufficient penetration, and overlap occurred in some parts.

比較例&13は、後行電極のワイヤ傾斜角度α(T)が
小さい例であるが、一部にスラブ巻込み、オーバーラツ
プが発生した。
Comparative Example &13 is an example in which the wire inclination angle α(T) of the trailing electrode is small, but some slab entrainment and overlap occurred.

比較例Nα14は、先行電極のワイヤ傾斜角度α(L)
が小さく、先行電極及び後行電極の各電流が高く溶接速
度も大きい例であるが、全線に高温割れが発生し、また
ビード形状が凹凸状であり、ビード外観、スラグ剥離性
が劣っている。
Comparative example Nα14 has a wire inclination angle α(L) of the preceding electrode.
This is an example where the welding speed is small, the current in the leading and trailing electrodes is high, and the welding speed is high. However, hot cracks occur on the entire wire, and the bead shape is uneven, resulting in poor bead appearance and slag removability. .

比較例Nα15は、先行電極のワイヤ傾斜角度α(L)
が大きく、溶接速度が小さい例であるが、溶込み不足が
発生した。
Comparative example Nα15 has a wire inclination angle α(L) of the preceding electrode.
In this example, the welding speed was high and the welding speed was low, but insufficient penetration occurred.

比較例Nα16は、先行電極と後行電極のワイヤ突出し
長さが共に短かく、先行電極の電流が小さい例であるが
、溶込み不足と共に融合不良が一部発生し、またビード
が蛇行し、外観が劣っている。
Comparative example Nα16 is an example in which the wire protrusion lengths of both the leading electrode and the trailing electrode are short and the current of the leading electrode is small, but there is insufficient penetration and some fusion failures, and the bead meandering. Poor appearance.

[以下余白1 (発明の効果) 以上詳述したように、本発明によれば、板厚が60mm
以上の超厚板を潜弧溶接で多層溶接するに際し、Y型開
先形状寸法を規定すると共に、初層部の潜弧溶接を特定
の溶接条件で行うことにより、初層部に溶接欠陥の発生
がなく、良好な作業性で施工できるため、特に超厚板の
ボックス柱角継手部の高能率施工が可能となる。
[Margin 1 below (Effect of the invention) As detailed above, according to the present invention, the plate thickness is 60 mm.
When performing multi-layer welding of the above-mentioned super-thick plates by submerged arc welding, the shape and dimensions of the Y-shaped groove are specified, and the submerged arc welding of the first layer is performed under specific welding conditions to avoid welding defects in the first layer. Since there is no occurrence of this process, and the work can be performed with good workability, it is possible to perform highly efficient construction, especially for box column angle joints of ultra-thick plates.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の多層溶接の要領を示す説明図、第2図は
Y型開先継手の形状を示す断面図、第3図は先行電極と
後行電極の極間距離d、ワイヤ傾斜角度α、ワイヤ突出
し長さhを説明する図、 第4図は2層以降の積層法を示す説明図。 第5図は本発明の実施例に用いたY型開先継手の形状寸
法を示す断面図である。 1・・・超厚板(母材)、2・・・裏当て、L・・・先
行電極、T・・・後行電極。
Figure 1 is an explanatory diagram showing the procedure for conventional multilayer welding, Figure 2 is a sectional view showing the shape of a Y-shaped groove joint, and Figure 3 is the distance d between the leading and trailing electrodes, and the wire inclination angle. FIG. 4 is an explanatory diagram showing the lamination method for the second and subsequent layers. FIG. 5 is a sectional view showing the shape and dimensions of the Y-shaped groove joint used in the embodiment of the present invention. 1... Super thick plate (base material), 2... Backing, L... Leading electrode, T... Trailing electrode.

Claims (1)

【特許請求の範囲】 ルートフェースl:1〜8mm、開先角度θ:40〜5
5゜のY型開先継手を、直径5.3〜8.0mmφのワ
イヤ状の先行電極(L)及び後行電極(T)を使用して
潜弧溶接する超厚板の多層溶接において、その初層部を 極間距離d=40〜80mm ワイヤ傾斜角度α(L)=−15゜〜+5゜〃α(T)
=0゜〜+20゜ ワイヤ突出し長さh(L)=40〜120mm〃h(T
)=50〜120mm (L)極の電流:1000〜2000A (T)極の〃:800〜1800A (L)極−(T)極の電流差:100〜600A(L)
極/(T)極の電圧比:0.75〜1.00溶接速度:
15〜45cm/min の条件で潜弧溶接することを特徴とする超厚板多層溶接
における初層の潜弧溶接方法。
[Claims] Root face l: 1 to 8 mm, groove angle θ: 40 to 5
In multilayer welding of ultra-thick plates, a 5° Y-shaped groove joint is submerged arc welded using a wire-shaped leading electrode (L) and trailing electrode (T) with a diameter of 5.3 to 8.0 mm. The distance between the poles of the first layer d = 40 to 80 mm Wire inclination angle α (L) = -15 ° to +5 ° α (T)
=0゜~+20゜Wire protrusion length h(L)=40~120mm〃h(T
)=50~120mm (L) pole current: 1000~2000A (T) pole: 800~1800A (L) pole - (T) pole current difference: 100~600A (L)
Pole/(T) pole voltage ratio: 0.75-1.00 Welding speed:
A submerged arc welding method for the first layer in multilayer welding of a super-thick plate, characterized by submerged arc welding under conditions of 15 to 45 cm/min.
JP25464089A 1989-09-29 1989-09-29 Root submerged arc welding method for extra-thick plate multilayer welding Granted JPH03118978A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25464089A JPH03118978A (en) 1989-09-29 1989-09-29 Root submerged arc welding method for extra-thick plate multilayer welding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25464089A JPH03118978A (en) 1989-09-29 1989-09-29 Root submerged arc welding method for extra-thick plate multilayer welding

Publications (2)

Publication Number Publication Date
JPH03118978A true JPH03118978A (en) 1991-05-21
JPH0532155B2 JPH0532155B2 (en) 1993-05-14

Family

ID=17267828

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25464089A Granted JPH03118978A (en) 1989-09-29 1989-09-29 Root submerged arc welding method for extra-thick plate multilayer welding

Country Status (1)

Country Link
JP (1) JPH03118978A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100318081B1 (en) * 1993-06-17 2002-04-22 에로 메킨넨, 타비 소이닌바라 welding method
US7081298B2 (en) 2001-10-29 2006-07-25 Yoz-Ami Corporation Specific gravity-adjustable yarns with low elongation rate and excellent abrasion resistance
CN105665897A (en) * 2016-03-24 2016-06-15 鲁西工业装备有限公司 Duplex stainless steel submerged arc automatic welding method and application thereof
CN112935602A (en) * 2021-04-01 2021-06-11 溧阳市江南烘缸制造有限公司 Submerged arc welding method for large-size ultra-thick plate

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100318081B1 (en) * 1993-06-17 2002-04-22 에로 메킨넨, 타비 소이닌바라 welding method
US7081298B2 (en) 2001-10-29 2006-07-25 Yoz-Ami Corporation Specific gravity-adjustable yarns with low elongation rate and excellent abrasion resistance
CN105665897A (en) * 2016-03-24 2016-06-15 鲁西工业装备有限公司 Duplex stainless steel submerged arc automatic welding method and application thereof
CN112935602A (en) * 2021-04-01 2021-06-11 溧阳市江南烘缸制造有限公司 Submerged arc welding method for large-size ultra-thick plate

Also Published As

Publication number Publication date
JPH0532155B2 (en) 1993-05-14

Similar Documents

Publication Publication Date Title
EP1762324B1 (en) Flux system to reduce copper cracking
JPH02280968A (en) Horizontal filter gas shielded arc welding method at high speed
JPH03118978A (en) Root submerged arc welding method for extra-thick plate multilayer welding
JP2860060B2 (en) Single-sided submerged arc welding method
JP3189643B2 (en) Single side butt welding method
JP3765761B2 (en) Bond flux for submerged arc welding
JP4319713B2 (en) Multi-electrode gas shield arc single-sided welding method
JPS61222683A (en) Narrow gap submerged arc welding method
JPH0428472B2 (en)
JPS5823596A (en) Method for horizontal electroslag build-up welding by tubular wire
JP3539828B2 (en) Electrogas arc welding method for steel sheet
JP2978350B2 (en) Multi-electrode single-sided submerged arc welding
JP3706892B2 (en) 4-electrode single-sided submerged arc welding method
JP3820179B2 (en) Titanium alloy welding wire for MIG welding and welding method
JP3808213B2 (en) Submerged arc welding method for thick steel plate
JPH11226735A (en) Gas shield arc welding method
JP3987754B2 (en) MIG welding method of titanium or titanium alloy
JP3102821B2 (en) Single-sided gas shielded arc welding method for in-plane tack joints
JP3026897B2 (en) Non-low hydrogen coated arc welding rod
JPH06285639A (en) Inner surface seam welding method for clad steel tube
JPH05185234A (en) Termination processing method for multiple electrode one-side submerged arc welding process
JPH11170051A (en) One side multiple electrode gas shielded arc welding method
WO2006080537A1 (en) Welding wire
JPH0630818B2 (en) Submerged arc welding method for corner joints
JPH08276292A (en) Non-low hydrogen type coated electrode

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees