JPH03118466A - Assay of saccharified hemoglobin - Google Patents

Assay of saccharified hemoglobin

Info

Publication number
JPH03118466A
JPH03118466A JP1256760A JP25676089A JPH03118466A JP H03118466 A JPH03118466 A JP H03118466A JP 1256760 A JP1256760 A JP 1256760A JP 25676089 A JP25676089 A JP 25676089A JP H03118466 A JPH03118466 A JP H03118466A
Authority
JP
Japan
Prior art keywords
polymerization
particles
hydrophobic
monomer
polymer particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1256760A
Other languages
Japanese (ja)
Inventor
Kazuyuki Oishi
和之 大石
Masahiro Takechi
昌裕 武智
Kazutoshi Yamazaki
和俊 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP1256760A priority Critical patent/JPH03118466A/en
Publication of JPH03118466A publication Critical patent/JPH03118466A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To perform assay with a high accuracy and in a short time by forming a polymer layer having a carboxyl group on the surface part of a filler. CONSTITUTION:The mixed liquid of a hydrophobic monomer is added into a water phase wherein suspension stabilizer is dispersed. After the substitution with nitrogen, the liquid is agitated and heated, and suspension polymerization is performed. When diluent is added and the polymerization is performed, organic solvent is removed after the end of the polymerization, and porous spherical particles are obtained. Then, the hydrophobic cross link polymer is impregnated with a polymerization initiator. The particles are dispersed in a dispersion medium wherein a monomer having a hydrolytic group is dissolved. After the substitution with hydrogen, the material is agitated and heated, and polymerization is performed. Thus, the polymer particles having a double-layered structure are obtained. Then, the polymer particles are washed and undergo hydrolysis with acid catalyst or alkali catalyst. The functional group on the coating layer on the surface of the particle is made to be a carboxyl group. The particles are filtered, washed with water and dried. Thus a filler is obtained. A column is filled with the filler. A sample blood is hemolyzed and applied on the column. Thus, saccharified hemoglobin can be assayed by liquid chromatography.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、tli化ヘモグロビンの定量法、特に液体ク
ロマトグラフィーを用いた糖化ヘモグロビンの定量法に
関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for quantifying tli-hemoglobin, particularly to a method for quantifying glycated hemoglobin using liquid chromatography.

(従来の技術) 糖化ヘモグロビンは、赤血球中のヘモグロビンが非酵素
的に血液中のグルコースと反応して形成される。糖化ヘ
モグロビンを測定することにより血液中のグルコースの
平均濃度がわかるため、該糖化ヘモグロビンの測定は糖
尿病の診断に広く用いられている。糖化ヘモグロビンは
、現在では。
(Prior Art) Glycated hemoglobin is formed when hemoglobin in red blood cells non-enzymatically reacts with glucose in blood. Since the average concentration of glucose in blood can be determined by measuring glycated hemoglobin, measurement of glycated hemoglobin is widely used in the diagnosis of diabetes. Glycated hemoglobin is now.

主として高速液体クロマトグラフィー(以下HPLCと
する)により定量が行なわれている。HPLC法によれ
ば、従来のカラムクロマトグラフィー法、電気泳動法、
比色法などに比べて迅速な測定が可能である。
Quantification is mainly performed by high performance liquid chromatography (hereinafter referred to as HPLC). According to the HPLC method, conventional column chromatography method, electrophoresis method,
Rapid measurement is possible compared to colorimetric methods.

糖化ヘモグロビンを測定するときのHPLCに用いられ
る充填剤は、一般に弱カチオン性のイオン交換樹脂でな
り1通常、イオン交換基としてカルボキシル基を有する
イオン交換樹脂が用いられる。
The filler used in HPLC when measuring glycated hemoglobin is generally a weakly cationic ion exchange resin, and usually an ion exchange resin having a carboxyl group as an ion exchange group is used.

このようなHPLC用充填剤としては、主として有機ポ
リマー系充填剤または無機系充填剤が使用されている。
As such fillers for HPLC, organic polymer fillers or inorganic fillers are mainly used.

有機ポリマー系充填剤としては1例えば。Examples of organic polymer fillers include: 1;

特開昭58−221164号に、テトラメチロールメタ
ントリアクリレートなどのアクリル酸またはメタクリル
酸のエステルとアクリル酸またはメタクリル酸との共重
合体でなる充填剤が開示されている。
JP-A-58-221164 discloses a filler made of a copolymer of an ester of acrylic acid or methacrylic acid, such as tetramethylolmethane triacrylate, and acrylic acid or methacrylic acid.

無機系充填剤としては、特開昭63−75558号に、
シリカ基材にカルボキシル基を導入した充填剤が開示さ
れている。
As inorganic fillers, Japanese Patent Application Laid-open No. 63-75558,
A filler in which a carboxyl group is introduced into a silica base material is disclosed.

一般に糖化ヘモグロビンの定量は、溶離液として溶出力
の弱い液(以下第1液とする)と溶出力の強い液(以下
第2液とする)との二種を用いてステップあるいは連続
グラジェント法により実施される。第1液は、充填剤中
の遊離カルボキシル基を増加させる。第1液を流した場
合、試料中の糖化ヘモグロビン以外のヘモグロビンは、
糖化ヘモグロビンよりも相対的に充填剤に保持されやす
く、糖化ヘモグロビンが分離されて溶出する。第2液は
イオン強度が大きいため、遊離カルボキシル基が塩とな
る。そのため、保持されていた糖化ヘモグロビン以外の
ヘモグロビンが速やかに溶出する。
Generally, glycated hemoglobin is quantified using a step or continuous gradient method using two types of eluents: a solution with a weak elution power (hereinafter referred to as the first solution) and a solution with a strong elution power (hereinafter referred to as the second solution). Implemented by The first liquid increases the free carboxyl groups in the filler. When the first liquid is passed, hemoglobin other than glycated hemoglobin in the sample is
It is relatively easier to be retained in the filler than glycated hemoglobin, and glycated hemoglobin is separated and eluted. Since the second liquid has a high ionic strength, free carboxyl groups become salts. Therefore, hemoglobin other than the retained glycated hemoglobin is rapidly eluted.

しかし、上記方法にポリマー系充填剤を用いる場合に次
のような問題がある。ポリマー系充填剤は1例えば上記
特開昭58−221164号に示されるように、疎水性
および親水性のモノマーを用いて調製されるため、主と
して親水性七ツマ−に起因するイオン交換基が充填剤粒
子全体に分布する。このような充填剤に第2液を接触さ
せると、充填剤が膨潤してカラム内の圧力が高くなる。
However, when using a polymer filler in the above method, there are the following problems. Polymer-based fillers are prepared using hydrophobic and hydrophilic monomers, as shown in JP-A-58-221164, for example, so that ion exchange groups mainly due to hydrophilic heptads are filled. distributed throughout the particle. When such a packing material is brought into contact with the second liquid, the packing material swells and the pressure within the column increases.

ひとつの検体を測定した後2次の検体を測定するために
は。
To measure a second sample after measuring one sample.

第1液を流してカルボキシル基を遊離型に戻す操作が必
要とされる。このときに、充填剤内部に存在するイオン
交換基を充分に遊離型にもどすための平衡化には相当量
の第1液を流す必要があるため測定時間が長くなる。ポ
リマー系充填剤を用いたHPLCにより糖化ヘモグロビ
ンを比較的高速で測定できるようになったが、さらに測
定速度を上げようとすると上記のように、充填剤内部の
イオン交換基が充分に交換せず分離性能が低下する。あ
るいは、カラム内の圧力が高くなり、充填剤が変形して
1分離性能が低下する。したがって、高精度での分離を
行なうには、溶離速度を低下させる必要があり、測定時
間の短縮は困難となる。
It is necessary to flow the first liquid to return the carboxyl group to its free form. At this time, it is necessary to flow a considerable amount of the first liquid for equilibration in order to sufficiently return the ion-exchange groups present inside the filler to a free form, so that the measurement time becomes long. It has become possible to measure glycated hemoglobin at a relatively high speed using HPLC using a polymer-based packing material, but when trying to further increase the measurement speed, as mentioned above, the ion exchange groups inside the packing material are not exchanged sufficiently. Separation performance deteriorates. Alternatively, the pressure within the column increases, deforming the packing material and reducing the separation performance. Therefore, in order to perform highly accurate separation, it is necessary to reduce the elution rate, making it difficult to shorten the measurement time.

他方シリカを基材とする無機系充填剤は、一般に耐圧性
および耐膨潤性において優れているが。
On the other hand, inorganic fillers based on silica generally have excellent pressure resistance and swelling resistance.

表面に残存するシラノール基によってタンパクの非特異
吸着を起こしやすいなどの問題が措摘されている。
Problems such as silanol groups remaining on the surface tend to cause non-specific adsorption of proteins have been addressed.

(発明が解決しようとする課題) 本発明は上記従来法の欠点を解決するものであり、その
目的とするところは、 HPLCにより糖化ヘモグロビ
ンを短時間のうちに高精度で分離・定量する方法を提供
することにある。本発明の他の目的は、カラム操作時に
カラム圧を上昇させることがなく、溶離液との平衡化が
速やかであり、かつタンパクなどを非特異吸着させるこ
とのない充填剤を用いて、 HPLCにより糖化ヘモグ
ロビンを効果的に定量する方法を提供することにある。
(Problems to be Solved by the Invention) The present invention solves the drawbacks of the above-mentioned conventional methods, and its purpose is to provide a method for separating and quantifying glycated hemoglobin in a short time and with high precision by HPLC. It is about providing. Another object of the present invention is to use a packing material that does not increase column pressure during column operation, quickly equilibrates with an eluent, and does not non-specifically adsorb proteins, etc. An object of the present invention is to provide a method for effectively quantifying glycated hemoglobin.

(課題を解決するための手段) 本発明は、液体クロマトグラフィーにより試料中の糖化
ヘモグロビンを定量する方法であって。
(Means for Solving the Problems) The present invention is a method for quantifying glycated hemoglobin in a sample by liquid chromatography.

該液体クロマトグラフィーに使用する充填剤が。The packing material used in the liquid chromatography.

疎水性架橋重合体粒子の表面部分に、カルボキシル基を
有する(共)重合体の層が形成された被覆重合体粒子で
なり;該被覆重合体粒子が、加水分解反応によりカルボ
キシル基を生成し得る官能基を有する単量体を、該疎水
性架橋重合体粒子の表面部分で重合させ、生成する重合
体で該疎水性架橋重合体粒子を被覆し;そして、該官能
基を加水分解して得られ、そのことにより上記目的が達
成される。
It consists of coated polymer particles in which a layer of a (co)polymer having carboxyl groups is formed on the surface portion of hydrophobic crosslinked polymer particles; the coated polymer particles can generate carboxyl groups through a hydrolysis reaction. A monomer having a functional group is polymerized on the surface portion of the hydrophobic cross-linked polymer particles, and the resulting polymer is coated on the hydrophobic cross-linked polymer particles; and the functional group is hydrolyzed. The above objectives are thereby achieved.

本発明方法に使用される疎水性架橋重合体粒子の素材と
しては、疎水性架橋性単量体を(共)重合させて得られ
る(共)重合体または疎水性架橋性単量体と疎水性非架
橋性単量体との共重合体が用いられる。これらの単量体
は、後述する加水分解反応条件において、化学反応(例
えば、加水分解)しない重合体を形成するものであるこ
とが必要である。したがって、加水分解反応条件におい
て、化学反応し得る官能基を持たない単量体が用いられ
る。上記疎水性架橋性単量体および疎水性非架橋性単量
体は、それぞれ単独で、あるいは二種以上が組みあわせ
て用いられ得る。上記疎水性架橋性単量体としては1例
えばジビニルベンゼン。
The material for the hydrophobic crosslinked polymer particles used in the method of the present invention is a (co)polymer obtained by (co)polymerizing a hydrophobic crosslinkable monomer or a hydrophobic crosslinkable monomer and a hydrophobic crosslinkable monomer. A copolymer with a non-crosslinkable monomer is used. These monomers are required to form a polymer that does not undergo a chemical reaction (for example, hydrolysis) under the hydrolysis reaction conditions described below. Therefore, a monomer that does not have a functional group capable of chemically reacting under the hydrolysis reaction conditions is used. The above-mentioned hydrophobic crosslinkable monomer and hydrophobic non-crosslinkable monomer may be used alone or in combination of two or more. Examples of the hydrophobic crosslinking monomer include divinylbenzene.

ジビニルトルエン、ジビニルキシレン、ジビニルナフタ
レンなどの2個以上のビニル基を有する芳香族系化合物
などが用いられる。上記疎水性非架橋性単量体としては
9例えばスチレン、メチルスチレンなどが用いられる。
Aromatic compounds having two or more vinyl groups, such as divinyltoluene, divinylxylene, and divinylnaphthalene, are used. Examples of the hydrophobic non-crosslinkable monomer include styrene, methylstyrene, and the like.

上記架橋性および非架橋性の単量体を混合して用いる場
合には、架橋性単量体が全単量体100重量部に対し1
0重量部以上。
When the above-mentioned crosslinkable and non-crosslinkable monomers are mixed and used, the crosslinkable monomer is used in an amount of 1 part by weight per 100 parts by weight of the total monomers.
0 parts by weight or more.

好ましくは20重量部以上となるように使用される。It is preferably used in an amount of 20 parts by weight or more.

上記疎水性架橋重合体粒子を調製するときに用いられる
重合開始剤、および得られた疎水性架橋重合体粒子−含
浸させる重合開始剤は、ラジカルを発生する触媒であり
、疎水性であれば特に限定されない。例えばベンゾイル
パーオキサイド、クメンパーオキサイドなどの有機過酸
化物;アゾビスイソブチロニトリル、アゾビスイソブチ
ロアミドなどのアブ化合物など既知のラジカル発生触媒
のいずれもが使用され得る。
The polymerization initiator used when preparing the above-mentioned hydrophobic crosslinked polymer particles and the polymerization initiator to be impregnated with the obtained hydrophobic crosslinked polymer particles are catalysts that generate radicals, and especially if they are hydrophobic. Not limited. Any of the known radical generating catalysts can be used, such as organic peroxides such as benzoyl peroxide and cumene peroxide; and ab compounds such as azobisisobutyronitrile and azobisisobutyramide.

本発明方法で、疎水性架橋重合体粒子を被覆するために
用いられる単量体は、加水分解によりカルボキシル基を
生成し得る官能基を有する単量体(以下、加水分解性の
基を有する単量体とする)である。このような単量体と
しては、アクリル酸メチル、メタクリル酸メチルなどの
、アクリル酸またはメタクリル酸(以下、(メタ)アク
リル酸とする)のアルキルエステル類;(メタ)アクリ
ルアミド、 (メタ)アクリロニトリルなどが挙げられ
る。上記加水分解性の基を有する単量体は。
In the method of the present invention, the monomer used to coat the hydrophobic crosslinked polymer particles is a monomer having a functional group that can generate a carboxyl group by hydrolysis (hereinafter, a monomer having a hydrolyzable group). ). Such monomers include alkyl esters of acrylic acid or methacrylic acid (hereinafter referred to as (meth)acrylic acid) such as methyl acrylate and methyl methacrylate; (meth)acrylamide, (meth)acrylonitrile, etc. can be mentioned. The above-mentioned monomer having a hydrolyzable group is as follows.

必要に応じて二種以上が混合して用いられ得る。Two or more types may be used as a mixture if necessary.

加水分解性の基を有する単量体の使用量は、単量体の種
類によって異なるが疎水性架橋重合体100重量部に対
して5〜50重量部の割合である。
The amount of the monomer having a hydrolyzable group varies depending on the type of monomer, but is in the range of 5 to 50 parts by weight per 100 parts by weight of the hydrophobic crosslinked polymer.

本発明方法に用いる液体クロマトグラフィー用充填剤を
調製するには、まず、疎水性架橋重合体粒子が調製され
る。この疎水性架橋重合体粒子は既知の任意の水性懸濁
重合法により調製され得る。
To prepare the packing material for liquid chromatography used in the method of the present invention, first, hydrophobic crosslinked polymer particles are prepared. The hydrophobic crosslinked polymer particles can be prepared by any known aqueous suspension polymerization method.

まず上記疎水性単量体(疎水性架橋性単量体および必要
に応じて疎水性非架橋性単量体)に上記重合開始剤を溶
解させる。さらに、必要に応じて希釈剤を添加すること
によって多孔性の疎水性架橋重合体を得ることができる
。希釈剤としては、上記単量体を溶解させ、かつその重
合体を溶解させない有機溶媒のいずれもが使用可能であ
る。例えば、トルエン、キシレン、ジエチルベンゼン、
ドデシルヘンゼンなどの芳香族炭化水素類;ヘキサン、
ヘプタン、オクタン、デカンなどの飽和炭化水素1;イ
ソアミルアルコール、ヘキシルアルコール、オクチルア
ルコールなどのアルコール類があげられる。その使用量
は何ら限定されないが上記単量体100重量部に対して
200重量部までの割合であることが好ましい。上記単
量体の混合液を。
First, the polymerization initiator is dissolved in the hydrophobic monomer (hydrophobic crosslinkable monomer and, if necessary, hydrophobic non-crosslinkable monomer). Furthermore, a porous hydrophobic crosslinked polymer can be obtained by adding a diluent if necessary. As the diluent, any organic solvent that dissolves the above-mentioned monomers but does not dissolve the polymer can be used. For example, toluene, xylene, diethylbenzene,
Aromatic hydrocarbons such as dodecylhenzen; hexane,
Saturated hydrocarbons such as heptane, octane and decane 1; Alcohols such as isoamyl alcohol, hexyl alcohol and octyl alcohol. The amount used is not limited at all, but it is preferably up to 200 parts by weight per 100 parts by weight of the monomer. A mixture of the above monomers.

ポリビニルアルコール、リン酸カルシウムなどの懸濁安
定剤を分散した水相に添加し、窒素置換後攪拌しながら
40〜100 ’Cに加熱することにより懸濁重合を行
う。希釈剤を添加して重合を行った場合、得られた重合
体粒子中には希釈剤である有機溶媒が分散して存在する
ため2重合終了後に有機溶媒を除去することにより、多
孔性の球状粒子が得られる。希釈剤として上記疎水性単
量体混合物と相溶性の異なる種々の有機溶媒を使用する
ことにより、多孔性重合体の細孔の大きさを任意に変化
させることが可能である。
Suspension polymerization is carried out by adding a suspension stabilizer such as polyvinyl alcohol or calcium phosphate to the dispersed aqueous phase, purging with nitrogen, and heating to 40 to 100'C with stirring. When polymerization is performed with the addition of a diluent, the organic solvent as the diluent is dispersed in the resulting polymer particles, so by removing the organic solvent after the completion of the double polymerization, porous spherical particles can be formed. particles are obtained. By using various organic solvents having different compatibility with the hydrophobic monomer mixture as a diluent, it is possible to arbitrarily change the size of the pores of the porous polymer.

次に、得られた疎水性架橋重合体粒子に重合開始剤を含
浸させる。重合開始剤を含浸させるには該重合開始剤を
、低沸点で、かつ疎水性架橋重合体と親和性の良い溶媒
に溶解させ、これに上記疎水性架橋重合体粒子を浸漬す
る。このことにより重合開始剤が粒子中に浸透する。こ
れを必要に応じて重合開始剤の分解点以下の温度で加熱
して。
Next, the obtained hydrophobic crosslinked polymer particles are impregnated with a polymerization initiator. To impregnate the polymerization initiator, the polymerization initiator is dissolved in a solvent that has a low boiling point and has good affinity with the hydrophobic crosslinked polymer, and the hydrophobic crosslinked polymer particles are immersed in this. This allows the polymerization initiator to penetrate into the particles. If necessary, heat this at a temperature below the decomposition point of the polymerization initiator.

溶媒を留去すれば重合開始剤を疎水性架橋重合体粒子中
に含有する粒子が得られる。この重合開始剤含有粒子を
上記加水分解性の基を有する単量体が溶解する分散媒中
に分散させ、あるいは、該粒子が分散する分散媒中に加
水分解性の基を有する単量体を添加し、溶解させて、窒
素置換後、撹拌しながら加熱して重合を行なう。分散媒
としては加水分解性の基を有する単量体を熔解する水ま
たは有機溶媒、あるいは両者の混合物が使用される。
By distilling off the solvent, particles containing a polymerization initiator in the hydrophobic crosslinked polymer particles can be obtained. The polymerization initiator-containing particles are dispersed in a dispersion medium in which the monomer having a hydrolyzable group is dissolved, or the monomer having a hydrolyzable group is dissolved in a dispersion medium in which the particles are dispersed. The mixture is added and dissolved, and after purging with nitrogen, polymerization is carried out by heating while stirring. As the dispersion medium, water or an organic solvent that dissolves the monomer having a hydrolyzable group, or a mixture of the two is used.

分散媒中における疎水性架橋重合体の分散性を安定化さ
せるため、カルボキシメチルセルロース。
Carboxymethylcellulose to stabilize the dispersibility of the hydrophobic crosslinked polymer in the dispersion medium.

ポリビニールアルコールなどの分散安定剤を使用しても
よい。重合の温度および時間は9反応させる加水分解性
の基を有する単量体の種類と2重合開始剤の種類によっ
ても異なるが、40〜100°Cで0.5〜IO時間程
度である。
Dispersion stabilizers such as polyvinyl alcohol may also be used. The temperature and time of polymerization vary depending on the type of monomer having a hydrolyzable group to be reacted and the type of polymerization initiator, but are approximately 0.5 to IO hours at 40 to 100°C.

上記重合開始剤を含浸させた疎水性架橋重合体粒子を加
水分解性の基を有する単量体の重合反応に供する方法の
他、疎水性架橋重合体粒子の調製に引き続いて加水分解
性の基を有する単量体を反応させる連続法によっても上
記二層構造の重合体粒子が調製され得る。この方法にお
いては、まず。
In addition to the method in which hydrophobic crosslinked polymer particles impregnated with a polymerization initiator are subjected to a polymerization reaction of a monomer having a hydrolyzable group, following the preparation of hydrophobic crosslinked polymer particles, The above two-layer structure polymer particles can also be prepared by a continuous method in which monomers having the following are reacted. In this method, first.

上記疎水性架橋重合体粒子を調製するための重合反応を
開始させる。重合がある程度進行し、かつ未反応の単量
体が残存しているときに上記加水分解性の基を有する単
量体を反応系に加える。このような状態においては、系
内の油相および生成した疎水性架橋重合体粒子内部に重
合開始剤が存在するため、引き続いて加水分解性の基を
有する単量体の重合が起こり、しかも該疎水性架橋重合
体粒子の表面部分を被覆する形で、加水分解性の基を有
する重合体の層が形成される。
A polymerization reaction for preparing the hydrophobic crosslinked polymer particles is started. When the polymerization has progressed to some extent and unreacted monomers remain, the monomer having the hydrolyzable group is added to the reaction system. In such a state, since a polymerization initiator is present in the oil phase in the system and inside the generated hydrophobic crosslinked polymer particles, polymerization of monomers having hydrolyzable groups occurs subsequently. A layer of a polymer having a hydrolyzable group is formed to cover the surface portion of the hydrophobic crosslinked polymer particles.

上記各方法で得られた重合体粒子を熱水、有機溶媒など
で十分洗浄し1粒子に含有されている。
The polymer particles obtained by each of the above methods are thoroughly washed with hot water, an organic solvent, etc., and the polymer particles are contained in one particle.

あるいは付着している懸濁安定剤、溶媒、残存単量体な
どを除去する。
Alternatively, adhering suspension stabilizers, solvents, residual monomers, etc. are removed.

得られた重合体粒子を酸触媒またはアルカリ触媒により
加水分解を行うことにより2粒子表面の被覆層に存在す
る加水分解性の官能基が加水分解されて、カルボキシル
基となる。例えば、加水分解性の基を有する単量体とし
てアクリル酸メチルを用いた場合1重合体粒子を水酸化
ナトリウムの15〜25重量%メタノール溶液中で60
〜80°Cの温度で4〜7時間反応させることによって
粒子表面のC00CI+3基はカルボキシル基となる。
By hydrolyzing the obtained polymer particles with an acid catalyst or an alkali catalyst, the hydrolyzable functional groups present in the coating layer on the surfaces of the two particles are hydrolyzed to become carboxyl groups. For example, when methyl acrylate is used as a monomer having a hydrolyzable group, one polymer particle is dissolved in a 15 to 25 wt% methanol solution of sodium hydroxide for 60 min.
By reacting at a temperature of ~80°C for 4 to 7 hours, the C00CI+3 groups on the particle surface become carboxyl groups.

加水分解反応後1重合体粒子を濾取し、数回水洗して乾
燥し、さらに必要に応じて粒子を分級して、充填剤が得
られる。
After the hydrolysis reaction, the polymer particles are collected by filtration, washed several times with water and dried, and if necessary, the particles are classified to obtain a filler.

本発明方法により糖化ヘモグロビンの測定を行なうには
、まず、試料の血液を必要に応じて溶血させる。これを
、上記充填剤が充填されたカラムにかけ1通常の液体ク
ロマトグラフィーの手法により糖化ヘモグロビンの定量
を行なう。適当な緩衝液を選択することにより、試料中
の糖化ヘモグロビン、次いで他のヘモグロビンが分離さ
れて順次溶出される。
To measure glycated hemoglobin by the method of the present invention, first, the blood sample is hemolyzed as necessary. This is applied to a column filled with the above-mentioned packing material, and glycated hemoglobin is quantified by a conventional liquid chromatography method. By selecting an appropriate buffer solution, glycated hemoglobin and then other hemoglobins in the sample are separated and sequentially eluted.

本発明方法に用いられる充填剤は、疎水性架橋重合体を
骨格とし、カルボキシル基を有する重合体で該疎水性架
橋重合体の表面部分が被覆された二層構造の重合体粒子
からなる。骨格部分として架橋度の高い重合体を用いる
ことによって2機械的強度が極めて大きく耐圧性に優れ
た液体クロマトグラフィー用充填剤を得ることができる
。この充填剤の骨格部分には親水性の基が存在しないた
め、水性溶出液による充填剤の膨潤および収縮の度合が
極めて低い。したがって糖化ヘモグロビンの定量におい
て、第2液通液時の圧力上昇が極めて少ない。表面部分
のみがカルボキシル基を有する重合体層で覆われている
ため、充填剤のイオン交換能が高く、さらに、カルボキ
シル基の平衡化も非常に速い。そのため糖化ヘモグロビ
ンの分離性能が優れ、短時間での測定が可能となる。さ
らにタンパクの非特異的吸着も全く認められない。
The filler used in the method of the present invention is composed of polymer particles having a two-layer structure in which a hydrophobic crosslinked polymer is used as a skeleton and the surface portion of the hydrophobic crosslinked polymer is coated with a polymer having a carboxyl group. By using a polymer with a high degree of crosslinking as the skeleton part, it is possible to obtain a packing material for liquid chromatography that has extremely high mechanical strength and excellent pressure resistance. Since no hydrophilic groups are present in the skeleton of this filler, the degree of swelling and shrinkage of the filler by an aqueous eluent is extremely low. Therefore, in quantifying glycated hemoglobin, the pressure increase during passage of the second liquid is extremely small. Since only the surface portion is covered with a polymer layer having carboxyl groups, the ion exchange ability of the filler is high, and the carboxyl groups are equilibrated very quickly. Therefore, the separation performance of glycated hemoglobin is excellent, and measurement can be performed in a short time. Furthermore, no non-specific adsorption of proteins was observed.

(実施例) 以下に本発明を実施例につき説明する。(Example) The invention will be explained below with reference to examples.

以下の実施例および比較例において得られた充填剤の物
性測定および性能評価の方法は次の通りである。
The methods for measuring the physical properties and evaluating the performance of the fillers obtained in the following Examples and Comparative Examples are as follows.

「充填剤の評価方法」 得られた充填剤を内径6nnnおよび長さ75Mのステ
ンレス製カラムに充填し、耐圧性および水に対する膨潤
性を調べた。耐圧性はカラムに精製水を流し、流速を変
えて流速と圧力損失との関係より測定した。膨潤性は、
イオン強度の異なる液を流した時のカラム圧の変化より
求めた。
"Evaluation method of filler" The obtained filler was packed into a stainless steel column with an inner diameter of 6nnn and a length of 75M, and its pressure resistance and swelling property with respect to water were examined. Pressure resistance was measured by flowing purified water through the column, changing the flow rate, and measuring the relationship between flow rate and pressure loss. The swelling property is
It was determined from the change in column pressure when liquids with different ionic strengths were passed.

京都電子工業■製電位差自動滴定装置AT−310によ
り充填剤表面のイオン交換基を定量した。さらに■京都
第−科学製旧〜AUTOA、cでヒト血液のへモグロビ
ンの分析を行い分離能などを従来品と比較した。測定方
法は次の通りである。ヒト血液検体として、同一人(R
常人)の血液を採取後直ちにヘパリンを添加したものを
用いた。血液検体は。
The ion exchange groups on the surface of the filler were quantified using an automatic potentiometric titrator AT-310 manufactured by Kyoto Electronics Industry Co., Ltd. Furthermore, human blood hemoglobin was analyzed using Kyoto Dai-Kagaku's old AUTOA, c, and its separation ability was compared with conventional products. The measurement method is as follows. As human blood samples, samples from the same person (R
Immediately after the blood of a normal person was collected, heparin was added to it. Blood specimen.

本装置付属の専用溶血液21L(ノニオン系界面活性剤
を含むリン酸緩衝液)によって、自動的に290倍に希
釈、溶血される。溶離液は本装置付属の専用試薬である
A液(pH5,9のリン酸緩衝液)、B液(p)17.
2のリン酸緩衝液)およびC液(pH5,9のリン酸緩
衝液)を使用した。
The blood is automatically diluted 290 times and hemolyzed using the dedicated hemolysis 21L (phosphate buffer containing nonionic surfactant) attached to this device. The eluents are solution A (phosphate buffer with pH 5, 9) and solution B (p), which are exclusive reagents attached to this device.
2 phosphate buffer) and C solution (phosphate buffer pH 5, 9) were used.

失血器上 スチレン(疎水性非架橋性単量体)100g、ジビニル
ベンゼン(疎水性架橋性単量体)200gおよびベンゾ
イルパーオキサイド(重合開始剤)1gをトルエン(希
釈剤)200gに溶解させた。これを4%ポリビニルア
ルコール水?容7夜2.542に添加して、攪拌しなが
ら羽枝した後、窒素置換下で80°Cに加熱し懸濁重合
を行った。80°Cで8時間重合した後、生成物を熱水
およびアセトンで順次洗浄し、乾燥して微小の疎水性架
橋重合体粒子を得た。
100 g of styrene (hydrophobic non-crosslinking monomer), 200 g of divinylbenzene (hydrophobic cross-linking monomer) and 1 g of benzoyl peroxide (polymerization initiator) were dissolved in 200 g of toluene (diluent). Is this 4% polyvinyl alcohol water? The mixture was added to a volume of 2.542 ml for 7 nights, stirred, and then heated to 80°C under nitrogen substitution to carry out suspension polymerization. After polymerization at 80°C for 8 hours, the product was sequentially washed with hot water and acetone and dried to obtain fine hydrophobic crosslinked polymer particles.

この疎水性架橋重合体粒子200gをアセチルパーオキ
サイド0.5gが溶解しているアセトンIPに浸漬して
該重合開始剤を含浸させた。次にアセトンを20°Cに
おいて減圧下で留去した。50%メタノール水溶液2.
52に上記の含浸処理した疎水性架橋重合体を懸濁させ
、攪拌しながらアクリル酸メチル(加水分解性の基を有
する単量体)50gを添加し窒素置換後70゛Cで5時
間重合反応を行った。
200 g of the hydrophobic crosslinked polymer particles were immersed in acetone IP in which 0.5 g of acetyl peroxide was dissolved to impregnate the particles with the polymerization initiator. The acetone was then distilled off under reduced pressure at 20°C. 50% methanol aqueous solution 2.
The above-mentioned impregnated hydrophobic crosslinked polymer was suspended in No. 52, 50 g of methyl acrylate (a monomer having a hydrolyzable group) was added with stirring, and the polymerization reaction was carried out at 70°C for 5 hours after purging with nitrogen. I did it.

生成物を熱水およびアセトンで順次洗浄し、乾燥した。The product was washed successively with hot water and acetone and dried.

この重合体粒子150gを水酸化ナトリウムの20重量
%メタノール溶液500dに添加し、75”Cで5時間
加熱して、ポリアクリル酸メチルのエステル部分を加水
分解した。反応混合物を室温に冷却した後1重合体粒子
を濾取して、数回水洗し。
150 g of this polymer particle was added to 500 d of a 20% by weight methanol solution of sodium hydroxide and heated at 75"C for 5 hours to hydrolyze the ester moiety of polymethyl acrylate. After cooling the reaction mixture to room temperature. 1 Polymer particles were collected by filtration and washed several times with water.

乾燥した。得られた微小のポリマーゲルを日清エンジニ
アリング■製空気分級機ターボクラシファイアTC〜1
5Nにより分級して粒径が8〜10μmの粒子を集め、
充填剤を得た。これを内径6rM1および長さ75Mn
のステンレス製カラムに充填した。充填は精製水35m
1にゲル(充填剤)2gを取り5分間攪拌した後、2.
0d/分で定流量充填することにより行った。
Dry. The obtained microscopic polymer gel was processed using an air classifier Turbo Classifier TC~1 manufactured by Nisshin Engineering ■.
Classify with 5N to collect particles with a particle size of 8 to 10 μm,
A filler was obtained. This has an inner diameter of 6rM1 and a length of 75Mn.
was packed into a stainless steel column. Fill with 35m of purified water
Add 2g of gel (filler) to 1 and stir for 5 minutes, then add 2.
This was done by constant flow filling at 0 d/min.

上記の方法により耐圧性および膨潤性の評価を行った。Pressure resistance and swelling properties were evaluated using the methods described above.

耐圧性評価においては、  150kg/cdまで圧力
損失が流速と比例した。膨潤性試験を行ったところ、溶
離液を40mMのリン酸緩衝液から200mMのリン酸
緩衝液に変えた場合、カラム圧力の上昇は認められなか
った。滴定によりゲル表面のカルボキシル基を定量した
ところゲル1g当たり0.07mmo 1のカルボキシ
ル基が存在し、従って加水分解反応前にゲル表面に存在
していたアクリル酸メチルは1.2gであった。■京郁
第−科学製旧−AUTOAICでヒト血液の分析を行っ
た。その結果得られたクロマトグラムを第1図に示す。
In the pressure resistance evaluation, the pressure loss was proportional to the flow rate up to 150 kg/cd. When a swelling test was conducted, no increase in column pressure was observed when the eluent was changed from 40 mM phosphate buffer to 200 mM phosphate buffer. When the carboxyl groups on the gel surface were quantified by titration, 0.07 mmol of carboxyl groups were present per 1 g of gel, and therefore, 1.2 g of methyl acrylate was present on the gel surface before the hydrolysis reaction. ■Human blood was analyzed using Kyoto Kagaku's old AUTOAIC. The resulting chromatogram is shown in FIG.

第1図および後述の第2図、第3図において、1はヘモ
グロビン(以下Hbとする) AI−およびAIb、2
は胎児性Hb(F)、  3は不安定型1(bA、C,
4は安定型HbA、、。
In Fig. 1 and Figs. 2 and 3 described below, 1 is hemoglobin (hereinafter referred to as Hb), AI- and AIb, 2
is fetal Hb (F), 3 is unstable type 1 (bA, C,
4 is stable HbA.

そして5は正常ub(Aa)に起因するピークである。And 5 is a peak due to normal ub (Aa).

実上桝主 スチレン(疎水性非架橋性単量体)100g、ジビニル
ベンゼン(疎水性架橋性単量体)200gおよびベンゾ
イルパーオキサイド(重合開始剤゛)1gをイソアミル
アルコール(希釈剤)200’gに溶解させた。実施例
1と同様にして疎水性架橋重合体粒子を調製した。
In practice, 100 g of styrene (hydrophobic non-crosslinking monomer), 200 g of divinylbenzene (hydrophobic cross-linking monomer), and 1 g of benzoyl peroxide (polymerization initiator) were combined with 200 g of isoamyl alcohol (diluent). It was dissolved in Hydrophobic crosslinked polymer particles were prepared in the same manner as in Example 1.

この疎水性架橋重合体粒子200gをベンゾイルパーオ
キサイド0.5gが溶解しているアセトン1ρに浸漬し
て該重合開始剤を含浸させた。次にアセトンを20゛C
において減圧下で留去した。50%メタノール水溶液2
.51に上記の含浸処理した疎水性架橋重合体を懸濁さ
せ、攪拌しながらメタクリル酸メチル50gを添加し窒
素置換後80″Cで5時間重合反応を行った。生成物を
熱水およびアセトンで順次洗浄し、乾燥した。得られた
乾燥ゲルを実施例1と同様に加水分解1分級、充填し評
価した。
200 g of the hydrophobic crosslinked polymer particles were immersed in 1 ρ of acetone in which 0.5 g of benzoyl peroxide was dissolved to impregnate the particles with the polymerization initiator. Next, add acetone to 20℃
The residue was distilled off under reduced pressure. 50% methanol aqueous solution 2
.. The above impregnated hydrophobic crosslinked polymer was suspended in No. 51, 50 g of methyl methacrylate was added with stirring, and the polymerization reaction was carried out at 80"C for 5 hours after purging with nitrogen. The product was dissolved in hot water and acetone. The resulting dried gel was hydrolyzed and classified into 1st class in the same manner as in Example 1, and then filled and evaluated.

その結果、耐圧性については150kg/c111まで
圧力損失は流速と比例した。膨潤性試験を行ったところ
、溶離液を40mMのリン酸緩衝液から200mMのリ
ン酸緩衝液に変えた場合、カラム圧力の上昇は認められ
なかった。滴定によりゲル表面のカルボキシル基を定量
したところゲル1g当たりQ、1mmolのカルボキシ
ル基が存在し、従って加水分解反応前にゲル表面に存在
していたメタクリル酸メチルは1.7gであった。実施
例1と同様にしてヒト血液の分析を行った。その結果得
られたクロマトグラムを第2図に示す。
As a result, regarding the pressure resistance, the pressure loss was proportional to the flow rate up to 150 kg/c111. When a swelling test was conducted, no increase in column pressure was observed when the eluent was changed from 40 mM phosphate buffer to 200 mM phosphate buffer. When the carboxyl groups on the gel surface were quantified by titration, there were Q, 1 mmol of carboxyl groups per 1 g of gel, and therefore, 1.7 g of methyl methacrylate was present on the gel surface before the hydrolysis reaction. Human blood was analyzed in the same manner as in Example 1. The resulting chromatogram is shown in FIG.

実音■主 この実施例では、疎水性架橋重合体粒子の調製に続いて
加水分解性の基を有する単量体を反応させる連続した重
合法を採用した。
Main Example In this example, a continuous polymerization method was employed in which hydrophobic crosslinked polymer particles were prepared and then a monomer having a hydrolyzable group was reacted.

スチレン100 g 、ジビニルベンゼン200gおよ
びベンゾイルパーオキサイド1gをトルエン200gに
溶解し、4%ポリビニルアルコール水溶液2.52に添
加して、攪拌しながら羽枝した後、窒素置換下で80°
Cに加熱し懸濁重合を行った。80°Cで2時間重合し
た後アクリルアミド50gを添加し、さらに80°Cで
2時間重合し、生成物を実施例1と同様に加水分解2分
級、充填して、評価した。
100 g of styrene, 200 g of divinylbenzene, and 1 g of benzoyl peroxide were dissolved in 200 g of toluene, added to 2.5 g of a 4% polyvinyl alcohol aqueous solution, barbed with stirring, and heated at 80° under nitrogen substitution.
Suspension polymerization was carried out by heating to C. After polymerizing at 80°C for 2 hours, 50 g of acrylamide was added, followed by further polymerization at 80°C for 2 hours, and the product was hydrolyzed and classified into 2 parts, packed and evaluated in the same manner as in Example 1.

その結果、耐圧性については150 kg/cdまで圧
力損失は流速と比例した。膨潤性試験を行ったところ、
溶離液を40mMのリン酸緩衝液から2001のリン酸
緩衝液に変えた場合、カラム圧力の上昇は認められなか
った。滴定によりゲル表面のカルボキシル基を定量した
ところ、ゲル1g当たり0.4mmo lのカルボキシ
ル基が存在し、従って加水分解反応前にゲル表面に存在
していたアクリルアミドは5.7gであった。実施例1
と同様にしてヒト血液の分析を行った。その結果得られ
たクロマトグラムは第1図と同様であった。
As a result, regarding pressure resistance, pressure loss was proportional to flow rate up to 150 kg/cd. When a swelling test was conducted,
When the eluent was changed from 40 mM phosphate buffer to 2001 phosphate buffer, no increase in column pressure was observed. When the carboxyl groups on the gel surface were quantified by titration, 0.4 mmol of carboxyl groups were present per 1 g of gel, and therefore, 5.7 g of acrylamide was present on the gel surface before the hydrolysis reaction. Example 1
Human blood was analyzed in the same manner. The resulting chromatogram was similar to that shown in FIG.

ル較■上 スチレン100 g 、 ジビニルベンゼン200 g
 、アクリル酸メチル70g、アセチルパーオキサイド
1gをトルエン200gに?容解し、4%ポリビニルア
ルコール水溶液2.5!に添加して、攪拌しながら羽枝
した後、70°Cに加熱し懸濁重合した。70’Cで8
時間重合した後、生成物を実施例1と同様な操作により
加水分解1分級、充填し評価した。
100 g of styrene, 200 g of divinylbenzene
, 70g of methyl acrylate, 1g of acetyl peroxide to 200g of toluene? Dissolve and add 4% polyvinyl alcohol aqueous solution 2.5! The mixture was added to the solution, stirred while stirring, and then heated to 70°C for suspension polymerization. 8 at 70'C
After polymerization for a period of time, the product was hydrolyzed into 1 fraction by the same procedure as in Example 1, and then packed and evaluated.

その結果、耐圧性については80kg/c+flまで圧
力損失は流速と比例した。膨潤性試験を行ったところ、
溶離液を40mMのリン酸緩衝液から200mMのリン
酸緩衝液に変えた場合、カラム圧力が20kg/cff
l上昇した。このように実施例1の充填剤より耐圧性お
よび耐膨潤性は劣ることが明らかである。さらに実施例
1と同様にヒト血液の分析を行った。
As a result, regarding pressure resistance, pressure loss was proportional to flow rate up to 80 kg/c+fl. When a swelling test was conducted,
When the eluent was changed from 40mM phosphate buffer to 200mM phosphate buffer, the column pressure was 20kg/cff.
l rose. Thus, it is clear that the pressure resistance and swelling resistance are inferior to the filler of Example 1. Furthermore, human blood was analyzed in the same manner as in Example 1.

その結果を第3図に示す。第1図に比較すると明らかに
糖化ヘモグロビン類に対する保持力は弱く。
The results are shown in FIG. Compared to Fig. 1, the retention power for glycated hemoglobins is clearly weak.

分離能が劣っている。Separation power is poor.

(発明の効果) 本発明によれば、このように、高精度でかつ短時間のう
ちに糖化ヘモグロビンの定量がなされる。
(Effects of the Invention) According to the present invention, glycated hemoglobin can be quantified with high precision and in a short time.

本性を用いて、血液中の糖化ヘモグロビンを測定するこ
とにより、糖尿病の診断などが迅速かつ正確になされ得
る。
Diagnosis of diabetes can be made quickly and accurately by measuring glycated hemoglobin in the blood.

4、J   の   なi′日 第1図〜第3図は、それぞれ実施例1.実施例2および
比較例1において得られた充填剤をカラムに充填し、糖
化ヘモグロビンの分離を行なった際のクロマトグラムを
示す。
4.J's i' day Figures 1 to 3 are the results of Example 1, respectively. Chromatograms obtained when glycated hemoglobin was separated by filling a column with the packing materials obtained in Example 2 and Comparative Example 1 are shown.

以上 第1 図 第2図that's all 1st figure Figure 2

Claims (1)

【特許請求の範囲】[Claims] 1.液体クロマトグラフィーにより試料中の糖化ヘモグ
ロビンを定量する方法であって、該液体クロマトグラフ
ィーに使用する充填剤が、疎水性架橋重合体粒子の表面
部分に、カルボキシル基を有する(共)重合体の層が形
成された被覆重合体粒子でなり、 該被覆重合体粒子が、加水分解反応によりカルボキシル
基を生成し得る官能基を有する単量体を該疎水性架橋重
合体粒子の表面部分で重合させ、生成する重合体で該疎
水性架橋重合体粒子を被覆し、そして、 該官能基を加水分解して得られる、 糖化ヘモグロビンの定量法。
1. A method for quantifying glycated hemoglobin in a sample by liquid chromatography, wherein the packing material used in the liquid chromatography is a layer of a (co)polymer having carboxyl groups on the surface portion of hydrophobic crosslinked polymer particles. The coated polymer particles are formed by polymerizing a monomer having a functional group capable of producing a carboxyl group through a hydrolysis reaction on the surface portion of the hydrophobic crosslinked polymer particles, A method for quantifying glycated hemoglobin obtained by coating the hydrophobic crosslinked polymer particles with the resulting polymer and hydrolyzing the functional groups.
JP1256760A 1989-09-29 1989-09-29 Assay of saccharified hemoglobin Pending JPH03118466A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1256760A JPH03118466A (en) 1989-09-29 1989-09-29 Assay of saccharified hemoglobin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1256760A JPH03118466A (en) 1989-09-29 1989-09-29 Assay of saccharified hemoglobin

Publications (1)

Publication Number Publication Date
JPH03118466A true JPH03118466A (en) 1991-05-21

Family

ID=17297064

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1256760A Pending JPH03118466A (en) 1989-09-29 1989-09-29 Assay of saccharified hemoglobin

Country Status (1)

Country Link
JP (1) JPH03118466A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001349894A (en) * 2000-06-06 2001-12-21 Sekisui Chem Co Ltd Measuring method of hemoglobin or the like
JP2007010245A (en) * 2005-06-30 2007-01-18 Paloma Ind Ltd Water heating appliance
WO2007063701A1 (en) * 2005-12-02 2007-06-07 Sekisui Chemical Co., Ltd. Hydrophilic polymer microparticle, filler for ion exchange liquid chromatography, and method for production of filler for ion exchange liquid chromatography
JP2007271635A (en) * 2005-12-07 2007-10-18 Sekisui Chem Co Ltd Filler for ion exchange liquid chromatography, and analysis method of saccharified hemoglobin
JP2007327821A (en) * 2006-06-07 2007-12-20 Sekisui Chem Co Ltd Packing for ion-exchange liquid chromatography, and analyzing method of saccharified hemoglobin
JP2007326935A (en) * 2006-06-07 2007-12-20 Sekisui Chem Co Ltd Hydrophilic polymer microparticle
JP2013064752A (en) * 2005-12-07 2013-04-11 Sekisui Chem Co Ltd Filler for ion exchange liquid chromatography, and analysis method of saccharified hemoglobin

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58760A (en) * 1981-06-25 1983-01-05 Sekisui Chem Co Ltd Separation of catabolic hemoglobin
JPS60213863A (en) * 1984-04-09 1985-10-26 Asahi Chem Ind Co Ltd Crosslinked copolymer for separation of hemoglobin
JPS62277149A (en) * 1986-05-27 1987-12-02 Daicel Chem Ind Ltd Composite structure

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58760A (en) * 1981-06-25 1983-01-05 Sekisui Chem Co Ltd Separation of catabolic hemoglobin
JPS60213863A (en) * 1984-04-09 1985-10-26 Asahi Chem Ind Co Ltd Crosslinked copolymer for separation of hemoglobin
JPS62277149A (en) * 1986-05-27 1987-12-02 Daicel Chem Ind Ltd Composite structure

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001349894A (en) * 2000-06-06 2001-12-21 Sekisui Chem Co Ltd Measuring method of hemoglobin or the like
JP2007010245A (en) * 2005-06-30 2007-01-18 Paloma Ind Ltd Water heating appliance
WO2007063701A1 (en) * 2005-12-02 2007-06-07 Sekisui Chemical Co., Ltd. Hydrophilic polymer microparticle, filler for ion exchange liquid chromatography, and method for production of filler for ion exchange liquid chromatography
EP1955764A1 (en) * 2005-12-02 2008-08-13 Sekisui Chemical Co., Ltd. Hydrophilic polymer microparticle, filler for ion exchange liquid chromatography, and method for production of filler for ion exchange liquid chromatography
US7811453B2 (en) * 2005-12-02 2010-10-12 Sekisui Chemical Co., Ltd. Hydrophilic polymer microparticle, filler for ion exchange liquid chromatography, and method for production of filler for ion exchange liquid chromatography
EP1955764A4 (en) * 2005-12-02 2012-08-15 Sekisui Chemical Co Ltd Hydrophilic polymer microparticle, filler for ion exchange liquid chromatography, and method for production of filler for ion exchange liquid chromatography
US8968562B2 (en) 2005-12-02 2015-03-03 Sekisui Chemical Co., Ltd. Hydrophilic polymer microparticle, filler for ion exchange liquid chromatography, and method for production of filler for ion exchange liquid chromatography
JP2007271635A (en) * 2005-12-07 2007-10-18 Sekisui Chem Co Ltd Filler for ion exchange liquid chromatography, and analysis method of saccharified hemoglobin
JP2013064752A (en) * 2005-12-07 2013-04-11 Sekisui Chem Co Ltd Filler for ion exchange liquid chromatography, and analysis method of saccharified hemoglobin
JP2013178272A (en) * 2005-12-07 2013-09-09 Sekisui Chem Co Ltd Filler for ion exchange liquid chromatography, and analysis method of glycosylated hemoglobin
JP2007327821A (en) * 2006-06-07 2007-12-20 Sekisui Chem Co Ltd Packing for ion-exchange liquid chromatography, and analyzing method of saccharified hemoglobin
JP2007326935A (en) * 2006-06-07 2007-12-20 Sekisui Chem Co Ltd Hydrophilic polymer microparticle

Similar Documents

Publication Publication Date Title
KR101555533B1 (en) Hydrophilic polymer microparticle filler for ion exchange liquid chromatography and method for production of filler for ion exchange liquid chromatography
JP2001506364A (en) Preformed polymer coating method and product
EP0043074B1 (en) High speed liquid chromatographic packing and process for production thereof
US5292818A (en) Method for producing a carrier for cation exchange liquid chromatography and a method for determining glycosylated hemoglobins using the carrier
JPH03118466A (en) Assay of saccharified hemoglobin
JPH0373848A (en) Packing material for liquid chromatography and production thereof
JP3927322B2 (en) Method for producing packing material for liquid chromatography
JP3352645B2 (en) Filler for liquid chromatography and measurement method using the same
GB2113226A (en) Porous substrate for analyzing hydrophilic substances having low molecular weight
JP3164641B2 (en) Filler for liquid chromatography and method for producing the same
EP0596106B1 (en) Process for preparing carrier for cation exchange liquid chromatography and method of quantitatively determining glycosylated hemoglobin using said carrier
JPH02309253A (en) Determination of saccharified hemoglobin
JP2559525B2 (en) Method for producing packing material for liquid chromatography
JP3050951B2 (en) Packing material for affinity chromatography
JP4268730B2 (en) Method for producing packing material for liquid chromatography
JP3176423B2 (en) Chromatography carrier and method for producing the same
JP2559526B2 (en) Method for producing packing material for liquid chromatography
JP5378623B2 (en) Packing material for ion exchange liquid chromatography and analysis method of glycated hemoglobin
JP4037537B2 (en) Packing for liquid chromatography
JP3990713B2 (en) Packing material for ion exchange liquid chromatography and analysis method of glycated hemoglobin
WO1992009889A1 (en) Process for preparing carrier for cation exchange liquid chromatography and method of quantitatively determining saccharified hemoglobin using said carrier
JPH11295288A (en) Column packing for ion exchange liquid chromatography and measuring method
JP2559525C (en)
JPS58154655A (en) Filler for liquid chromatography
JP2001099819A (en) Filler for liquid chromatography