JP2007327821A - Packing for ion-exchange liquid chromatography, and analyzing method of saccharified hemoglobin - Google Patents

Packing for ion-exchange liquid chromatography, and analyzing method of saccharified hemoglobin Download PDF

Info

Publication number
JP2007327821A
JP2007327821A JP2006158421A JP2006158421A JP2007327821A JP 2007327821 A JP2007327821 A JP 2007327821A JP 2006158421 A JP2006158421 A JP 2006158421A JP 2006158421 A JP2006158421 A JP 2006158421A JP 2007327821 A JP2007327821 A JP 2007327821A
Authority
JP
Japan
Prior art keywords
liquid chromatography
ion
exchange liquid
ion exchange
packing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006158421A
Other languages
Japanese (ja)
Inventor
Takuya Yotani
卓也 與谷
Makoto Takahara
誠 高原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2006158421A priority Critical patent/JP2007327821A/en
Priority to EP15203156.3A priority patent/EP3040120A1/en
Priority to US12/085,936 priority patent/US7811453B2/en
Priority to EP06832626A priority patent/EP1955764A4/en
Priority to CN2006800326033A priority patent/CN101257969B/en
Priority to EP13154644.2A priority patent/EP2602021B1/en
Priority to KR1020087005398A priority patent/KR101555533B1/en
Priority to PCT/JP2006/322670 priority patent/WO2007063701A1/en
Priority to CN2011101072516A priority patent/CN102258982B/en
Publication of JP2007327821A publication Critical patent/JP2007327821A/en
Priority to US12/875,283 priority patent/US8968562B2/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a packing for ion exchange liquid chromatography, capable of suppressing swelling in an aqueous medium and capable of effectively suppressing non-specific adsorption of proteins or the like, and to provide an analysis method for saccharified hemoglobin that uses the filler for the ion-exchange liquid chromatography. <P>SOLUTION: The packing for the ion-exchange liquid chromatography comprises base material fine particles and the ion-exchange group. When the particle size of the packing is measured by a particle size distribution measuring instrument, after the packing has been respectively dispersed in water and acetone, irradiated with ultrasonic waves for 15 min and allowed to stand left standing at 25°C for 240 hr to be equilibrated, the ratio D<SB>W</SB>/D<SB>A</SB>of the particle size D<SB>W</SB>, when the filler is dispersed in water and the particle size D<SB>A</SB>and when the packing is dispersed in acetone is 2.0 or lower; and the packing for the ion-exchange liquid chromatography is arranged densely as a single layer, while liquid droplets of pure water are formed and the contact angle of water measured under a 25°C condition is 60° or lower. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、水系媒体中での膨潤を抑制し、かつ、タンパク質等の非特異吸着を効果的に抑制することができるイオン交換液体クロマトグラフィー用充填剤、及び、該イオン交換液体クロマトグラフィー用充填剤を用いた糖化ヘモグロビンの分析方法に関する。 The present invention relates to a packing material for ion exchange liquid chromatography capable of suppressing swelling in an aqueous medium and effectively suppressing non-specific adsorption of proteins and the like, and packing for ion exchange liquid chromatography The present invention relates to a method for analyzing glycated hemoglobin using an agent.

イオン交換液体クロマトグラフィー用充填剤を用いたイオン交換液体クロマトグラフィー法は、イオン性を有する物質の分離に汎用されており、なかでも、糖化ヘモグロビンをはじめ、各種生体関連物質の分離分析に極めて有効な方法として知られている。 The ion exchange liquid chromatography method using a packing material for ion exchange liquid chromatography is widely used for the separation of ionic substances, and is particularly effective for the separation and analysis of various biological materials including glycated hemoglobin. It is known as a method.

イオン交換液体クロマトグラフィー法では、カラム内の圧力変動を小さくし平衡化を早くする目的で、イオン交換液体クロマトグラフィー用充填剤の水系溶媒に対する膨潤が小さいことが要求される。
水系媒体における膨潤を小さくするためには、従来公知の方法として、疎水性架橋性単量体を多く用い、架橋度を高めることで対応できる。
しかしながら、疎水性架橋性単量体を用いてなるイオン交換液体クロマトグラフィー用充填剤は、タンパク質等の生体試料を接触させることにより、非特異的な吸着が起こり、測定精度が低下することがあるという問題もあった。
近年、イオン交換液体クロマトグラフィー法が臨床検査等にも用いられているため、高い測定精度が求められており、この非特異吸着を抑制する必要がある。
In the ion exchange liquid chromatography method, the swelling of the packing material for ion exchange liquid chromatography with respect to an aqueous solvent is required to be small in order to reduce the pressure fluctuation in the column and speed up the equilibration.
In order to reduce the swelling in the aqueous medium, as a conventionally known method, a large amount of a hydrophobic crosslinkable monomer can be used and the degree of crosslinking can be increased.
However, the packing material for ion exchange liquid chromatography using a hydrophobic crosslinkable monomer may cause non-specific adsorption by bringing biological samples such as proteins into contact with each other, which may reduce the measurement accuracy. There was also a problem.
In recent years, ion exchange liquid chromatography has been used for clinical examinations and the like, so high measurement accuracy is required, and it is necessary to suppress this non-specific adsorption.

この非特異吸着は、疎水性相互作用によって引き起こされると考えられるため、イオン交換液体クロマトグラフィー用充填剤の表面の親水性をできるだけ高める必要がある。
イオン交換液体クロマトグラフィー用充填剤の親水性を高める方法としては、例えば、イオン交換液体クロマトグラフィー用充填剤の基材微粒子部分に親水性単量体を多く含有させる方法等が挙げられる。
しかしながら、親水性単量体の含量を多くすると、イオン交換液体クロマトグラフィー用充填剤内部の親水性も高まってしまい、結果としてイオン交換液体クロマトグラフィー用充填剤の機械的強度が弱くなってしまうため、高速分離ができなくなったり、イオン交換液体クロマトグラフィー用充填剤自体が膨潤を起こし、測定精度の低下を招いたりするといった問題が生じる。
Since this non-specific adsorption is considered to be caused by hydrophobic interaction, it is necessary to increase the hydrophilicity of the surface of the packing material for ion exchange liquid chromatography as much as possible.
Examples of the method for increasing the hydrophilicity of the filler for ion exchange liquid chromatography include a method in which a large amount of hydrophilic monomer is contained in the base particle portion of the filler for ion exchange liquid chromatography.
However, if the content of the hydrophilic monomer is increased, the hydrophilicity inside the packing for ion exchange liquid chromatography is also increased, and as a result, the mechanical strength of the packing for ion exchange liquid chromatography is weakened. However, there are problems that high-speed separation cannot be performed, and that the packing for ion exchange liquid chromatography itself swells, leading to a decrease in measurement accuracy.

このような問題を解決する方法として、例えば、特許文献1には、疎水性架橋重合体微粒子の表面に、親水性重合体の層が形成された被覆重合体微粒子を用いる方法が開示されている。疎水性架橋重合体微粒子は、構成する疎水性架橋性単量体によって強度に架橋されているため、機械的強度が高く、膨潤を防ぐことができる。また、被覆される親水性重合体の層の厚みを1〜30nmとすることで、分析対象物質等の非特異吸着の防止、及び、親水性重合体の層による膨潤の抑制を実現できるとしている。 As a method for solving such a problem, for example, Patent Document 1 discloses a method using coated polymer fine particles in which a hydrophilic polymer layer is formed on the surface of a hydrophobic crosslinked polymer fine particle. . The hydrophobic cross-linked polymer fine particles are strongly cross-linked by the constituent hydrophobic cross-linkable monomer, so that the mechanical strength is high and swelling can be prevented. In addition, by setting the thickness of the hydrophilic polymer layer to be coated to 1 to 30 nm, it is possible to realize prevention of nonspecific adsorption of a substance to be analyzed and the like and suppression of swelling by the hydrophilic polymer layer. .

しかしながら、現実的には、このような親水性重合体の層の厚みの範囲で、疎水性架橋重合体微粒子の露出を防ぐことは難しく、結果的に疎水性相互作用に起因する非特異吸着を充分に防ぐことができなかった。
特に、糖化ヘモグロビンのように臨床検査等に用いられる物質を測定する場合には、一段と高いレベルで測定精度が要求されるため、疎水性相互作用に起因する非特異吸着を可能な限り防止する必要がある。
特公平8−7197号公報
However, in reality, it is difficult to prevent exposure of the hydrophobic crosslinked polymer fine particles within the range of the thickness of the hydrophilic polymer layer, and as a result, nonspecific adsorption due to the hydrophobic interaction is prevented. It could not be prevented sufficiently.
In particular, when measuring substances used in clinical tests such as glycated hemoglobin, measurement accuracy is required at a much higher level, so it is necessary to prevent nonspecific adsorption due to hydrophobic interaction as much as possible. There is.
Japanese Patent Publication No. 8-7197

本発明は、上記現状に鑑み、水系媒体中での膨潤を抑制し、かつ、タンパク質等の非特異吸着を効果的に抑制することができるイオン交換液体クロマトグラフィー用充填剤、及び、該イオン交換液体クロマトグラフィー用充填剤を用いた糖化ヘモグロビンの分析方法を提供することを目的とする。 In view of the above situation, the present invention provides a packing material for ion exchange liquid chromatography that can suppress swelling in an aqueous medium and can effectively suppress nonspecific adsorption of proteins and the like, and the ion exchange An object of the present invention is to provide a method for analyzing glycated hemoglobin using a packing material for liquid chromatography.

本発明は、基材微粒子と、上記基材微粒子の表面に存在するイオン交換基とからなるイオン交換液体クロマトグラフィー用充填剤であって、水及びアセトンにそれぞれ分散させ、超音波を15分間照射し、25℃で240時間放置して平衡化させた後、粒度分布測定機により粒子径をそれぞれ測定したとき、水に分散させたときの粒子径Dとアセトンに分散させたときの粒子径Dとの比D/Dが2.0以下であり、かつ、該イオン交換液体クロマトグラフィー用充填剤を単層に隙間なく並べた上に純水の液滴を形成させ、25℃の条件下で接触角計により測定した水の接触角が60°以下であるイオン交換液体クロマトグラフィー用充填剤である。
以下に本発明を詳述する。
The present invention is a packing material for ion-exchange liquid chromatography composed of substrate fine particles and ion-exchange groups present on the surface of the substrate fine particles, each dispersed in water and acetone, and irradiated with ultrasonic waves for 15 minutes. Then, after allowing to stand for 24 hours at 25 ° C. to equilibrate, the particle size was measured with a particle size distribution analyzer, the particle size D W when dispersed in water and the particle size when dispersed in acetone D ratio D W / D a and a is not less than 2.0, and, to form droplets of pure water on the ion exchange packing material for liquid chromatography arranged with no gap in a single layer, 25 ° C. It is a packing material for ion exchange liquid chromatography whose contact angle of water measured with the contact angle meter on the conditions of 60 or less is 60 degrees or less.
The present invention is described in detail below.

本発明者らは、鋭意検討の結果、イオン交換液体クロマトグラフィー用充填剤のD/D(以下、膨潤度ともいう)及び表面に対する水の接触角を一定の範囲とすることにより、水系媒体中での膨潤を抑制し、かつ、タンパク質等の非特異吸着を効果的に抑制することができるということを見出し、本発明を完成させるに至った。 As a result of intensive studies, the inventors have determined that the water contact angle of D W / D A (hereinafter also referred to as the degree of swelling) of the packing material for ion exchange liquid chromatography and the surface is within a certain range. The inventors have found that swelling in a medium can be suppressed and nonspecific adsorption of proteins and the like can be effectively suppressed, and the present invention has been completed.

本発明のイオン交換液体クロマトグラフィー用充填剤は、水及びアセトンにそれぞれ分散させ、超音波を15分間照射し、25℃で240時間放置して平衡化させた後、粒度分布測定機により粒子径をそれぞれ測定したとき、水に分散させたときの粒子径Dとアセトンに分散させたときの粒子径Dとの比D/Dの上限が2.0である。
一般に、イオン交換液体クロマトグラフィー用充填剤は、有機溶媒中では収縮し、水系媒体では程度によらず膨潤する傾向にある。ゆえに、水系媒体での膨潤の程度が大きいと、D/Dが大きくなり、逆に、水系媒体での膨潤の程度が小さいと、D/Dが小さくなる。
/Dが2.0を超えると、水系媒体での膨潤の程度が大きすぎるため、カラム内の圧力変動が大きくなり、平衡化に時間がかかるため実用的ではない。好ましい下限は1.0、好ましい上限は1.8である。
The packing material for ion-exchange liquid chromatography of the present invention is dispersed in water and acetone, irradiated with ultrasonic waves for 15 minutes, allowed to stand at 25 ° C. for 240 hours to equilibrate, and then measured by a particle size distribution analyzer. , The upper limit of the ratio D W / D A of the particle diameter D W when dispersed in water and the particle diameter D A when dispersed in acetone is 2.0.
In general, packing materials for ion exchange liquid chromatography tend to shrink in an organic solvent and swell to any degree in an aqueous medium. Thus, the degree of swelling in the aqueous medium is large, D W / D A increases, conversely, the degree of swelling in the aqueous medium is small, D W / D A decreases.
When D W / D A exceeds 2.0, the degree of swelling in the aqueous medium is too large, so that the pressure fluctuation in the column becomes large and it takes time for equilibration, which is not practical. A preferred lower limit is 1.0 and a preferred upper limit is 1.8.

上記粒度分布測定機としては特に限定されず、例えば、Accusizer780(Particle Sizing Systems社製)等が挙げられる。 The particle size distribution measuring device is not particularly limited, and examples thereof include Accusizer 780 (manufactured by Particle Sizing Systems).

また、本発明のイオン交換液体クロマトグラフィー用充填剤は、該イオン交換液体クロマトグラフィー用充填剤を単層に隙間なく並べた上に純水の液滴を形成させ、25℃の条件下で接触角計により測定した水の接触角の上限が60°である。
接触角測定は、高分子材料をはじめ、表面の親水性、疎水性を評価する方法として用いられる。水の接触角が小さいほど親水性が高いと判断され、本発明においては、上限を60°とすることで、親水性が大幅に向上し、タンパク質等の生体試料を接触させた場合の非特異的吸着が少ない。より好ましい上限は50°である。
Further, the packing material for ion exchange liquid chromatography of the present invention is such that the packing material for ion exchange liquid chromatography is arranged in a single layer without gaps, and droplets of pure water are formed and contacted at 25 ° C. The upper limit of the contact angle of water measured with a goniometer is 60 °.
Contact angle measurement is used as a method for evaluating the hydrophilicity and hydrophobicity of a surface of a polymer material. The smaller the water contact angle is, the higher the hydrophilicity is determined. In the present invention, the upper limit is set to 60 °, so that the hydrophilicity is greatly improved and non-specificity when a biological sample such as protein is brought into contact with it. Little adsorption. A more preferred upper limit is 50 °.

上記接触角計としては、例えば、協和界面科学社製、Dropmaster500等の自動接触角計を用いることができる。
上記水の接触角は、上述したような接触角計を用い、液滴の左右端点と頂点とを結ぶ直線の固体表面に対する角度から接触角を求める方法(θ/2法)等によって測定することができ、具体的には、以下のような方法が挙げられる。
マイクロスコープで確認しながら、乾燥させたイオン交換液体クロマトグラフィー用充填剤をスライドガラス上に貼付した両面テープ上に単層に隙間なく並べ、その後エアースプレーで余分なイオン交換液体クロマトグラフィー用充填剤を除去し、両面テープ上にイオン交換液体クロマトグラフィー用充填剤を固定化する。
25℃の純水1μLの液滴を作製し、スライドガラス上に固定化したイオン交換液体クロマトグラフィー用充填剤に着液させ、接触角計を用いて接触角をθ/2法により算出する。なお、接触角が90°より小さい場合、着液後の水滴は濡れ広がろうとするため、着液後の接触角は経時的に小さくなる。そこで、着液後0.5秒後の接触角値を用いて評価を行う。
As the contact angle meter, for example, an automatic contact angle meter such as Dropmaster 500 manufactured by Kyowa Interface Science Co., Ltd. can be used.
The contact angle of water is measured by a method (θ / 2 method) for obtaining the contact angle from the angle of the straight line connecting the left and right end points and the vertex of the droplet to the solid surface using a contact angle meter as described above. Specifically, the following methods can be mentioned.
While checking with a microscope, arrange the dried packing material for ion-exchange liquid chromatography on a double-sided tape affixed on a slide glass in a single layer without any gaps, and then use an air spray to remove excess packing material for ion-exchange liquid chromatography. Then, the packing material for ion exchange liquid chromatography is fixed on the double-sided tape.
Droplets of 1 μL of pure water at 25 ° C. are prepared, placed on a filler for ion exchange liquid chromatography fixed on a slide glass, and the contact angle is calculated by the θ / 2 method using a contact angle meter. When the contact angle is smaller than 90 °, the water droplets after landing are wet and spread, so the contact angle after landing decreases with time. Therefore, evaluation is performed using the contact angle value 0.5 seconds after the landing.

本発明のイオン交換液体クロマトグラフィー用充填剤は、膨潤度が上記範囲を満たすことにより水系媒体でもほとんど膨潤しないものとなり、水の接触角が上記範囲を満たすことにより、タンパク質等の生体試料を接触させても、非特異的な吸着が起こり測定精度が低下することがない。 The packing material for ion-exchange liquid chromatography of the present invention has a swelling degree that satisfies the above range, so that it hardly swells even in an aqueous medium. When the water contact angle satisfies the above range, it contacts biological samples such as proteins. Even if it makes it, nonspecific adsorption | suction occurs and measurement accuracy does not fall.

本発明のイオン交換液体クロマトグラフィー用充填剤は、従来公知のイオン交換液体クロマトグラフィー用充填剤と同様に、基材微粒子と、上記基材微粒子の表面に存在するイオン交換基とからなるものである。
上記膨潤度の範囲と上記水の接触角の範囲とを満たすイオン交換液体クロマトグラフィー用充填剤としては、具体的には、例えば、水溶解度が5重量%以下の疎水性架橋性単量体及び/又は疎水性非架橋性単量体からなる疎水性架橋重合体からなる基材微粒子と、上記基材微粒子の表面に存在するイオン交換基とからなり、最表面に親水化処理が施されているものを挙げることができる。
The packing material for ion-exchange liquid chromatography of the present invention is composed of substrate fine particles and ion-exchange groups present on the surface of the above-mentioned substrate fine particles, as in the conventionally known packing materials for ion-exchange liquid chromatography. is there.
Specific examples of the filler for ion exchange liquid chromatography satisfying the range of the degree of swelling and the range of the contact angle of water include, specifically, a hydrophobic crosslinkable monomer having a water solubility of 5% by weight or less, and the like. It consists of substrate fine particles made of a hydrophobic cross-linked polymer made of a hydrophobic non-crosslinkable monomer and ion exchange groups present on the surface of the substrate fine particles, and the outermost surface is subjected to a hydrophilic treatment. You can list what you have.

上記疎水性架橋重合体は、1種の水溶解度が5重量%以下である疎水性架橋性単量体を単独重合して得られる疎水性架橋重合体;2種以上の水溶解度が5重量%以下である疎水性架橋性単量体を共重合して得られる疎水性架橋重合体;少なくとも1種の水溶解度が5重量%以下である疎水性架橋性単量体と、少なくとも1種の水溶解度が5重量%以下である疎水性非架橋性単量体とを共重合して得られる疎水性架橋重合体のいずれであってもよい。 The hydrophobic cross-linked polymer is a hydrophobic cross-linked polymer obtained by homopolymerizing one type of water-soluble hydrophobic cross-linkable monomer having a water solubility of 5% by weight or less; A hydrophobic cross-linked polymer obtained by copolymerizing the following hydrophobic cross-linkable monomers; at least one hydrophobic cross-linkable monomer having a water solubility of 5% by weight or less and at least one water Any hydrophobic crosslinked polymer obtained by copolymerizing a hydrophobic non-crosslinkable monomer having a solubility of 5% by weight or less may be used.

上記水溶解度が5重量%以下である疎水性架橋性単量体としては、単量体1分子中にビニル基を2個以上有するものであれば特に限定されず、例えば、エチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート等のジ(メタ)アクリル酸エステル;テトラメチロールメタントリ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、テトラメチロールメタンテトラ(メタ)アクリレート等のトリ(メタ)アクリル酸エステル又はテトラ(メタ)アクリル酸エステル;ジビニルベンゼン、ジビニルトルエン、ジビニルキシレン、ジビニルナフタレン等の芳香族系化合物等が挙げられる。
ここで、水溶解度とは、水100mLに単量体20mLを加え、室温で10分間×3回攪拌し20℃の保温器で一晩放置し、その後、水に溶解した単量体量を水素炎ガスクロマトグラフィーで二重結合(PSDB)法により測定し、算出した値である。
The hydrophobic crosslinkable monomer having a water solubility of 5% by weight or less is not particularly limited as long as it has two or more vinyl groups in one monomer molecule. For example, ethylene glycol di (meta ) Acrylate, polyethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate and other di (meth) acrylates; tetramethylol methane tri (meth) acrylate, trimethylol propane tri ( Tri (meth) acrylic acid ester or tetra (meth) acrylic acid ester such as (meth) acrylate and tetramethylolmethanetetra (meth) acrylate; aromatic compounds such as divinylbenzene, divinyltoluene, divinylxylene and divinylnaphthalene Is .
Here, the water solubility means that 20 mL of a monomer is added to 100 mL of water, stirred at room temperature for 10 minutes × 3 times, left overnight in a 20 ° C. incubator, and then the amount of monomer dissolved in water is determined as hydrogen. It is a value calculated by measurement by a double bond (PSDB) method by flame gas chromatography.

上記水溶解度が5重量%以下である疎水性非架橋性単量体としては、疎水性の性質を有する非架橋性の重合性有機単量体であれば特に限定されず、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、イソプロピル(メタ)アクリレート、ブチル(メタ)アクリレート、t−ブチル(メタ)アクリレート等の(メタ)アクリル酸エステル;スチレン、メチルスチレン等のスチレン系単量体等が挙げられる。 The hydrophobic non-crosslinkable monomer having a water solubility of 5% by weight or less is not particularly limited as long as it is a non-crosslinkable polymerizable organic monomer having hydrophobic properties. ) Acrylates, ethyl (meth) acrylates, propyl (meth) acrylates, isopropyl (meth) acrylates, butyl (meth) acrylates, t-butyl (meth) acrylates and other (meth) acrylic acid esters; styrene such as styrene and methylstyrene System monomers and the like.

上記疎水性架橋重合体が、上記水溶解度が5重量%以下である疎水性架橋性単量体と上記水溶解度が5重量%以下である疎水性非架橋性単量体との共重合からなる場合には、水溶解度が5重量%以下である疎水性非架橋性単量体の使用量は、水溶解度が5重量%以下である疎水性架橋性単量体100重量部に対して、50重量部以下であることが好ましい。 The hydrophobic crosslinked polymer comprises a copolymer of the hydrophobic crosslinkable monomer having a water solubility of 5% by weight or less and the hydrophobic non-crosslinkable monomer having a water solubility of 5% by weight or less. In this case, the amount of the hydrophobic non-crosslinkable monomer having a water solubility of 5% by weight or less is 50 parts by weight based on 100 parts by weight of the hydrophobic crosslinkable monomer having a water solubility of 5% by weight or less. It is preferable that it is below the weight part.

最表面を親水化処理する方法としては特に限定されず、例えば、基材微粒子の表面にオゾン水処理、オゾンガス処理、プラズマ処理、コロナ処理、過酸化水素水、次亜塩素酸ナトリウム等による表面酸化処理等を施す方法やタンパク質や多糖類をはじめとする生体由来の親水性化合物やポリビニルアルコール、ポリビニルピロリドン、ポリアクリル酸、リン脂質ポリマー等の親水性高分子化合物を、基材微粒子の表面に対して物理吸着、又は、化学結合させる方法等が挙げられる。
なかでも、調製時の作業性、Lot管理のしやすさ、経時的な性能維持等を考慮すると、オゾン水処理が好ましい。
なお、上記親水化処理は、基材微粒子の表面にイオン交換基を導入する前に行ってもよいし、基材微粒子の表面にイオン交換基を導入した後に行ってもよい。
The method for hydrophilizing the outermost surface is not particularly limited. For example, the surface of the substrate fine particles is treated with ozone water treatment, ozone gas treatment, plasma treatment, corona treatment, hydrogen peroxide, sodium hypochlorite, etc. Applying treatment methods, hydrophilic compounds derived from living bodies including proteins and polysaccharides, and hydrophilic polymer compounds such as polyvinyl alcohol, polyvinyl pyrrolidone, polyacrylic acid and phospholipid polymers to the surface of the substrate fine particles And physical adsorption or chemical bonding.
Of these, ozone water treatment is preferable in consideration of workability during preparation, ease of Lot management, performance maintenance over time, and the like.
The hydrophilization treatment may be performed before introducing the ion exchange group onto the surface of the base particle, or after introducing the ion exchange group onto the surface of the base particle.

上記オゾン水とは、オゾンガスが水に溶解したものを意味する。
オゾンには強力な酸化作用があるが、オゾンガスでは、基材微粒子表面を均一に酸化することにより親水化処理を施すことが非常に難しい。
しかし、オゾン水を用いることにより、オゾン水中に基材微粒子を分散させるだけで疎水性架橋重合体表面を簡便に酸化させ親水化処理を施すことができる。親水化処理の結果、疎水性の構造部分が酸化され、親水性基(−OH、−CHO、−COOH等)が生成すると考えられる。
The ozone water means that ozone gas is dissolved in water.
Although ozone has a strong oxidizing action, it is very difficult to apply a hydrophilic treatment with ozone gas by uniformly oxidizing the surface of the substrate fine particles.
However, by using ozone water, the surface of the hydrophobic crosslinked polymer can be easily oxidized and hydrophilized by simply dispersing the substrate fine particles in the ozone water. As a result of the hydrophilization treatment, it is considered that the hydrophobic structure portion is oxidized and a hydrophilic group (-OH, -CHO, -COOH, etc.) is generated.

上記オゾン水における溶存オゾンガスの濃度としては特に限定されないが、好ましい下限は20ppmである。20ppm未満であると、親水化処理に時間がかかったり、充分な親水化処理を施せずに測定対象物質等の非特異吸着を充分に抑制することができなかったりする。より好ましい下限は50ppmである。なお、濃度の好ましい上限は特にない。 Although it does not specifically limit as a density | concentration of the dissolved ozone gas in the said ozone water, A preferable minimum is 20 ppm. If it is less than 20 ppm, it takes time for the hydrophilic treatment, or the non-specific adsorption of the substance to be measured or the like cannot be sufficiently suppressed without sufficient hydrophilic treatment. A more preferred lower limit is 50 ppm. There is no particular upper limit for the concentration.

上記オゾン水の調製方法としては特に限定されず、例えば、特開2001−330969号公報等に記載されているように、原料水とオゾンガスとを、気体のみを透過し液体の透過を阻止するオゾンガス透過膜を介して接触させる方法等により調製することができる。 The method for preparing the ozone water is not particularly limited. For example, as described in Japanese Patent Application Laid-Open No. 2001-330969, etc., ozone gas that allows raw water and ozone gas to pass through only gas and prevents liquid from passing therethrough. It can be prepared by a method of contacting through a permeable membrane.

さらに、上記オゾン水処理を行う際には促進酸化処理法を用いることが好ましい。促進酸化処理法とは、オゾン水の酸化作用を増強させる方法のことをいい、紫外線照射、超音波照射、アルカリ水添加等の溶存オゾンの分解を促進する方法を単独で用いるか又は2種以上を併用することをいう。
このような促進酸化処理法による処理を行うことで、溶存オゾンの分解が促進され、オゾンの分解によって生じるヒドロキシラジカルの生成量を増加する。このようにして生成したヒドロキシラジカルは、オゾンよりも更に高い酸化力を有するため、親水化処理の効果を更に高めることが可能になるものと考えられる。上記促進酸化処理法を利用した場合、基材微粒子の表面における親水基(−OH、−CHO、−COOH等)の生成を更に促進することが可能となる。
Furthermore, it is preferable to use an accelerated oxidation treatment method when performing the ozone water treatment. The accelerated oxidation treatment method refers to a method for enhancing the oxidizing action of ozone water, and a method for promoting decomposition of dissolved ozone such as ultraviolet irradiation, ultrasonic irradiation, addition of alkaline water or the like is used alone or two or more kinds. Is used together.
By performing such an accelerated oxidation treatment, the decomposition of dissolved ozone is promoted, and the amount of hydroxy radicals produced by the decomposition of ozone is increased. Since the hydroxy radicals thus generated have a higher oxidizing power than ozone, it is considered that the effect of the hydrophilic treatment can be further enhanced. When the accelerated oxidation treatment method is used, it is possible to further promote the generation of hydrophilic groups (—OH, —CHO, —COOH, etc.) on the surface of the substrate fine particles.

なお、親水化処理を行わなくても表面に対する水の接触角が60°以下である場合には、特に親水化処理を行う必要がない。 In addition, even if it does not perform a hydrophilization process, when the contact angle of the water with respect to the surface is 60 degrees or less, it is not necessary to perform a hydrophilization process in particular.

上記イオン交換基としては特に限定されず、例えば、スルホン酸基、カルボキシル基、リン酸基等が挙げられる。なかでも、スルホン酸基を用いる場合には、長期間にわたって性能を維持することができ、また、ヘモグロビンA1c等の分析にも高い効果が得られることから好適である。 The ion exchange group is not particularly limited, and examples thereof include a sulfonic acid group, a carboxyl group, and a phosphoric acid group. Among these, when a sulfonic acid group is used, it is preferable because performance can be maintained over a long period of time, and a high effect can be obtained for analysis of hemoglobin A1c and the like.

上記イオン交換基の導入方法としては特に限定されず、例えば、特公平8−7197号公報に記載されているように基材微粒子表面にイオン交換基を有する単量体を共重合させる方法等が挙げられる。
上記イオン交換基を有する親水性単量体としては特に限定されず、水系媒体中に溶解可能な重合性単量体の中から本発明のイオン交換液体クロマトグラフィー用充填剤の使用目的に応じて選択すればよく、カチオン交換液体クロマトグラフィーに用いる場合には、例えば、アクリル酸、メタクリル酸等のカルボキシル基を有する単量体、スチレンスルホン酸、アリルスルホン酸、2−(メタ)アクリルアミド−2−メチルプロパンスルホン酸等のスルホン酸基を有する単量体、((メタ)アクリロイルオキシエチル)アシッドホスフェート、(2−(メタ)アクリロイルオキシエチル)アシッドホスフェート等のリン酸基を有する単量体等が挙げられ、なかでも、スルホン酸基を有する単量体が好適に用いられ、アニオン交換液体クロマトグラフィーに用いる場合には、例えば、ジメチルアミノエチル(メタ)アクリレート、ジエチルアミノエチル(メタ)アクリレート、アリルアミン等のアミノ基を有する単量体等が用いられる。
The method for introducing the ion exchange group is not particularly limited. For example, as described in Japanese Patent Publication No. 8-7197, a method of copolymerizing a monomer having an ion exchange group on the surface of the substrate fine particle, etc. Can be mentioned.
The hydrophilic monomer having an ion exchange group is not particularly limited, and is selected from the polymerizable monomers that can be dissolved in an aqueous medium depending on the intended use of the filler for ion exchange liquid chromatography of the present invention. When used in cation exchange liquid chromatography, for example, monomers having a carboxyl group such as acrylic acid and methacrylic acid, styrene sulfonic acid, allyl sulfonic acid, 2- (meth) acrylamide-2- Monomers having a sulfonic acid group such as methylpropanesulfonic acid, monomers having a phosphoric acid group such as ((meth) acryloyloxyethyl) acid phosphate, (2- (meth) acryloyloxyethyl) acid phosphate, and the like Among them, monomers having a sulfonic acid group are preferably used, and anion exchange liquid chromatography When used in fees, for example, dimethylaminoethyl (meth) acrylate, diethylaminoethyl (meth) acrylate or a monomer containing an amino group of allylamine or the like is used.

なお、イオン交換基を含む単量体を1種以上含めば、親水性を高める目的でイオン交換基を含まない親水性単量体と共重合させてもよい。
また、官能基を有する単量体を基材微粒子表面で共重合させ、その官能基にイオン交換基を有する化合物を反応させて基材微粒子表面にイオン交換基を導入する方法を用いることもできる。
In addition, if one or more types of monomers containing ion exchange groups are included, they may be copolymerized with a hydrophilic monomer containing no ion exchange groups for the purpose of enhancing hydrophilicity.
Alternatively, a method may be used in which a monomer having a functional group is copolymerized on the surface of the base particle, and a compound having an ion exchange group is reacted with the functional group to introduce the ion exchange group on the surface of the base particle. .

本発明のイオン交換液体クロマトグラフィー用充填剤の平均粒子径としては特に限定されないが、好ましい下限は0.1μm、好ましい上限は20μmである。0.1μm未満であると、カラム内が高圧になりすぎて分離不良を起こすことがあり、20μmを超えると、カラム内のデッドボリュームが大きくなり過ぎて分離不良を起こすことがある。 Although it does not specifically limit as an average particle diameter of the filler for ion exchange liquid chromatography of this invention, A preferable minimum is 0.1 micrometer and a preferable upper limit is 20 micrometers. If it is less than 0.1 μm, the inside of the column may become too high to cause separation failure, and if it exceeds 20 μm, the dead volume in the column may become too large to cause separation failure.

本発明の親水性高分子微粒子の粒度分布(CV値)としては特に限定されないが、好ましい上限は40%である。40%を超えると、カラム内のデッドボリュームが大きくなりすぎ、分離不良を起こすことがある。より好ましい上限は15%である。 The particle size distribution (CV value) of the hydrophilic polymer fine particles of the present invention is not particularly limited, but a preferable upper limit is 40%. If it exceeds 40%, the dead volume in the column becomes too large, which may cause poor separation. A more preferred upper limit is 15%.

本発明のイオン交換液体クロマトグラフィー用充填剤は、糖化ヘモグロビン等のヘモグロビン類(Hb)の測定に用いることができる。このような糖化ヘモグロビン類の測定方法もまた、本発明の1つである。
具体的には、例えば、本発明のイオン交換液体クロマトグラフィー用充填剤を公知のカラムに充填した後、得られたカラムに所定の条件で溶離液及び測定試料を送液することにより、ヘモグロビン類を測定することができる。
上記溶離液としては、従来公知のものを使用することができ、例えば、有機酸、無機酸、又は、これらの塩類を成分とする液等を用いることができる。
The packing material for ion exchange liquid chromatography of the present invention can be used for measurement of hemoglobins (Hb) such as glycated hemoglobin. Such a method for measuring glycated hemoglobin is also one aspect of the present invention.
Specifically, for example, after filling a known column with the packing material for ion-exchange liquid chromatography of the present invention, an eluent and a measurement sample are fed to the obtained column under predetermined conditions, whereby hemoglobins Can be measured.
A conventionally well-known thing can be used as said eluent, For example, the liquid etc. which use an organic acid, an inorganic acid, or these salts as a component can be used.

本発明によれば、水系媒体中での膨潤を抑制し、かつ、タンパク質等の非特異吸着を効果的に抑制することができるイオン交換液体クロマトグラフィー用充填剤、及び、該イオン交換液体クロマトグラフィー用充填剤を用いた糖化ヘモグロビンの分析方法を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, the packing material for ion exchange liquid chromatography which can suppress swelling in an aqueous medium, and can suppress nonspecific adsorption | suction of protein etc. effectively, and this ion exchange liquid chromatography The analysis method of glycated hemoglobin using the filler for medical use can be provided.

以下に実施例を掲げて本発明を更に詳しく説明するが、本発明はこれら実施例のみに限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to these examples.

(実施例1)
攪拌機付き反応器に、3%ポリビニルアルコール(日本合成化学社製)水溶液に、テトラエチレングリコールジメタアクリレート(新中村化学社製)300g、トリエチレングリコールジメタアクリレート(新中村化学社製)100g及び過酸化ベンゾイル(キシダ化学社製)1.0gの混合物を添加した。攪拌しながら加熱し、窒素雰囲気下にて80℃1時間重合した。次に、イオン交換基を有する単量体として、2−メタアクリルアミド−2−メチルプロパンスルホン酸(東亜合成化学社製)100g、ポリエチレングリコールメタアクリレート(日本油脂社製、エチレングリコール鎖n=4)100gをイオン交換水に溶解した。この混合物を同じ反応器に添加して、同様にして、攪拌しながら窒素雰囲気下で80℃で2時間重合した。得られた重合組成物を水及びアセトンで洗浄することにより、イオン交換基を有する親水性の被覆重合体粒子(イオン交換基を有する基材微粒子)を得た。
得られた被覆重合体粒子について、レーザー回折式粒度分布測定装置を用いて測定したところ、平均粒子径は8μm、CV値は14%であった。
Example 1
In a reactor equipped with a stirrer, an aqueous solution of 3% polyvinyl alcohol (manufactured by Nippon Synthetic Chemical), 300 g of tetraethylene glycol dimethacrylate (manufactured by Shin-Nakamura Chemical), 100 g of triethylene glycol dimethacrylate (manufactured by Shin-Nakamura Chemical) and A mixture of 1.0 g of benzoyl peroxide (Kishida Chemical Co., Ltd.) was added. The mixture was heated with stirring and polymerized at 80 ° C. for 1 hour in a nitrogen atmosphere. Next, as a monomer having an ion exchange group, 100 g of 2-methacrylamide-2-methylpropanesulfonic acid (manufactured by Toagosei Co., Ltd.), polyethylene glycol methacrylate (manufactured by NOF Corporation, ethylene glycol chain n = 4) 100 g was dissolved in ion exchange water. This mixture was added to the same reactor and polymerized in the same manner at 80 ° C. for 2 hours under stirring in a nitrogen atmosphere. The obtained polymerization composition was washed with water and acetone to obtain hydrophilic coated polymer particles having ion exchange groups (base particles having ion exchange groups).
The obtained coated polymer particles were measured using a laser diffraction particle size distribution analyzer, and the average particle size was 8 μm and the CV value was 14%.

得られた被覆重合体粒子10gを溶存オゾンガス濃度100ppmのオゾン水300mLに浸漬し、30分間攪拌した。攪拌終了後、遠心分離機(日立製作所社製Himac CR20G)を用いて遠心分離し、上澄みを除去した。この操作を2回繰り返し、親水化処理を施し、イオン交換液体クロマトグラフィー用充填剤を得た。
なお、オゾン水は、内径15cm×長さ20cmの円柱形を有する外套内に、パーフルオロアルコキシ樹脂からなる内径0.5mm×厚さ0.04mm×長さ350cmの中空管状のオゾンガス透過膜400本収容されたオゾン溶解モジュールを含むオゾン水製造システム(積水化学工業社製)を用いて調製した。
10 g of the obtained coated polymer particles were immersed in 300 mL of ozone water having a dissolved ozone gas concentration of 100 ppm and stirred for 30 minutes. After completion of stirring, the mixture was centrifuged using a centrifuge (Himac CR20G manufactured by Hitachi, Ltd.), and the supernatant was removed. This operation was repeated twice to give a hydrophilic treatment to obtain a packing material for ion exchange liquid chromatography.
In addition, ozone water is 400 hollow-tube ozone gas permeable membranes having an inner diameter of 0.5 mm, a thickness of 0.04 mm, and a length of 350 cm made of perfluoroalkoxy resin in a jacket having a cylindrical shape with an inner diameter of 15 cm and a length of 20 cm. It was prepared using an ozone water production system (manufactured by Sekisui Chemical Co., Ltd.) containing the accommodated ozone dissolution module.

(比較例1)
攪拌機付き反応器に、3%ポリビニルアルコール(日本合成化学社製)水溶液に、エチレングリコールジメタアクリレート(新中村化学社製)240g、n−ブチルメタアクリレート(共栄社化学社製)160g及び過酸化ベンゾイル(キシダ化学社製)1.0gの混合物を添加した。攪拌しながら加熱し、窒素雰囲気下にて80℃1時間重合した。次に、イオン交換基を有する単量体として、2−メタアクリルアミド−2−メチルプロパンスルホン酸(東亜合成化学社製)100g、ポリエチレングリコールメタアクリレート(日本油脂社製、エチレングリコール鎖n=4)100gをイオン交換水に溶解した。この混合物を同じ反応器に添加して、同様にして、攪拌しながら窒素雰囲気下で80℃で2時間重合した。得られた重合組成物を水及びアセトンで洗浄することにより、イオン交換基を有する親水性の被覆重合体粒子(イオン交換基を有する基材微粒子)を得た。
得られた被覆重合体粒子について、レーザー回折式粒度分布測定装置を用いて測定したところ、平均粒子径は8μm、CV値は16%であった。
得られた被覆重合体粒子10gを実施例1と同様にして、オゾン水処理を行い、イオン交換液体クロマトグラフィー用充填剤を得た。
(Comparative Example 1)
In a reactor equipped with a stirrer, an aqueous solution of 3% polyvinyl alcohol (manufactured by Nippon Synthetic Chemical Co., Ltd.), 240 g of ethylene glycol dimethacrylate (manufactured by Shin-Nakamura Chemical Co., Ltd.), 160 g of n-butyl methacrylate (manufactured by Kyoeisha Chemical Co., Ltd.) and benzoyl peroxide 1.0 g of a mixture (Kishida Chemical Co., Ltd.) was added. The mixture was heated with stirring and polymerized at 80 ° C. for 1 hour in a nitrogen atmosphere. Next, as a monomer having an ion exchange group, 100 g of 2-methacrylamide-2-methylpropanesulfonic acid (manufactured by Toagosei Co., Ltd.), polyethylene glycol methacrylate (manufactured by NOF Corporation, ethylene glycol chain n = 4) 100 g was dissolved in ion exchange water. This mixture was added to the same reactor and polymerized in the same manner at 80 ° C. for 2 hours under stirring in a nitrogen atmosphere. The obtained polymerization composition was washed with water and acetone to obtain hydrophilic coated polymer particles having ion exchange groups (base particles having ion exchange groups).
The obtained coated polymer particles were measured using a laser diffraction particle size distribution measuring apparatus. As a result, the average particle size was 8 μm and the CV value was 16%.
10 g of the obtained coated polymer particles were treated with ozone water in the same manner as in Example 1 to obtain a filler for ion exchange liquid chromatography.

(比較例2)
オゾン水処理を行わなかったこと以外は、実施例1と同様にして被覆重合体粒子、及び、イオン交換液体クロマトグラフィー用充填剤を得た。
(Comparative Example 2)
Coated polymer particles and a filler for ion exchange liquid chromatography were obtained in the same manner as in Example 1 except that the ozone water treatment was not performed.

<評価>
実施例1及び比較例1〜2で得られたイオン交換液体クロマトグラフィー用充填剤について以下の評価を行った。結果を表1、図1に示した。
<Evaluation>
The following evaluation was performed about the filler for ion exchange liquid chromatography obtained in Example 1 and Comparative Examples 1-2. The results are shown in Table 1 and FIG.

(1)膨潤度測定
実施例1及び比較例1〜2で得られたイオン交換液体クロマトグラフィー用充填剤について、膨潤度測定を行った。測定は、粒度分布計Accusizer780(Particle Sizing Systems社製)を用いた。乾燥させたイオン交換液体クロマトグラフィー用充填剤1gに純水又はアセトン30mLを入れた後、よく撹拌し、超音波を15分照射し、分散液を得た。分散後、平衡膨潤に達するまで25℃で240時間放置し、水中における粒子径Dとアセトン中における粒子径Dとを測定し、D/Dを膨潤度とした。
(1) Swelling degree measurement The swelling degree was measured about the filler for ion exchange liquid chromatography obtained in Example 1 and Comparative Examples 1-2. The measurement was performed using a particle size distribution analyzer Accusizer 780 (manufactured by Particle Sizing Systems). After adding 30 mL of pure water or acetone to 1 g of the dried filler for ion exchange liquid chromatography, the mixture was stirred well and irradiated with ultrasonic waves for 15 minutes to obtain a dispersion. After the dispersion was allowed to stand for 240 hours at 25 ° C. to equilibrium swell, a particle diameter D A measured in the particle diameter D W and acetone in water, it was swelling to D W / D A.

(2)接触角測定
実施例1及び比較例1〜2で得られたイオン交換液体クロマトグラフィー用充填剤について、接触角測定を行った。測定は、自動接触角計(協和界面科学社製、Dropmaster500)を用いて行った。乾燥させたイオン交換液体クロマトグラフィー用充填剤を25mm×75mmのスライドガラス上に貼付した両面テープ上に隙間なく並べ、その後エアースプレーで余分な粒子を除去した。これにより、両面テープ上にイオン交換液体クロマトグラフィー用充填剤を固定化した。この様子は、マイクロスコープで確認した。
25℃の条件下、純水1μLの液滴を作製し、スライドガラス上に固定化したイオン交換液体クロマトグラフィー用充填剤に着液させ、接触角をθ/2法により算出した。なお、接触角が90°より小さい場合、着液後の水滴は濡れ広がろうとする。従って、着液後の接触角は、経時的に小さくなる。そこで、着液後0.5秒後の接触角値を用いて評価を行った。
(2) Contact angle measurement The contact angle measurement was performed on the fillers for ion-exchange liquid chromatography obtained in Example 1 and Comparative Examples 1 and 2. The measurement was performed using an automatic contact angle meter (manufactured by Kyowa Interface Science Co., Ltd., Dropmaster 500). The dried packing material for ion exchange liquid chromatography was arranged on a double-sided tape affixed on a glass slide of 25 mm × 75 mm without any gap, and then excess particles were removed by air spray. Thereby, the filler for ion exchange liquid chromatography was fixed on the double-sided tape. This situation was confirmed with a microscope.
A liquid droplet of 1 μL of pure water was prepared under the condition of 25 ° C., placed on a packing material for ion exchange liquid chromatography fixed on a slide glass, and the contact angle was calculated by the θ / 2 method. When the contact angle is smaller than 90 °, the water droplets after the liquid landing tend to get wet and spread. Therefore, the contact angle after the liquid landing decreases with time. Therefore, the evaluation was performed using the contact angle value 0.5 seconds after the landing.

(3)圧力変動評価
実施例1及び比較例1〜2で作製したイオン交換液体クロマトグラフィー用充填剤を液体クロマトグラフィーシステムのカラムに充填した。イオン交換液体クロマトグラフィー用充填剤を充填したカラムにpHの異なる溶離液を通液して、その際のカラム圧力変動、及びカラム圧力が安定するまでに要した時間(平衡化時間)を測定した。具体的には、50mMリン酸緩衝液(pH5.7:A液)を30分間通液した。カラム圧力が一定になった後、300mMリン酸緩衝液(pH8.5:B液)を通液し、カラム圧力の変動を確認した。
(3) Pressure Fluctuation Evaluation The column for a liquid chromatography system was packed with the packing material for ion exchange liquid chromatography prepared in Example 1 and Comparative Examples 1 and 2. Eluents with different pH were passed through a column packed with a packing material for ion exchange liquid chromatography, and the column pressure fluctuation and the time required for the column pressure to stabilize (equilibration time) were measured. . Specifically, 50 mM phosphate buffer solution (pH 5.7: solution A) was passed for 30 minutes. After the column pressure became constant, a 300 mM phosphate buffer solution (pH 8.5: solution B) was passed through to check the fluctuation of the column pressure.

(4)ヘモグロビンA1c測定によるHb回収率の評価
実施例1及び比較例2で作製したイオン交換液体クロマトグラフィー用充填剤を液体クロマトグラフィーシステムのカラムに充填した。一方、グリコHbコントロールレベル2(国際試薬製、参考数値10.4±0.5%)を200μLの注射用水で溶解した後、希釈液(0.1%トリトンX−100を含有するリン酸緩衝液(pH7.0))で100倍に希釈したものを調製し、測定試料とした。
得られたカラムを用いて、下記の条件により測定試料中のヘモグロビンA1c量及びヘモグロビンA1cと非糖化ヘモグロビンとの合計量をクロマトグラムのピーク面積で評価した。測定は10検体連続で行い、その後半5検体のヘモグロビンA1cピークの面積値及びヘモグロビンA1cピークと非糖化ヘモグロビンピークとの面積値の平均値を測定値とした。
図1は、実施例1で得られたヘモグロビンA1cピーク面積値及びヘモグロビンA1cと非糖化ヘモグロビンピークの面積値合計を100%とし、実施例1、比較例2で得られた各ピーク面積を比較した。
システム:送液ポンプ LC−9A(島津製作所社製)
オートサンプラー ASU―420(積水化学工業社製)
検出器 SPD−6AV(島津製作所社製)
溶離液:第1液 170mMリン酸緩衝液(pH5.7)
第2液 300mMリン酸緩衝液(pH8.5)
溶出法:0〜3分は第1液を、3〜3.2分は第2液を、3.2〜4分は第1液にて溶出
流速:1.0mL/分
検出波長:415nm
資料注入量:10μL
(4) Evaluation of Hb recovery rate by measuring hemoglobin A1c The column for the ion exchange liquid chromatography produced in Example 1 and Comparative Example 2 was packed in a column of a liquid chromatography system. On the other hand, Glyco Hb Control Level 2 (manufactured by Kokusai Reagent, reference numerical value 10.4 ± 0.5%) was dissolved in 200 μL of water for injection, and then diluted (phosphate buffer containing 0.1% Triton X-100). A solution (pH 7.0) diluted 100 times was prepared and used as a measurement sample.
Using the obtained column, the amount of hemoglobin A1c in the measurement sample and the total amount of hemoglobin A1c and non-glycated hemoglobin were evaluated by the peak area of the chromatogram under the following conditions. The measurement was performed continuously for 10 samples, and the area value of the hemoglobin A1c peak of the latter half 5 samples and the average value of the area values of the hemoglobin A1c peak and the non-glycated hemoglobin peak were used as measured values.
FIG. 1 compares the peak area values obtained in Example 1 and Comparative Example 2 with the hemoglobin A1c peak area value obtained in Example 1 and the total area value of hemoglobin A1c and non-glycated hemoglobin peak being 100%. .
System: Liquid feed pump LC-9A (manufactured by Shimadzu Corporation)
Autosampler ASU-420 (manufactured by Sekisui Chemical Co., Ltd.)
Detector SPD-6AV (manufactured by Shimadzu Corporation)
Eluent: First solution 170 mM phosphate buffer (pH 5.7)
Second solution 300 mM phosphate buffer (pH 8.5)
Elution method: Elution with the first solution for 0 to 3 minutes, the second solution for 3 to 3.2 minutes, and the first solution for 3.2 to 4 minutes Flow rate: 1.0 mL / min Detection wavelength: 415 nm
Material injection volume: 10 μL

Figure 2007327821
Figure 2007327821

実施例1は膨潤度、接触角ともに小さく、結果として、カラム内圧力変動が小さく、また、ヘモグロビン成分の非特異吸着も全くない。
比較例1は、架橋度の低い充填剤であるため、膨潤度が大きく、カラム内の圧力変動が非常に大きい。接触角は小さくことから、ヘモグロビンの非特異吸着は抑制されるものと考えられるが、カラム内の圧力変動が大きすぎて評価(4)を実施できない。従って、膨潤度を一定の範囲内におさめることは非常に重要である。
比較例2は、充填剤の架橋度は実施例1と同様であるため、膨潤度は小さく、カラム内の圧力変動も小さい。しかし、接触角が大きいため、ヘモグロビン成分の非特異吸着が起こりやすい。従って、接触角を一定の範囲内におさめることは、膨潤度と同様、非常に重要である。
In Example 1, both the degree of swelling and the contact angle are small. As a result, the pressure fluctuation in the column is small, and there is no nonspecific adsorption of the hemoglobin component.
Since Comparative Example 1 is a filler having a low degree of crosslinking, the degree of swelling is large and the pressure fluctuation in the column is very large. Since the contact angle is small, it is considered that nonspecific adsorption of hemoglobin is suppressed, but the pressure fluctuation in the column is too large to perform evaluation (4). Therefore, it is very important to keep the degree of swelling within a certain range.
In Comparative Example 2, since the degree of crosslinking of the filler is the same as that of Example 1, the degree of swelling is small and the pressure fluctuation in the column is also small. However, since the contact angle is large, nonspecific adsorption of the hemoglobin component tends to occur. Therefore, it is very important to keep the contact angle within a certain range as well as the degree of swelling.

本発明によれば、水系媒体中での膨潤を抑制し、かつ、タンパク質等の非特異吸着を効果的に抑制することができるイオン交換液体クロマトグラフィー用充填剤、及び、該イオン交換液体クロマトグラフィー用充填剤を用いた糖化ヘモグロビンの分析方法を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, the packing material for ion exchange liquid chromatography which can suppress swelling in an aqueous medium, and can suppress nonspecific adsorption | suction of protein etc. effectively, and this ion exchange liquid chromatography The analysis method of glycated hemoglobin using the filler for medical use can be provided.

評価(4)における、ヘモグロビンA1c測定によるヘモグロビン類(Hb)回収率の結果をグラフで示した図である。It is the figure which showed the result of the hemoglobin (Hb) collection | recovery rate by hemoglobin A1c measurement in evaluation (4) by the graph.

Claims (3)

基材微粒子と、前記基材微粒子の表面に存在するイオン交換基とからなるイオン交換液体クロマトグラフィー用充填剤であって、
水及びアセトンにそれぞれ分散させ、超音波を15分間照射し、25℃で240時間放置して平衡化させた後、粒度分布測定機により粒子径をそれぞれ測定したとき、水に分散させたときの粒子径Dとアセトンに分散させたときの粒子径Dとの比D/Dが2.0以下であり、かつ、該イオン交換液体クロマトグラフィー用充填剤を単層に隙間なく並べた上に純水の液滴を形成させ、25℃の条件下で接触角計により測定した水の接触角が60°以下である
ことを特徴とするイオン交換液体クロマトグラフィー用充填剤。
A filler for ion-exchange liquid chromatography, comprising a base particle and an ion-exchange group present on the surface of the base particle,
Each was dispersed in water and acetone, irradiated with ultrasonic waves for 15 minutes, allowed to stand at 25 ° C. for 240 hours to equilibrate, and then each particle size was measured with a particle size distribution analyzer. The ratio D W / D A of the particle diameter D W and the particle diameter D A when dispersed in acetone is 2.0 or less, and the packing materials for ion exchange liquid chromatography are arranged in a single layer without gaps. A packing material for ion-exchange liquid chromatography, wherein a water contact angle measured by a contact angle meter under a condition of 25 ° C. is 60 ° or less, on which pure water droplets are formed.
イオン交換基は、スルホン酸基であることを特徴とする請求項1記載のイオン交換液体クロマトグラフィー用充填剤。 The packing material for ion exchange liquid chromatography according to claim 1, wherein the ion exchange group is a sulfonic acid group. 請求項1又は2記載のイオン交換液体クロマトグラフィー用充填剤を用いることを特徴とする糖化ヘモグロビンの分析方法。 A method for analyzing glycated hemoglobin, wherein the filler for ion exchange liquid chromatography according to claim 1 or 2 is used.
JP2006158421A 2005-12-02 2006-06-07 Packing for ion-exchange liquid chromatography, and analyzing method of saccharified hemoglobin Pending JP2007327821A (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
JP2006158421A JP2007327821A (en) 2006-06-07 2006-06-07 Packing for ion-exchange liquid chromatography, and analyzing method of saccharified hemoglobin
EP13154644.2A EP2602021B1 (en) 2005-12-02 2006-11-14 Filler for ion exchange liquid chromatography, method for production of filler for ion exchange liquid chromatography and method for analyzing a glycosylated hemoglobin
US12/085,936 US7811453B2 (en) 2005-12-02 2006-11-14 Hydrophilic polymer microparticle, filler for ion exchange liquid chromatography, and method for production of filler for ion exchange liquid chromatography
EP06832626A EP1955764A4 (en) 2005-12-02 2006-11-14 Hydrophilic polymer microparticle, filler for ion exchange liquid chromatography, and method for production of filler for ion exchange liquid chromatography
CN2006800326033A CN101257969B (en) 2005-12-02 2006-11-14 Hydrophilic polymer microparticle, filler for ion exchange liquid chromatography, and method for production of filler for ion exchange liquid chromatography
EP15203156.3A EP3040120A1 (en) 2005-12-02 2006-11-14 Filler for ion exchange liquid chromatography, method for production of filler for ion exchange liquid chromatography and method for analyzing a glycosylated hemoglobin
KR1020087005398A KR101555533B1 (en) 2005-12-02 2006-11-14 Hydrophilic polymer microparticle filler for ion exchange liquid chromatography and method for production of filler for ion exchange liquid chromatography
PCT/JP2006/322670 WO2007063701A1 (en) 2005-12-02 2006-11-14 Hydrophilic polymer microparticle, filler for ion exchange liquid chromatography, and method for production of filler for ion exchange liquid chromatography
CN2011101072516A CN102258982B (en) 2005-12-02 2006-11-14 Filler for ion exchange liquid chromatography, and method for producing the same
US12/875,283 US8968562B2 (en) 2005-12-02 2010-09-03 Hydrophilic polymer microparticle, filler for ion exchange liquid chromatography, and method for production of filler for ion exchange liquid chromatography

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006158421A JP2007327821A (en) 2006-06-07 2006-06-07 Packing for ion-exchange liquid chromatography, and analyzing method of saccharified hemoglobin

Publications (1)

Publication Number Publication Date
JP2007327821A true JP2007327821A (en) 2007-12-20

Family

ID=38928389

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006158421A Pending JP2007327821A (en) 2005-12-02 2006-06-07 Packing for ion-exchange liquid chromatography, and analyzing method of saccharified hemoglobin

Country Status (1)

Country Link
JP (1) JP2007327821A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010256225A (en) * 2009-04-27 2010-11-11 Nippon Filcon Co Ltd Sintered-type adsorbent for solid phase extraction, and cartridge

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03118466A (en) * 1989-09-29 1991-05-21 Sekisui Chem Co Ltd Assay of saccharified hemoglobin
JP2000088826A (en) * 1998-09-09 2000-03-31 Sekisui Chem Co Ltd Manufacture of bulking agent for liquid chromatography
JP2006102698A (en) * 2004-10-07 2006-04-20 Sekisui Chem Co Ltd Method for producing filler for ion exchange liquid chromatography

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03118466A (en) * 1989-09-29 1991-05-21 Sekisui Chem Co Ltd Assay of saccharified hemoglobin
JP2000088826A (en) * 1998-09-09 2000-03-31 Sekisui Chem Co Ltd Manufacture of bulking agent for liquid chromatography
JP2006102698A (en) * 2004-10-07 2006-04-20 Sekisui Chem Co Ltd Method for producing filler for ion exchange liquid chromatography

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010256225A (en) * 2009-04-27 2010-11-11 Nippon Filcon Co Ltd Sintered-type adsorbent for solid phase extraction, and cartridge

Similar Documents

Publication Publication Date Title
KR101555533B1 (en) Hydrophilic polymer microparticle filler for ion exchange liquid chromatography and method for production of filler for ion exchange liquid chromatography
JP5254903B2 (en) Western blot membrane with hydrophilic, high protein binding and low fluorescence
Zhang et al. Synthesis of molecularly imprinted polymer nanoparticles for the fast and highly selective adsorption of sunset yellow
Law et al. Real-time detection of per-fluoroalkyl substance (PFAS) self-assembled monolayers in nanoporous interferometers
JP2009515180A (en) particle
JP2007327821A (en) Packing for ion-exchange liquid chromatography, and analyzing method of saccharified hemoglobin
JP5378623B2 (en) Packing material for ion exchange liquid chromatography and analysis method of glycated hemoglobin
JP3990713B2 (en) Packing material for ion exchange liquid chromatography and analysis method of glycated hemoglobin
JP4860133B2 (en) Method for analyzing glycated hemoglobin
JP2007271635A (en) Filler for ion exchange liquid chromatography, and analysis method of saccharified hemoglobin
JP3984633B2 (en) Method for producing packing material for ion exchange liquid chromatography
JPH03118466A (en) Assay of saccharified hemoglobin
JPH05302917A (en) Filler for liquid chromatography and manufacture thereof
JP2794592B2 (en) Method for concentrating polymer substances in biological fluids
JP4746402B2 (en) Packing agent for liquid chromatography and method for measuring hemoglobin
Kaltz et al. Influencing the selectivity of grafted anion exchangers utilizing the solubility of the radical initiator during the graft process
JPH087198B2 (en) Quantitative method for glycated hemoglobin
JP2007326935A (en) Hydrophilic polymer microparticle
JP5522772B2 (en) Column filler and method for producing column filler
JP2006088072A (en) Production method for filler for ion-exchange liquid chromatography
JP2005227237A (en) Filler for ion exchange liquid chromatography
JP2006088073A (en) Production method for filler for ion-exchange liquid chromatography
JP2005227236A (en) Filler for ion exchange liquid chromatography
JP2559525C (en)
JP2007271310A (en) Method of analyzing hydrophobic organic compound and liquid chromatograph column

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110118

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111004