JPH03118475A - Chemical analysis method - Google Patents

Chemical analysis method

Info

Publication number
JPH03118475A
JPH03118475A JP25724989A JP25724989A JPH03118475A JP H03118475 A JPH03118475 A JP H03118475A JP 25724989 A JP25724989 A JP 25724989A JP 25724989 A JP25724989 A JP 25724989A JP H03118475 A JPH03118475 A JP H03118475A
Authority
JP
Japan
Prior art keywords
measurement
reaction
sample
rotary table
chemical analysis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25724989A
Other languages
Japanese (ja)
Inventor
Yasuo Murata
村田 康雄
Minobu Okumura
奥村 美信
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ANARIITEIKARU INSTR KK
Tokuyama Corp
Original Assignee
ANARIITEIKARU INSTR KK
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ANARIITEIKARU INSTR KK, Tokuyama Corp filed Critical ANARIITEIKARU INSTR KK
Priority to JP25724989A priority Critical patent/JPH03118475A/en
Publication of JPH03118475A publication Critical patent/JPH03118475A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)

Abstract

PURPOSE:To measure the sample characterized by quick reaction highly accurately by rotating a rotary table twice or more for one conveying measurement. CONSTITUTION:When a measurement starting signal is inputted from a control part 114, a sample 101, a first reaction reagent 104 and a diluent liquid 106 are added into a reaction container 101 at a position (a) through a sample distributing device 105 and a diluent-liquid distributing device 107. Thus the first distribution is performed. Then, the control part 114 rotates a rotary table 102 by one container. The first distribution is performed on the container 101 which is moved to the position (a). A second reaction reagent 108 is added into the container 101 which is moved to a position (b), and the second distribution is performed. Then, the control part 114 rotates the table 102 at least two or more rotations. The chemical change of the sample is measured by two or more times through optical detecting means 110 and 111. The conveying measurement such as this is performed. The distribution and the conveying measurement are alternately repeated by the same way, the measuring time interval can be shortened without the restriction on the distributing time and the measuring time interval can be adjusted by the rotating speed of the table.

Description

【発明の詳細な説明】 〔産業上の利用分野] 本発明は化学分析方法に関し、特に、反応初期における
反応変化が大きく、且つ、反応初期の反応経過の観察が
重要な化学反応、抗原抗体反応等において、試料の分析
を適切に行える化学分析方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to chemical analysis methods, and in particular, chemical reactions and antigen-antibody reactions in which reaction changes are large in the initial stage of the reaction and observation of the reaction progress in the early stage of the reaction is important. etc., relates to a chemical analysis method that can appropriately analyze a sample.

〔従来の技術〕[Conventional technology]

従来の化学分析方法として、例えば、特開昭59−36
227号公報に示されるターンテーブルと静止形光度計
を用いる化学分析方法がある。この化学分析方法は、タ
ーンテーブル上に配列された反応容器の列が、該ターン
テーブルの回転によって移送状態と停止状態を繰り返し
て試料添加位置および静止配置された光度計の光路を通
るようにしてあり、反応容器内の特定容器に試料を添加
した後、その特定容器を光度計光路の方へ近づくように
、且つ、複数容器骨の距離を進むように反応容器列を移
送し、試料添加位置に新しい反応容器を位置づけ、移動
にともなって特定の試料に基づく複数の測定データを得
、そしてこれら複数の測定データから反応の変化を観測
するものである。
As a conventional chemical analysis method, for example, JP-A-59-36
There is a chemical analysis method using a turntable and a stationary photometer as shown in Japanese Patent No. 227. In this chemical analysis method, a row of reaction vessels arranged on a turntable repeats a transport state and a stop state by rotating the turntable, and passes through a sample addition position and an optical path of a stationary photometer. After adding a sample to a specific container in the reaction container, move the reaction container row so that the specific container approaches the photometer optical path and travels the distance between the multiple containers, and then move the reaction container row to the sample addition position. In this method, a new reaction vessel is positioned, multiple pieces of measurement data based on a specific sample are obtained as the vessel is moved, and changes in the reaction are observed from these multiple pieces of measurement data.

換言すれば、分注処理(試料の添加)と搬送測定処理(
ターンテーブルによる回転および光度計による測定)を
繰り返し行い、分注処理と分注処理の間で複数の反応容
器の測定を行えるようにして一つの静止形光度計で多数
の試料の測定を実施できるようにしたものである。この
ようなターンテーブルと静止形光度計を用いる化学分析
方法を適用することにより、同時に多数゛の試料の観測
が行え、処理能力の向上を図ることができ、且つ、試料
の反応観測時間を長くすることができる。
In other words, the dispensing process (sample addition) and the transport measurement process (
Rotation with a turntable and measurement with a photometer) are repeated, and multiple reaction vessels can be measured between dispensing processes, making it possible to measure a large number of samples with a single stationary photometer. This is how it was done. By applying this chemical analysis method using a turntable and a stationary photometer, it is possible to observe a large number of samples at the same time, improving throughput, and lengthening the observation time for sample reactions. can do.

一方、化学分析を受ける試料の濃度は低濃度から高濃度
の広い範囲にわたり、また、その反応速度も数十秒程度
の速いものから数時間程度かかる遅いものまで様々であ
る。一般に、試料の反応の速さと濃度とは比例関係が成
り立つ、従って、未知試料を測定する場合、予め何らか
の方法で大よその濃度を検知してから、適当な濃度に希
釈して分析するのが一般的である。ところが、医療検査
分野において濃度範囲の広い多数の検体を測定する場合
には、個々の検体毎にその濃度を検知して適当な濃度に
希釈後測定を行うことは困難であるため、一般に正常検
体濃度に合わせた領域において測定される。
On the other hand, the concentration of a sample undergoing chemical analysis ranges over a wide range from low to high, and the reaction speed also varies from as fast as several tens of seconds to as slow as several hours. In general, there is a proportional relationship between the reaction speed and concentration of a sample. Therefore, when measuring an unknown sample, it is best to detect the approximate concentration in advance by some method, and then dilute it to an appropriate concentration before analysis. Common. However, when measuring a large number of samples with a wide concentration range in the medical testing field, it is difficult to detect the concentration of each sample and dilute it to an appropriate concentration before measuring. Measured in a region tailored to the concentration.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、従来の化学分析方法によれば、分注処理
と搬送測定処理を繰り返し行い、分注処理と分注処理の
間で複数の試料の測定を実施しているものの、特定反応
容器の試料について一回の搬送測定処理で一回の測定し
か実施しないため1、測定時間間隔(成る測定から次の
測定までの間隔)が「分注処理時間+α」となり、反応
速度の速い試料の場合、反応経過の測光分析が行えない
という問題点があった。即ち、一般に分注処理時間は数
秒(通常は3秒前後)を要するため、例えば、1秒間に
数回の測定データを要するような反応変化の速い試料分
析には従来方法では不適である。
However, according to conventional chemical analysis methods, the dispensing process and transport measurement process are repeated, and although multiple samples are measured between the dispensing processes, Since only one measurement is performed in one transport measurement process, the measurement time interval (interval from one measurement to the next measurement) becomes "dispensing processing time + α", and in the case of a sample with a fast reaction rate, the reaction There was a problem in that photometric analysis of the progress could not be performed. That is, since the dispensing process generally requires several seconds (usually around 3 seconds), the conventional method is not suitable, for example, for analyzing samples with rapid reaction changes that require measurement data several times per second.

また、反応時間(反応開始から反応終了までの時間)が
数十秒前後の試料の場合には測定回数が少なくなるため
、測定精度が低下するという問題点もあった。
Furthermore, in the case of a sample whose reaction time (time from the start of the reaction to the end of the reaction) is around several tens of seconds, the number of measurements is reduced, resulting in a problem in that the measurement accuracy is reduced.

更に、従来の化学分析方法では、準備した全ての試料を
無条件で測定するため、例えば、反応時間が短く測定続
行が無意味な場合でも、試料が無くなるまで、或いは、
測定を中止するまで連続して処理を実施するため、無用
な測定による作業能率の低下や、無駄な試料の消費等の
問題点もあった。
Furthermore, in conventional chemical analysis methods, all prepared samples are measured unconditionally.
Since the process is carried out continuously until the measurement is stopped, there are problems such as decreased work efficiency due to unnecessary measurements and wasteful consumption of samples.

本発明の第1の目的は、反応速度の速い試料の測定が行
え、且つ、測定精度を向上させることができる化学分析
方法を提供することである。
A first object of the present invention is to provide a chemical analysis method that can measure a sample with a fast reaction rate and improve measurement accuracy.

また、本発明の第2の目的は、無用な測定による作業能
率の低下や、無駄な試料の消費を避けることができる化
学分析方法を提供することである。
A second object of the present invention is to provide a chemical analysis method that can avoid a decrease in work efficiency due to unnecessary measurements and wasteful consumption of samples.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は第1の目的を達成するため、搬送測定処理1回
につき、回転テーブルの回転を少なくとも2回転以上行
うことにより複数の測定データを得て行う化学分析方法
を提供するものである。
In order to achieve the first object, the present invention provides a chemical analysis method in which a rotary table is rotated at least twice or more per transport measurement process to obtain a plurality of measurement data.

また、第2の目的を達成するため、搬送測定処理の実施
で得られた複数の測定データに基づいて、次に測定する
試料の希釈倍率等を必要に応じて変更する化学分析方法
を提供するものである。
In addition, in order to achieve the second objective, a chemical analysis method is provided in which the dilution ratio of the sample to be measured next is changed as necessary based on a plurality of measurement data obtained by carrying out the transport measurement process. It is something.

即ち、本発明の化学分析方法は、回転テーブルを少なく
とも2回転以上回転させて、1回の搬送測定処理で複数
の測定データを得ることにより、試料の測定時間間隔を
短くして、反応速度の速い試料の測定を可能にするもの
であり、また、一定時間内の測定データを多数得ること
により、測定精度を向上させるものである。
That is, the chemical analysis method of the present invention rotates the rotary table at least twice or more to obtain a plurality of measurement data in one transport measurement process, thereby shortening the sample measurement time interval and reducing the reaction rate. It enables fast sample measurement and improves measurement accuracy by obtaining a large amount of measurement data within a certain period of time.

搬送測定処理の1回(或いは数回)の処理で得られた複
数の測定データに基づいて、次に測定する試料の希釈倍
率等を必要に応じて変更することにより、測定続行が無
意味なケースを早期にキャッチして、無用な測定を回避
できるようにしたものである。換言すれば、反応初期に
おける分析結果を、反応容器への添加前における試料の
前処理にフィードバックさせて制御することにより、作
業効率を向上させ、測定処理能力の向上を図るようにし
たものである。
By changing the dilution ratio of the next sample to be measured as necessary based on multiple measurement data obtained in one (or several) transfer measurement processes, it is possible to make it pointless to continue measurement. This makes it possible to catch cases early and avoid unnecessary measurements. In other words, by feeding back and controlling the analysis results at the initial stage of the reaction to the pretreatment of the sample before addition to the reaction vessel, work efficiency is improved and measurement throughput is improved. .

また、本発明は回転テーブルの回転速度を任意に変更可
能とし、この回転速度の変更によって光学的検出手段に
よる測定時間間隔を調整して行うことにより、同様の目
的を達成することも提供するものである。
Furthermore, the present invention also provides that the same object can be achieved by making it possible to arbitrarily change the rotational speed of the rotary table, and by adjusting the measurement time interval by the optical detection means by changing the rotational speed. It is.

〔作用〕[Effect]

本発明の化学分析方法は、回転テーブルを停止させた状
態で、回転テーブルに配列された反応容器に試料の分注
等を行う。その後、回転テーブルを少なくとも2回転以
上(例えば、4回転)回転させて反応容器を搬送しなが
ら光学的検出手段を介して試料の化学変化の測定を2回
以上(4回転の場合は4回)実施し、1回の搬送測定処
理で複数の測定データを得る。また、前記搬送測定処理
の1回(或いは数回)の処理で得られた複数の測定デー
タに基づいて、次の試料の希釈倍率等を必要に応じて変
更する。これにより測定続行が無意味なケースを早期に
キャッチして無用な測定を回避することができる。一般
に反応容器への試料分注処理は分注操作に相当の時間(
例えば、4秒以上)を要する。このため回転テーブルの
1回転毎に分注処理を組み込む従来の方法では、光学的
検出手段による測定時間間隔の短縮が制約されたが、上
記のように搬送測定処理1回につき回転テーブルの回転
を少なくとも2回転以上行うことにより、分注処理時間
に制約されずに測定時間間隔を大幅に短縮することがで
きる。また回転テーブルの回転速度を任意に変更可能と
することによって、試料の反応速度に応じて光学的検出
手段による測定時間間隔の調整を肌理細かく行うことが
できる。
In the chemical analysis method of the present invention, a sample is dispensed into reaction vessels arranged on the rotary table while the rotary table is stopped. After that, the reaction container is transported by rotating the rotary table at least two times or more (for example, four times), and the chemical change in the sample is measured at least twice (four times in the case of four revolutions) through the optical detection means. A plurality of pieces of measurement data are obtained in one conveyance measurement process. Further, based on a plurality of pieces of measurement data obtained in one (or several) times of the transport measurement process, the dilution ratio of the next sample, etc. is changed as necessary. This makes it possible to catch cases where it is meaningless to continue measurement at an early stage and avoid unnecessary measurements. Generally, dispensing a sample into a reaction container takes a considerable amount of time (
For example, it takes 4 seconds or more). For this reason, in the conventional method of incorporating a dispensing process every rotation of the rotary table, shortening of the measurement time interval using optical detection means was restricted. By performing at least two rotations, the measurement time interval can be significantly shortened without being restricted by the dispensing processing time. Furthermore, by making it possible to arbitrarily change the rotational speed of the rotary table, it is possible to finely adjust the measurement time interval by the optical detection means according to the reaction rate of the sample.

〔実施例〕〔Example〕

以下、本発明の化学分析方法を詳細に説明する。 The chemical analysis method of the present invention will be explained in detail below.

第1図は本発明の化学分析方法を適用した化学分析装置
の第1の実施例を示し、複数の反応容器101を円形に
配列して装填した回転テーブル102と、試料103及
び第1の反応試薬104を所定位置aに停止した反応容
器101に分注する試料分注器105と、所定位置aに
停止した反応容器101に希釈液106を分注して希釈
を行う希釈液分注器107と、所定位11bに停止した
反応容器101に第2の反応試薬108を分注する反応
試薬分注器109と、試料分注器105及び反応試薬分
注器109を介して所定の分注処理を実施した反応容器
101の化学変化を測定するLED 110.フォトセ
ンサ111(光学的検出手段)と、前記LEDIIO及
びフォトセンサ111によって測定した測定データを入
力して、演算処理を行うデータ処理部112と、データ
処理部112の処理結果を出力するプリンタ113と、
各分注器105,107,109の分注処理の制御、回
転テーブル102の回転制御、及び、LEDIIO,フ
ォトセンサ111の測定制御を行う制御部114とから
構成される。尚、第1の実施例では、回転テーブル10
2を装置本体から着脱自在な構成とし、反応容器101
内の試料の抜出処分及び反応容器101の洗浄等を、回
転テープ、ル102を取り外して行えるようにし、装置
構成を簡略化している。尚、試薬分注器は試薬毎に個別
の分注器を用いることもできるし、適宜同一分注器で兼
用させても良い。
FIG. 1 shows a first embodiment of a chemical analysis apparatus to which the chemical analysis method of the present invention is applied. A sample dispenser 105 dispenses a reagent 104 into the reaction container 101 stopped at a predetermined position a, and a diluent dispenser 107 dispenses a diluent 106 into the reaction container 101 stopped at a predetermined position a for dilution. and a reaction reagent dispenser 109 that dispenses the second reaction reagent 108 into the reaction container 101 stopped at a predetermined position 11b, and a predetermined dispensing process via the sample dispenser 105 and the reaction reagent dispenser 109. LED 110 for measuring chemical changes in the reaction vessel 101 in which the reaction was carried out. A photosensor 111 (optical detection means), a data processing unit 112 that inputs measurement data measured by the LEDIIO and the photosensor 111 and performs arithmetic processing, and a printer 113 that outputs the processing results of the data processing unit 112. ,
It is composed of a control section 114 that controls the dispensing process of each dispenser 105, 107, 109, the rotation of the rotary table 102, and the measurement control of the LED IIO and photosensor 111. Note that in the first embodiment, the rotary table 10
2 is configured to be detachable from the apparatus main body, and the reaction vessel 101
The rotating tape 102 can be removed to remove and dispose of the sample inside the reaction vessel 101 and to clean the reaction vessel 101, thereby simplifying the apparatus configuration. Note that a separate reagent dispenser may be used for each reagent, or the same dispenser may be used for both purposes as appropriate.

以上の構成において、動作の説明に先立って、■分注処
理、■搬送測定処理、■フィードバック処理について、
詳細に説明する。
In the above configuration, before explaining the operation, we will explain about ■dispensing process, ■conveyance measurement process, and ■feedback process.
Explain in detail.

■分注処理 分注処理は、回転テーブル102を停止させた状態で反
応容器101に試料103.第1の反応試薬104.希
釈液106.及び、第2の反応試薬108を分注する処
理を示す。分注処理の際に必要に応じて反応容器101
の洗浄操作を行い、繰り返し反応容器を使うこともでき
る。
■Dispensing process In the dispensing process, the sample 103 is placed in the reaction vessel 101 while the rotary table 102 is stopped. First reaction reagent 104. Diluent 106. The process of dispensing the second reaction reagent 108 is also shown. Reaction container 101 as needed during dispensing process
It is also possible to perform a washing operation and use the reaction vessel repeatedly.

制御部114は、回転テーブル102を停止し、試料分
注器105を介して特定の反応容器101(所定位置a
に停止した反応容器101)に試料103を所定量分注
し、続いて、第1の反応試薬104を添加する。同時に
希釈液分注器107を介して予め設定された希釈量の希
釈液106を分注して試料103及び第1の反応試薬1
04の混合液を希釈する。このとき、試料分注器105
による分注と希釈液分注器107による分注が同時に開
始されるため、反応容器101内では希釈液106によ
って希釈された試料103に第1の反応試薬104が添
加されることになる。一方、所定位置すでは、反応容器
101に反応試薬分注器109を介して第2の反応試薬
108が添加される。この第2の反応試薬10日の添加
によって、反応容器101内の反応条件(試料103と
、第1の反応試薬104及び第2の反応試薬108が存
在すること)が成立し、化学反応が開始される。
The control unit 114 stops the rotary table 102 and transfers the sample to a specific reaction container 101 (at a predetermined position a) via the sample dispenser 105.
A predetermined amount of the sample 103 is dispensed into the reaction vessel 101) which has been stopped, and then the first reaction reagent 104 is added. At the same time, a preset amount of diluent 106 is dispensed via the diluent dispenser 107 to prepare the sample 103 and the first reaction reagent 1.
Dilute the mixture of 04. At this time, the sample dispenser 105
Since the dispensing by the diluent dispenser 107 and the dispensing by the diluent dispenser 107 are started at the same time, the first reaction reagent 104 is added to the sample 103 diluted with the diluent 106 in the reaction container 101. On the other hand, at a predetermined position, a second reaction reagent 108 is added to the reaction container 101 via a reaction reagent dispenser 109. By adding the second reaction reagent on the 10th day, the reaction conditions in the reaction container 101 (the presence of the sample 103, the first reaction reagent 104, and the second reaction reagent 108) are established, and the chemical reaction starts. be done.

第1の実施例では、回転テーブル102が停止してから
回転を開始するまでの時間、即ち、分注処理時間を3秒
に設定しており、この時間内で前述した分注作業を実施
する。
In the first embodiment, the time from when the rotary table 102 stops until it starts rotating, that is, the dispensing processing time, is set to 3 seconds, and the dispensing work described above is performed within this time. .

■搬送測定処理 搬送測定処理は、所定位置a(或いは所定位置b)の反
応容器101を、所定位置b(或、いは所定位置C)に
移動させて、次の分注を行う反応容器101を所定位置
a(或いは所定位置b)に導く搬送機能と、反応液(試
料103.第1の反応試薬104.第2の反応試薬10
8の混合液)が入った反応容器101を、光学的検出手
段(LED 110.フォトセンサ111)の光路を複
数回通過させて、化学反応を複数回測定する測定機能を
有している。
■Transport measurement process The transport measurement process moves the reaction container 101 at a predetermined position a (or predetermined position b) to a predetermined position b (or predetermined position C), and moves the reaction container 101 to perform the next dispensing. A transport function that guides the reaction liquid (sample 103. first reaction reagent 104. second reaction reagent 10) to a predetermined position a (or predetermined position b)
The reaction container 101 containing the mixed liquid of No. 8) is passed through the optical path of the optical detection means (LED 110, photosensor 111) multiple times, and the chemical reaction is measured multiple times.

制御部114は、分注処理の終了後、回転テーブル10
2を回転させて、反応容器101の搬送を開始し、光学
的検出手段(LED 110.フォトセンサ111)の
光路を通過させて測定を行う。
After the dispensing process is completed, the control unit 114 controls the rotary table 10.
2 to start transporting the reaction container 101, and measurement is performed by passing through the optical path of the optical detection means (LED 110, photosensor 111).

本実施例では、搬送測定処理時間Tを4秒、回転テーブ
ル102の回転を16+α回転とし、1回の搬送測定処
理で一つの反応容器101に対して16回の測定を行う
。従って、測定時間間隔Sは約0.25秒(S=T/1
6)である。制御部114は測定時間間隔約0.25秒
で16回の測定を実施後、回転開始時に所定位置aにあ
った反応容器101が位置すにくるように回転を停止し
、処理を終了する。一方、光学的検出手段(LEDll
o、フォトセンサ111)によって測定された測定デー
タはデータ処理部112によって演算処理を施され、プ
リンタ113を介して出力される。
In this embodiment, the transport measurement processing time T is 4 seconds, the rotation of the rotary table 102 is 16+α rotations, and 16 measurements are performed on one reaction vessel 101 in one transport measurement processing. Therefore, the measurement time interval S is approximately 0.25 seconds (S=T/1
6). After carrying out 16 measurements at a measurement time interval of about 0.25 seconds, the control unit 114 stops the rotation so that the reaction container 101, which was at the predetermined position a at the start of rotation, comes to the predetermined position a, and ends the process. On the other hand, optical detection means (LED
Measurement data measured by the photo sensor 111) is subjected to arithmetic processing by the data processing unit 112 and outputted via the printer 113.

■フィードバック処理 データ処理部112は、各反応容器101毎に得られた
16個の測定データの中から、反応開始後始めての測定
を実施した反応容器101の測定データ、換言すれば、
搬送測定処理開始時に所定位置すにあった反応容器10
1の測定データを制御部114へ出力する。制御部11
4は反応開始から最初の16個の測定データに基づいて
、以後の測定が有効であるか、無効であるかの判定を行
う。具体的には、第2図に示すように、1個目のデータ
から16個のデータが近似する値を示して測定データ曲
線Aの形状を示す場合、反応速度が遅い反応であると判
定し、以後の測定を有効とする。また、16個のデータ
が測定データ曲線Cの形状を示す場合は、反応開始後、
1秒以内(4回目の測定まで)で反応が殆ど終了してい
ると判断し、以後の測定を無効とする。更に、16個の
データが測定データ曲線Bの形状を示す場合は、数回の
搬送測定処理時間内で反応が終了すると判定する。制御
部114は、前述した判定に基づいて、例えば、以後の
測定が有効な場合には、続けて次の分注処理を実施し、
以後の測定が無効の場合には、次の分注処理で分注する
反応容器101の測定が有効に行えるように、試料分注
器105.希釈液分注器107.及び2反応試薬分注器
109を制御して、反応液の希釈倍率を調整して反応速
度が遅くなるように補正(フィードバック)する。
■Feedback processing The data processing unit 112 selects the measurement data of the reaction vessel 101 in which the first measurement was performed after the start of the reaction, from among the 16 pieces of measurement data obtained for each reaction vessel 101, in other words,
Reaction container 10 that was in a predetermined position at the start of the transport measurement process
1 measurement data is output to the control unit 114. Control unit 11
Step 4 determines whether subsequent measurements are valid or invalid based on the first 16 measurement data from the start of the reaction. Specifically, as shown in Figure 2, when 16 pieces of data from the first piece of data show approximate values and show the shape of the measured data curve A, it is determined that the reaction rate is slow. , subsequent measurements are valid. In addition, if the 16 data show the shape of measurement data curve C, after the reaction starts,
It is determined that the reaction is almost complete within 1 second (up to the fourth measurement), and subsequent measurements are invalidated. Furthermore, if the 16 pieces of data show the shape of the measurement data curve B, it is determined that the reaction will be completed within several transport measurement processing times. Based on the above-described determination, for example, if the subsequent measurement is valid, the control unit 114 continues to perform the next dispensing process,
If the subsequent measurements are invalid, the sample dispenser 105. Diluent dispenser 107. Then, the two-reaction reagent dispenser 109 is controlled to adjust the dilution ratio of the reaction solution to make correction (feedback) so that the reaction rate becomes slower.

また、数回の搬送測定処理時間内で反応が終了すると判
定された場合は、データ処理部112及びプリンタ11
3を介して、メツセージを出力し、測定を継続するか否
かの判断を行うように利用者に通知する。
In addition, if it is determined that the reaction will be completed within several times of conveyance measurement processing time, the data processing unit 112 and the printer 11
3, a message is output to notify the user to decide whether or not to continue the measurement.

前述した構成及び各処理に基づいて、動作を説明する。The operation will be explained based on the configuration and each process described above.

先ず、測定を開始する準備処理として、試料103を所
定の容器に収納して配置し、入力手段(図示せず)を介
して希釈倍率を設定する。希釈倍率は、分注処理におい
て、試料103の分注量と、希釈液106の分注量の比
率を決めるものである。
First, as a preparation process for starting measurement, the sample 103 is placed in a predetermined container, and a dilution factor is set via an input means (not shown). The dilution factor determines the ratio between the amount of sample 103 to be dispensed and the amount of diluent 106 to be dispensed in the dispensing process.

制御部114は入力手段から測定開始信号を入力すると
、試料分注器105及び希釈液分注器107を介して、
所定位置aの反応容器101に希釈倍率に基づいた量の
試料103.第1の反応試薬104.及び、希釈液10
6を添加する(第1回目の分注処理)。制御部114は
第1回目の分注処理が終了すると、回転テーブル102
を反応容器1個分だけ回転させて、所定位置aの反応容
器101を所定位置すに移動させ、新しく所定位置aに
移動してきた反応容器101に第1回目の分注処理と同
様に試料103.第1の反応試薬104、及び、希釈液
106を添加し、所定位置すの反応容器101(第1回
目の分注処理で試料103等を添加した反応容器101
)に、反応試薬分注器109を介して、第2の反応試薬
108を添加する(第2回目の分注処理)。制御部11
4は第2回目の分注処理が終了すると、回転テーブル1
02を回転させて、第1回目の搬送測定処理を実施する
。同様に第3回目の分注処理。
When the control unit 114 inputs the measurement start signal from the input means, the control unit 114 inputs the measurement start signal through the sample dispenser 105 and the diluent dispenser 107.
An amount of sample 103. based on the dilution factor is placed in the reaction container 101 at a predetermined position a. First reaction reagent 104. And diluent 10
6 (first dispensing process). When the first dispensing process is completed, the control unit 114 controls the rotary table 102.
is rotated by one reaction container, the reaction container 101 at the predetermined position a is moved to a predetermined position, and the sample 103 is poured into the reaction container 101 newly moved to the predetermined position a in the same manner as in the first dispensing process. .. The first reaction reagent 104 and the diluent 106 are added to the reaction container 101 in a predetermined position (the reaction container 101 to which the sample 103 etc. were added in the first dispensing process)
), the second reaction reagent 108 is added via the reaction reagent dispenser 109 (second dispensing process). Control unit 11
4, when the second dispensing process is completed, the rotary table 1
02 to perform the first conveyance measurement process. Similarly, the third dispensing process.

第2回目の搬送測定処理、第4回目の分注処理のように
交互に分注処理と搬送測定処理を繰り返して、1回の搬
送測定処理で反応液の入った反応容器101毎に16個
の測定データを得る。
By repeating the dispensing process and the conveyance measurement process alternately like the second conveyance measurement process and the fourth dispensing process, 16 pieces are collected per reaction container 101 containing the reaction liquid in one conveyance measurement process. Obtain measurement data.

一方、搬送測定処理毎に、回転開始時に所定位置すにあ
った反応容器101の測定データ(最初の搬送測定処理
で得られた測定データ)が制御部114に送られてフィ
ードバック処理が実施され、希釈倍率の補正や、通知メ
ツセージの出力等が行われる。
On the other hand, for each transport measurement process, the measurement data of the reaction container 101 that was in a predetermined position at the start of rotation (measurement data obtained in the first transport measurement process) is sent to the control unit 114, and feedback processing is performed. Correction of the dilution ratio, output of notification messages, etc. are performed.

第1の実施例では、短い測定時間間隔S(約0.25秒
)で、搬送測定処理時間T(4秒)内での測定データを
多数得ることができるため、例えば、1秒間に数回の測
定データを要するような反応変化の速い試料の分析が可
能であり、且つ、高い測定精度を実現できる。従って、
反応初期における反応変化が大きく、且つ、反応初期の
反応経過の観察が重要な化学反応、抗原抗体反応等の試
料の分析を適切に行える。
In the first embodiment, it is possible to obtain a large amount of measurement data within the transportation measurement processing time T (4 seconds) with a short measurement time interval S (about 0.25 seconds). It is possible to analyze samples with rapid reaction changes that require measurement data of 1,000 yen, and achieve high measurement accuracy. Therefore,
It is possible to appropriately analyze samples such as chemical reactions and antigen-antibody reactions in which reaction changes are large in the early stage of the reaction and observation of the reaction progress in the early stage of the reaction is important.

第1の実施例では、単位時間(搬送測定処理時間T)に
おける回転テーブル102の回転を16回転としたが、
特にこれに限定するものではなく、例えば、4回転、8
回転、20回転等のように設定しても良い。また、必要
に応じて入力手段等を介して回転回数を変更できるよう
にしても良い。
In the first embodiment, the rotation table 102 rotates 16 times per unit time (transport measurement processing time T).
It is not particularly limited to this, for example, 4 rotations, 8 rotations,
It may be set to rotation, 20 rotations, etc. Further, the number of rotations may be changed as necessary via input means or the like.

更に、制御部114の制御で希釈倍率を調整し、フィー
ドバック処理を実施したが、希釈倍率と共に回転テーブ
ル102の回転回数を変更する方法でも良(、制御部1
14の制御に換えて、人手を介して調整する方法でも良
い。
Furthermore, although the dilution magnification was adjusted under the control of the control unit 114 and the feedback process was performed, it is also possible to change the number of rotations of the rotary table 102 together with the dilution magnification (the control unit 1
Instead of the control in step 14, a manual adjustment method may be used.

第3図は本発明の化学分析方法を適用した化学分析装置
の第2の実施例を示し、所定位置dで反応容器101に
反応試薬分注器301を介して第1の反応試薬302を
分注し、所定位置eで反応容器101に試料分注器30
3を介して試料304及び希釈液305を分注し、最後
に所定位置rで反応試薬分注器306を介して第2の反
応試薬307を分注して反応を開始させる構成である。
FIG. 3 shows a second embodiment of a chemical analysis apparatus to which the chemical analysis method of the present invention is applied, in which a first reaction reagent 302 is dispensed into a reaction container 101 via a reaction reagent dispenser 301 at a predetermined position d. Pour the sample dispenser 30 into the reaction vessel 101 at a predetermined position e.
3, a sample 304 and a diluent 305 are dispensed through a reaction reagent dispenser 306, and finally a second reaction reagent 307 is dispensed at a predetermined position r via a reaction reagent dispenser 306 to start a reaction.

尚、308は反応条件を一定にするための恒温槽、30
9は所定位置d、e、fで分注した液を攪拌する攪拌プ
ローブを示す。その他の構成は第1の実施例と共通につ
き、説明及び図示を省略する。 以上の構成において、
複数回の搬送測定処理で得た測定データに基づくフィー
ドバック処理の例を説明する。
In addition, 308 is a constant temperature bath for keeping the reaction conditions constant;
9 indicates a stirring probe that stirs the liquid dispensed at predetermined positions d, e, and f. Other configurations are the same as those of the first embodiment, so explanations and illustrations will be omitted. In the above configuration,
An example of feedback processing based on measurement data obtained through multiple conveyance measurement processing will be described.

測定に先立ち、試料、試薬、及び、標準物質を所定位置
に設定し、恒温槽308を介して反応容器101を37
°Cに加温し、次に、標準物質で各項目の検量線を作る
ための測定を行う。
Prior to measurement, the sample, reagent, and standard substance are set at predetermined positions, and the reaction container 101 is heated to
The sample is heated to ˚C and then measured using standard substances to create a calibration curve for each item.

第2の実施例では、停止処理4秒、搬送測定処理11秒
として、測定時間間隔を2秒とした。以下、第4図のタ
イミングチャートを参照して測定の手順を詳細に説明す
る。
In the second example, the stop process was 4 seconds, the conveyance measurement process was 11 seconds, and the measurement time interval was 2 seconds. Hereinafter, the measurement procedure will be explained in detail with reference to the timing chart of FIG.

所定位置dに停止した反応容器101に反応試薬分注器
301を介して第1の反応試薬302を分注すると同時
に攪拌プローブ309で2秒間攪拌する。その後、恒温
槽308で2分間保温して分注した第1の反応試薬30
2を37°Cにする。
The first reaction reagent 302 is dispensed into the reaction container 101 stopped at a predetermined position d via the reaction reagent dispenser 301, and simultaneously stirred for 2 seconds using the stirring probe 309. Thereafter, the first reaction reagent 30 was kept warm for 2 minutes in a constant temperature bath 308 and dispensed.
2 to 37°C.

前述したように、本実施例では停止処理4秒、搬送測定
処理11秒として、15秒を単位操作として処理を実施
するため、この第1の反応試薬302を分注した反応容
器101は2分間の保温の間に所定位置dから反応容器
8個分離れた所定位置eに搬送される。次に、所定位置
eに停止した反応容器101に試料分注器303を介し
て試料304及び希釈液305を分注すると同時に攪拌
プローブ309で2秒間攪拌する。その後、同様に恒温
槽308で2分間保温して混合した第1の反応試薬30
2.試料304.及び、希釈液305を37°Cにする
。反応容器101が所定位置fに達したら反応試薬分注
器306を介して第2の反応試薬307を分注して反応
を開始させ、その後の搬送測定処理で2秒間隔毎に回転
テーブルを1回転させて測定を実施する。本実施例では
、反応開始から最初の60秒で測定を続ける意味がある
か否かの判定を行う。換言すれば、反応開始後の最初の
4回の搬送測定処理で得られた複数の測定データ(1回
の搬送測定処理で5個の測定データを得られるため、こ
こでは20個の測定データ)に基づいて、測定を続ける
意味があるか否かの判定を行う。意味がある場合は該当
する反応溶液の測定を継続して、測定開始から8分の間
で数回の搬送測定処理を行う。意味がない場合は測定を
停止し、例えば、第1の実施例と同様にフィードバック
処理を実施して、再度測定を行う。
As mentioned above, in this example, the stop process is 4 seconds, the transport measurement process is 11 seconds, and the process is carried out in 15 seconds as a unit operation. During the heat retention period, the sample is transported from the predetermined position d to the predetermined position e, which is eight reaction vessels apart. Next, the sample 304 and diluent 305 are dispensed into the reaction vessel 101 stopped at a predetermined position e via the sample dispenser 303, and simultaneously stirred for 2 seconds using the stirring probe 309. Thereafter, the first reaction reagent 30 was similarly kept warm for 2 minutes in a constant temperature bath 308 and mixed.
2. Sample 304. And the diluent 305 is heated to 37°C. When the reaction container 101 reaches the predetermined position f, the second reaction reagent 307 is dispensed via the reaction reagent dispenser 306 to start the reaction. Rotate and take measurements. In this example, it is determined whether it is meaningful to continue the measurement in the first 60 seconds from the start of the reaction. In other words, a plurality of measurement data obtained in the first four transport measurement processes after the start of the reaction (here, 20 measurement data because five measurement data can be obtained in one transport measurement process). Based on this, it is determined whether there is any point in continuing the measurement. If it is meaningful, the measurement of the corresponding reaction solution is continued, and the transport measurement process is performed several times within 8 minutes from the start of the measurement. If it is meaningless, the measurement is stopped, and, for example, feedback processing is performed in the same manner as in the first embodiment, and the measurement is performed again.

前述した第1及び第2の実施例では、測定が終了した反
応容器内の試料の抜出処分を、回転テーブル102を取
り替えて実施する構成としたが、所定の洗浄装置等を設
けて分注処理と並行して実施する構成としても良い。ま
た、回転テーブル102の回転速度を任意に変更可能な
構成としても良い。回転テーブル102の回転速度を任
意に変更可能とするための機構としては、例えば、パル
スモータに回転速度を任意に変更できるプログラムをつ
ないでパルスモータを任意に動作させる等の手段が採用
される。
In the first and second embodiments described above, the sample in the reaction vessel after measurement is removed and disposed of by replacing the rotary table 102. It may also be configured to be executed in parallel with the processing. Furthermore, a configuration may be adopted in which the rotation speed of the rotary table 102 can be changed arbitrarily. As a mechanism for making it possible to arbitrarily change the rotational speed of the rotary table 102, for example, a means is adopted in which a program that can arbitrarily change the rotational speed is connected to a pulse motor and the pulse motor is operated arbitrarily.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明の化学分析方法は、搬送測
定処理で、回転テーブルの回転を少なくとも2回転以上
行い、搬送測定処理を1回実施することで複数の測定デ
ータを得るようにしたため、反応速度の速い試料の測定
が行え、且つ、測定精度を向上させることができる。ま
た、搬送測定処理の1回の実施で得られた複数の測定デ
ータに基づいて、次の試料の希釈倍率等を必要に応じて
変更するようにしたため、無用な測定による作業能率の
低下や、無駄な試料の消費を避けることできる。また回
転テーブルの回転速度を任意に変更可能とすることによ
って、試料の反応速度に応じて光学的検出手段による測
定時間間隔の調整を肌理細かく行うことができる。
As explained above, in the chemical analysis method of the present invention, the rotary table is rotated at least twice in the transport measurement process, and a plurality of measurement data are obtained by performing the transport measurement process once. A sample with a fast reaction rate can be measured, and measurement accuracy can be improved. In addition, the dilution ratio of the next sample is changed as necessary based on multiple pieces of measurement data obtained in one transport measurement process, which reduces work efficiency due to unnecessary measurements. Wasted sample consumption can be avoided. Furthermore, by making it possible to arbitrarily change the rotational speed of the rotary table, it is possible to finely adjust the measurement time interval by the optical detection means according to the reaction rate of the sample.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の化学分析方法を適用した化学分析装置
の第1の実施例を示す説明図、第2図は制御部における
フィードバック処理の判定方法を示す説明図、第3図は
本発明の化学分析方法を適用した化学分析装置の第2の
実施例を示す説明図、第4図は測定の手順を説明するタ
イミングチャートである。 符号の説明 101・−・・・反応容器 102−−−−−一回転テ
ーブル103−・・−試料 104・・−・第1の反応
試薬105−−−−−−一試料分注器 106−・−希
釈液107−−−−−−−希釈液分注器 108−−−−一第2の反応試薬 109−−−−−一反応試薬分注器 110−−−−−−−L E D 110111−−−
−−−フォトセンサ 111−一−−・データ処理部 113−−−−−プリ
ンタ114−・−制御部 301−−−−−一反応試薬分注器 302−−−−−−一反応試薬 303−−〜−試料分
注器304−−−−−一試料 305−−−−一希釈液
305306−−−−−−−反応試薬分注器30630
7−−−−−−−反応試薬307
FIG. 1 is an explanatory diagram showing a first embodiment of a chemical analysis apparatus to which the chemical analysis method of the present invention is applied, FIG. 2 is an explanatory diagram showing a method for determining feedback processing in the control section, and FIG. FIG. 4 is an explanatory diagram showing a second embodiment of the chemical analysis apparatus to which the chemical analysis method is applied, and FIG. 4 is a timing chart illustrating the measurement procedure. Explanation of symbols 101 --- Reaction container 102 --- One rotation table 103 --- Sample 104 --- First reaction reagent 105 --- One sample dispenser 106-・-Diluent 107----Diluent dispenser 108-----Second reaction reagent 109-----Reaction reagent dispenser 110---L E D 110111---
---Photo sensor 111---Data processing section 113--Printer 114--Control section 301--Reaction reagent dispenser 302--Reaction reagent 303 ----Sample dispenser 304-----One sample 305--One diluent 305306----Reaction reagent dispenser 30630
7-------Reaction reagent 307

Claims (3)

【特許請求の範囲】[Claims] (1)回転テーブルを停止させた状態で、回転テーブル
に配列された反応容器に試料の分注等を行う分注処理と
、回転テーブルを回転させて反応容器を搬送しながら光
学的検出手段を介して試料の化学変化を測定する搬送測
定処理とを有し、前記分注処理と搬送測定処理を繰り返
すことにより、回転テーブルの回転数に見合う複数の測
定データを得て、これらの複数の測定データに基づいて
試料の化学変化を分析する化学分析方法において、前記
搬送測定処理1回につき、前記回転テーブルの回転を少
なくとも2回転以上行うことにより、複数の測定データ
を得て行うことを特徴とする化学分析方法。
(1) A dispensing process in which a sample is dispensed into the reaction vessels arranged on the rotary table while the rotary table is stopped, and an optical detection method is performed while the rotary table is rotated to transport the reaction vessels. By repeating the dispensing process and the conveyance measurement process, a plurality of measurement data corresponding to the number of rotations of the rotary table is obtained, and these multiple measurements are performed. A chemical analysis method for analyzing chemical changes in a sample based on data, characterized in that the rotation table is rotated at least twice or more for each transfer measurement process to obtain a plurality of measurement data. chemical analysis method.
(2)前記搬送測定処理の実施で得られた複数の測定デ
ータに基づいて、次に測定する試料の希釈倍率等を必要
に応じて変更する請求項第1項記載の化学分析方法。
(2) The chemical analysis method according to claim 1, wherein the dilution ratio of the sample to be measured next is changed as necessary based on a plurality of measurement data obtained by carrying out the transport measurement process.
(3)回転テーブルを停止させた状態で、回転テーブル
に配列された反応容器に試料の分注等を行う分注処理と
、回転テーブルを回転させて反応容器を搬送しながら光
学的検出手段を介して試料の化学変化を測定する搬送測
定処理とを有し、前記分注処理と搬送測定処理を繰り返
すことにより、回転テーブルの回転数に見合う複数の測
定データを得て、これらの複数の測定データに基づいて
試料の化学変化を分析する化学分析方法において、前記
回転テーブルの回転速度を任意に変更可能とし、この回
転速度の変更によって前記光学的検出手段による測定時
間間隔を調整して行うことを特徴とする化学分析方法。
(3) A dispensing process in which samples are dispensed into the reaction vessels arranged on the rotary table while the rotary table is stopped, and an optical detection means is carried out while the rotary table is rotated to transport the reaction vessels. By repeating the dispensing process and the conveyance measurement process, a plurality of measurement data corresponding to the number of rotations of the rotary table is obtained, and these multiple measurements are performed. In a chemical analysis method for analyzing chemical changes in a sample based on data, the rotation speed of the rotary table can be changed arbitrarily, and the measurement time interval by the optical detection means is adjusted by changing the rotation speed. A chemical analysis method characterized by:
JP25724989A 1989-10-02 1989-10-02 Chemical analysis method Pending JPH03118475A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25724989A JPH03118475A (en) 1989-10-02 1989-10-02 Chemical analysis method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25724989A JPH03118475A (en) 1989-10-02 1989-10-02 Chemical analysis method

Publications (1)

Publication Number Publication Date
JPH03118475A true JPH03118475A (en) 1991-05-21

Family

ID=17303764

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25724989A Pending JPH03118475A (en) 1989-10-02 1989-10-02 Chemical analysis method

Country Status (1)

Country Link
JP (1) JPH03118475A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011137778A (en) * 2010-01-04 2011-07-14 Hitachi High-Technologies Corp Spectrophotometer
KR200495832Y1 (en) * 2021-03-31 2022-08-31 (주)레보스케치 Optic module for PCR apparatus

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6259862A (en) * 1985-09-11 1987-03-16 Toshiba Corp Automatic chemical analyzer
JPS6340861A (en) * 1986-08-06 1988-02-22 Toshiba Corp Automatic chemical analyser
JPS6373155A (en) * 1986-09-16 1988-04-02 Toshiba Corp Automatic chemical analyzer
JPS6385361A (en) * 1986-09-30 1988-04-15 Toshiba Corp Automatic chemical analyser
JPS63243880A (en) * 1987-03-31 1988-10-11 Shimadzu Corp Automatic analysis instrument

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6259862A (en) * 1985-09-11 1987-03-16 Toshiba Corp Automatic chemical analyzer
JPS6340861A (en) * 1986-08-06 1988-02-22 Toshiba Corp Automatic chemical analyser
JPS6373155A (en) * 1986-09-16 1988-04-02 Toshiba Corp Automatic chemical analyzer
JPS6385361A (en) * 1986-09-30 1988-04-15 Toshiba Corp Automatic chemical analyser
JPS63243880A (en) * 1987-03-31 1988-10-11 Shimadzu Corp Automatic analysis instrument

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011137778A (en) * 2010-01-04 2011-07-14 Hitachi High-Technologies Corp Spectrophotometer
KR200495832Y1 (en) * 2021-03-31 2022-08-31 (주)레보스케치 Optic module for PCR apparatus

Similar Documents

Publication Publication Date Title
US12000849B2 (en) Automatic analyzer
EP0762125B1 (en) Automatic analyzing method using a plurality of reagents and apparatus therefor
WO2018047545A1 (en) Automatic analyzer
JPH0145020B2 (en)
JP2009139245A (en) Automanalyzer
US8765474B2 (en) Automatic analyzer and the analyzing method using the same
WO2012105176A1 (en) Nucleic acid test device
US11808671B2 (en) Automatic analysis device
JP5380123B2 (en) Sample analyzer
JPH03118475A (en) Chemical analysis method
JP2909140B2 (en) Sample measuring method and its apparatus
JPH045569A (en) Reagent storage type reaction container and its measuring instrument
JPH05172828A (en) Automatic analyser
JP3377270B2 (en) Automatic chemical analyzer
JPH0447267A (en) Automatic apparatus for chemical analysis
JP2001027639A (en) Examination method of blood
JP2001264337A (en) Blood clinical testing device
JP2533096B2 (en) Automatic chemical analyzer
EP3640647B1 (en) Automated analysis device
JP2001249137A (en) Autoanalyzer
JPH08105901A (en) Automatic analyzing device
JP3783551B2 (en) Automatic analyzer
JPS6373154A (en) Analyzer
JPH0593729A (en) Automatic analysis method and apparatus
JPH0472186B2 (en)