JP2794592B2 - Method for concentrating polymer substances in biological fluids - Google Patents

Method for concentrating polymer substances in biological fluids

Info

Publication number
JP2794592B2
JP2794592B2 JP1132677A JP13267789A JP2794592B2 JP 2794592 B2 JP2794592 B2 JP 2794592B2 JP 1132677 A JP1132677 A JP 1132677A JP 13267789 A JP13267789 A JP 13267789A JP 2794592 B2 JP2794592 B2 JP 2794592B2
Authority
JP
Japan
Prior art keywords
water
concentrating
resin
biological fluid
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1132677A
Other languages
Japanese (ja)
Other versions
JPH02311506A (en
Inventor
亮介 米本
礼造 福嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HAIMO KK
Original Assignee
HAIMO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HAIMO KK filed Critical HAIMO KK
Priority to JP1132677A priority Critical patent/JP2794592B2/en
Publication of JPH02311506A publication Critical patent/JPH02311506A/en
Application granted granted Critical
Publication of JP2794592B2 publication Critical patent/JP2794592B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は,生化学,医学の分野において,生体由来
高分子物質,例えば,蛋白質,DNA,脂質等の分析を行う
ために生体液を濃縮するに当たり,目的物を変質させる
ことなく,液中の低分子成分水溶液のみを吸収すること
によってこれらの成分を濃縮することを可能とするポリ
アクリルアミド架橋物である吸水樹脂を使用し,分析の
前処理としての生体液中の高分子物質の濃縮方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to the concentration of biological fluids in the fields of biochemistry and medicine in order to analyze biological macromolecules such as proteins, DNA, lipids, etc. In doing so, use a water-absorbing resin that is a crosslinked polyacrylamide that allows the concentration of these components by absorbing only the aqueous solution of the low-molecular components in the solution without deteriorating the target product. The present invention relates to a method for concentrating a polymer substance in a biological fluid as a treatment.

〔従来の技術〕[Conventional technology]

従来,医学上の研究・診断の目的で生物体より血液・
リンパ液等の体液を採取しその中の蛋白質等の高分子成
分を分析・同定することは広く行われている。この際,
予め被検試料より水分及び目的物以外の低分子成分を分
離除去し,高分子成分の濃度を高めておくことによって
分析の感度・精度を高めることは良く知られている。
Conventionally, blood and blood have been used for biological research and diagnosis purposes.
It is widely practiced to collect body fluids such as lymph and analyze and identify high molecular components such as proteins therein. On this occasion,
It is well known that the sensitivity and accuracy of analysis are increased by separating and removing water and low molecular components other than the target substance from the test sample in advance and increasing the concentration of the high molecular components.

従来,上記のように,高分子成分の濃度を高めておく
ために幾つかの方法が使用されている。例えば,被検液
を加圧下で限外濾過膜と接触させ水分のみを通過させる
ことによって達成したもの,例えば,特開昭60−145069
号公報,特開昭61−12284号公報等に記載されたものが
ある。また,ポリアクリル酸ソーダ架橋物から成る吸水
樹脂についても従来公知であり,通常,該吸水樹脂は粉
末状態で市販されている。
Conventionally, as described above, several methods have been used to increase the concentration of the polymer component. For example, the one achieved by bringing a test solution into contact with an ultrafiltration membrane under pressure and passing only moisture, for example, Japanese Patent Application Laid-Open No. 60-145069.
And JP-A-61-12284. Further, a water-absorbing resin comprising a crosslinked product of sodium polyacrylate has been conventionally known, and the water-absorbing resin is usually commercially available in a powder state.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

しかしながら,上記従来の技術に関しては幾つかの問
題点が指摘されている。例えば,限外濾過膜を使用する
濃縮法については,濾過のために特別の設備が必要であ
り,また,その操作も熟練を必要とした。一般に,この
発明が対象とする分析及び同定のための生体液は,数cc
が使用されるものであり,同時に,多数の試料を平行し
て試験に供されることから採用される操作は,簡便且つ
確実であることが極めて重要なことである。例えば,前
述の吸水樹脂を被検液中に投入し,水分のみを吸収さ
せ,残液中に目的物を濃縮することは,当業者が容易に
想到するところのものである。しかしながら,該吸水樹
脂は蛋白分子等の高分子と水分子を選別する能力を持た
ないことから,蛋白質等の濃縮を目的としたこの発明に
適用することはできない。
However, several problems have been pointed out with respect to the above-mentioned conventional technology. For example, for a concentration method using an ultrafiltration membrane, special equipment is required for filtration, and the operation also requires skill. Generally, biological fluids for analysis and identification to which the present invention is directed are several cc.
It is very important that the operation adopted since a large number of samples are subjected to a test in parallel at the same time is simple and reliable. For example, it is easily understood by those skilled in the art that the above-mentioned water-absorbing resin is introduced into a test solution, only water is absorbed, and the target substance is concentrated in the remaining solution. However, the water-absorbing resin cannot be applied to the present invention for the purpose of concentrating proteins and the like, because the water-absorbing resin does not have the ability to select water molecules from polymers such as protein molecules.

この発明の目的は,上記の問題点を解決するため,生
体液中の脂質及び/又は高分子物質を排除しつつ低分子
成分水溶液のみを吸収する生体液濃縮用吸水性樹脂をを
用いて生体液中の脂質及び/又は高分子物質を変質させ
ることなく,簡便な操作で濃縮する分析の前処理として
の生体液中の高分子物質の濃縮方法を提供することであ
る。
An object of the present invention is to solve the above-mentioned problems by using a water-absorbing resin for concentrating biological fluid that absorbs only low-molecular component aqueous solutions while excluding lipids and / or high-molecular substances in the biological fluid. An object of the present invention is to provide a method for concentrating a polymer substance in a biological fluid as a pretreatment for analysis in which a lipid and / or a polymer substance in a body fluid is concentrated by a simple operation without deteriorating.

〔課題を解決するための手段〕[Means for solving the problem]

この発明は,上記の目的を達成するために,次のよう
に構成されている。即ち,この発明は,生理食塩水中に
おける平衡吸水倍率が5〜10であり,アクリルアミドモ
ノマー単位を50〜100モル%含有する高分子架橋体の含
水率が20重量%以下であり且つ直径0.1〜1mmの球状粒子
から成る吸水樹脂を被検用生体液中に浸漬後,吸水した
ゲルを濾別することにより,分子量が10000以上の蛋白
質及び/又はDNAを濃縮することを特徴とする分析の前
処理としての生体液中の高分子物質の濃縮方法に関す
る。
The present invention is configured as follows to achieve the above object. That is, according to the present invention, the equilibrium water absorption ratio in physiological saline is 5 to 10, the water content of the polymer crosslinked product containing 50 to 100 mol% of acrylamide monomer units is 20% by weight or less, and the diameter is 0.1 to 1 mm. A pretreatment for analysis characterized in that a water-absorbent resin consisting of spherical particles is immersed in a biological fluid to be tested, and the gel that has absorbed water is filtered to concentrate proteins and / or DNA with a molecular weight of 10,000 or more. The present invention relates to a method for concentrating a polymer substance in a biological fluid as a method.

以下に,この発明による生体液濃縮用吸水性樹脂につ
いて詳述すると,次のようになる。
Hereinafter, the water absorbing resin for concentrating biological fluid according to the present invention will be described in detail.

この発明に使用される非イオン性アクリル系高分子架
橋体は生理食塩水中において乾自重の4〜20倍の吸水倍
率を有する必要があり,特に,望ましい吸水倍率は5〜
10倍の範囲である。吸水倍率が20以上の場合は,脂質及
び/又は高分子物質と低分子成分水溶液の分離特性が悪
化し,高分子量物質を水と共にゲル内に吸収することか
ら,濃縮の目的に適しない領域である。また,該架橋体
樹脂の吸水倍率が低いことは,樹脂単位量当たりの吸水
量が低下することを意味し,当然濃縮効率は低下する。
The crosslinked nonionic acrylic polymer used in the present invention must have a water absorption capacity of 4 to 20 times its own weight in physiological saline, and particularly, a desirable water absorption capacity is 5 to 5.
The range is 10 times. If the water absorption capacity is 20 or more, the separation characteristics of the aqueous solution of the low-molecular component from lipids and / or high-molecular substances deteriorate, and the high-molecular substances are absorbed into the gel together with water. is there. Further, a low water absorption ratio of the crosslinked resin means that the water absorption per resin unit amount is reduced, and naturally the concentration efficiency is reduced.

また,生体液濃縮用吸水性樹脂の表面は,液の付着を
極力防止する必要があり,平滑であることを要する。し
かし,該樹脂の表面が多孔性であれば包含された濃縮液
は吸水ゲルと共に系外に排出され,回収効率が低下す
る。該樹脂の表面は,吸水時に排除された高分子物質が
特に濃縮されている部分であり,吸水ゲルを分離する前
に液中に再分配されるように,ゲル表面近傍と自由水部
分との間には,液流または拡散等によってスムースに且
つ速やかに効率良く液交換が行われることが望ましく,
ゲル表面に凹凸が存在すると,該凹凸によって液交換の
妨げとなり易い。しかしながら,液流または拡散を妨げ
ずに障害とならない大きな凹凸は存在しても差し支えな
いことは勿論である。
In addition, the surface of the water-absorbing resin for concentrating biological fluid must be as smooth as possible in order to minimize the adhesion of the liquid. However, if the surface of the resin is porous, the contained concentrate is discharged out of the system together with the water-absorbing gel, and the recovery efficiency is reduced. The surface of the resin is a portion in which the high molecular substances removed at the time of water absorption are particularly concentrated, and the surface of the resin is separated from the free water portion so as to be redistributed into the liquid before separating the water-absorbing gel. In the meantime, it is desirable that liquid exchange be performed smoothly and promptly and efficiently by liquid flow or diffusion.
If irregularities are present on the gel surface, the irregularities tend to hinder liquid exchange. However, it goes without saying that there may be large irregularities that do not hinder the liquid flow or diffusion.

このように平滑な表面を持った吸水樹脂粒子は,適当
な分散剤により有機液体中に分散させた非イオン性アク
リル系モノマー水溶液を多価ビニル化合物と共重合させ
て製造する。重合の開始法としては水溶性のラジカル発
生剤の添加あるいは紫外線照射等によりモノマー水溶液
中にラジカルを発生させて行う。水溶性のラジカル発生
剤としては過硫酸塩,過酸化物またはこれらと還元剤の
併用或いは水溶性アゾ化合物等が使用される。
The water-absorbing resin particles having such a smooth surface are produced by copolymerizing a nonionic acrylic monomer aqueous solution dispersed in an organic liquid with a suitable dispersant with a polyvalent vinyl compound. The polymerization is initiated by adding a water-soluble radical generator or irradiating ultraviolet rays to generate radicals in the monomer aqueous solution. As the water-soluble radical generator, a persulfate, a peroxide, a combination of these with a reducing agent, a water-soluble azo compound, or the like is used.

具体的には,上記水溶性ラジカル発生剤として,過硫
酸アンモニウム,過硫酸カリウム,過酸化水素,過酢酸
等の酸化剤及び又はこれらと,亜硫酸水素ナトリウム,
N,N,N′,N′,−テトラメチルエチレンジアミン(略称,
TEMED)等の還元剤の併用,或いは,アゾビスアミジノ
プロパン塩酸塩,アゾビスイソシアノ吉草酸塩等の水溶
性アゾ系重合開始剤を例示することができ,この他の水
溶性ラジカル発生剤を使用すること或いは各種の上記開
始剤を併用することも可能である。この発明に用いる生
体液濃縮用吸水性樹脂は,輝度の吸水倍率を付与するた
め,アクリルモノマーに対して0.1〜10モル%の多価ビ
ニル化合物を共重合させる。
Specifically, as the water-soluble radical generator, oxidizing agents such as ammonium persulfate, potassium persulfate, hydrogen peroxide, and peracetic acid, and / or sodium hydrogen sulfite,
N, N, N ', N',-tetramethylethylenediamine (abbreviation,
TEMED) or water-soluble azo-based polymerization initiators such as azobisamidinopropane hydrochloride and azobisisocyanovalerate, and other water-soluble radical generators. It is also possible to use them or to use various kinds of the above-mentioned initiators in combination. The water-absorbent resin for concentrating biological fluid used in the present invention is obtained by copolymerizing a polyvalent vinyl compound in an amount of 0.1 to 10 mol% with respect to the acrylic monomer in order to impart a water absorption ratio of luminance.

この発明に使用される非イオン性アクリルモノマーと
しては,アクリルアミドが最も賞用されるが,50モル%
以下の範囲において,他の非イオン性アクリルモノマー
を共重合させることにより高分子鎖間の水素結合を減少
せしめ,吸水速度を向上させることができる。このよう
な目的に用いる非イオン性アクリルモノマーとしては,
ジアセトン・アクリルアミド,N−アルキル・アクリルア
ミド,N,N−ジアルキル・アクリルアミド,N,N−モルホリ
ン・アクリルアミド,ヒドロキシエチル(メタ)アクリ
レート,ポリエチレングリコール・モノ(メタ)アクリ
レート等が例示される。
As the nonionic acrylic monomer used in the present invention, acrylamide is most awarded, but 50 mol%
In the following range, by copolymerizing another nonionic acrylic monomer, hydrogen bonds between polymer chains can be reduced, and the water absorption rate can be improved. Nonionic acrylic monomers used for such purposes include:
Examples thereof include diacetone / acrylamide, N-alkyl / acrylamide, N, N-dialkyl / acrylamide, N, N-morpholine / acrylamide, hydroxyethyl (meth) acrylate, and polyethylene glycol / mono (meth) acrylate.

また,10モル%以内の範囲であれば,イオン性アクリ
ルモノマーを共重合させることもできる。かかる目的に
適用されるイオン性アクリルモノマーとしては,アクリ
ルアミド・アルキルスルホン酸塩,(メタ)アクリロイ
ロキシアルキル・トリアルキルアンモニウム塩等を例示
することができる。
In addition, the ionic acrylic monomer can be copolymerized within the range of 10 mol% or less. Examples of the ionic acrylic monomer applied for this purpose include acrylamide / alkyl sulfonate, (meth) acryloyloxyalkyl / trialkylammonium salt and the like.

これら非イオン性モノマーと共重合させる多価ビニル
化合物としては,通常の高吸水性樹脂の製造に用いられ
る架橋剤の中から任意に選ぶことができ,N,N−メチレン
ビスアクリルアミド,ポリエチレングリコールジ(メ
タ)アクリレート,トリアクリルホルマール等を例示で
きる。
The polyvalent vinyl compound to be copolymerized with these nonionic monomers can be arbitrarily selected from crosslinking agents used in the production of ordinary superabsorbent resins, and N, N-methylenebisacrylamide, polyethylene glycol Examples thereof include (meth) acrylate and triacrylformal.

重合終了後,ポリマー官能基と反応する架橋剤を分散
媒中に少量添加し樹脂表面の架橋密度を高める手法も高
吸水性樹脂製造技術として公知であり,この発明にも使
用できる。
A technique of adding a small amount of a crosslinking agent that reacts with the polymer functional group to the dispersion medium after the polymerization to increase the crosslinking density on the resin surface is also known as a superabsorbent resin production technique, and can be used in the present invention.

モノマー水溶液を分散させる有機液体としては,実質
的に不溶性であれば原理的には全て使用可能であるが,
通常はシクロヘキサン,イソパラフィン,灯油,中油等
の液状炭化水素が用いられる。これら有機液体に添加す
る分散剤としては,低HLBの界面活性剤或いはエチルセ
ルロース等が使用される。重合が終了した高分子は,水
を含んだゲル状であり,共沸脱水により或いは濾別後通
風乾燥または加熱乾燥により水分を除去する。このよう
にして得られた乾燥樹脂は,球状粒子であり,該乾燥樹
脂の表面は,液流または拡散等によってスムースに且つ
速やかに効率良く液交換が行われ得るように平滑な状態
になっている。
As an organic liquid for dispersing an aqueous monomer solution, all can be used in principle as long as they are substantially insoluble,
Usually, liquid hydrocarbons such as cyclohexane, isoparaffin, kerosene and medium oil are used. As a dispersant added to these organic liquids, a low HLB surfactant, ethyl cellulose, or the like is used. The polymer after polymerization is in the form of a gel containing water, and the water is removed by azeotropic dehydration or by filtration, followed by ventilation drying or heat drying. The dried resin thus obtained is spherical particles, and the surface of the dried resin is smoothed by a liquid flow or diffusion or the like so that the liquid exchange can be performed smoothly and quickly and efficiently. I have.

また,この発明の用途に適した球状粒子の直径は0.1
〜1mmの範囲が望ましい。直径が大径の球状粒子は,吸
水速度が遅く,操作時間が長くなるのに対し,直径が微
小径の球状粒子は,被検用生体液中に浸漬した時に液中
でまま粉を作ったり,或いは粉塵となり飛散し易い欠点
がある。この生体液濃縮用吸水性樹脂を用いた生体液の
濃縮操作は,被検疫に該吸水樹脂を投入し,一定時間浸
漬後残液を濾別することにより行われる。高分子物質が
吸水ゲル表面に残ることなく残液中にできるだけ回収さ
れるように,浸漬時に容器の振動等の撹拌操作を行うこ
とは望ましいことではあるが,静置浸漬でも実用に耐え
る。残液の濾別は吸引濾過や遠心濾過等が用いられる。
吸引濾過は大量の液処理に適し,遠心濾過はゲル表面の
付着水が少なく回収率が高い。乾燥した樹脂粒子に発生
し易い静電気を防止するため,帯電防止剤で樹脂表面を
コートすることや,シリカ,アルミナ,チタニア等の不
活性微粉末を混合し表面を被覆することは,秤取時の付
着や飛散を防止し作業が容易となる。この発明に用いら
れる該吸水樹脂は,含水率20重量%以下,望ましくは,1
5重量%以下に乾燥して用いられる。
The diameter of the spherical particles suitable for use in the present invention is 0.1
A range of about 1 mm is desirable. Spherical particles with a large diameter have a slow water absorption rate and a long operation time, whereas spherical particles with a small diameter can form powder in the liquid when immersed in the biological fluid to be tested. Or, there is a drawback that it easily becomes dust and scatters. The operation of concentrating a biological fluid using the water-absorbent resin for concentrating a biological fluid is performed by putting the water-absorbent resin into a subject to be inspected, immersing it for a certain period of time, and filtering off the remaining liquid. It is desirable to perform a stirring operation such as vibration of the container during immersion so that the polymer substance is recovered in the residual liquid as much as possible without remaining on the surface of the water-absorbing gel, but it can withstand practical use even with standing immersion. Suction filtration, centrifugal filtration or the like is used for filtering the residual liquid.
Suction filtration is suitable for large-volume liquid treatment, and centrifugal filtration has little water adhering to the gel surface and high recovery. Coating the resin surface with an antistatic agent or mixing an inert fine powder such as silica, alumina, titania, etc. to coat the surface with the antistatic agent to prevent static electricity that is easily generated in the dried resin particles is required at the time of weighing. Adhesion and scattering are prevented and work becomes easy. The water-absorbing resin used in the present invention has a water content of 20% by weight or less,
Used after drying to 5% by weight or less.

乾燥前に該ポリアクリルアミドゲルを水洗し,ポリア
クリルアミドゲル内に残存する微量の可溶性成分を除去
することもできる。
Before drying, the polyacrylamide gel may be washed with water to remove trace amounts of soluble components remaining in the polyacrylamide gel.

〔発明の作用・効果〕[Functions and effects of the invention]

この発明による生体液中の高分子物質の濃縮方法に使
用される生体液濃縮用ポリアクリルアミド架橋物は,脂
質及び/又は高分子物質を排除しつつ低分子成分水溶液
のみを短時間で吸収する性質を有する吸水樹脂である。
このような性質はアクリルアミドを主体とする非イオン
性アクリル系高分子架橋物から成る吸水樹脂に適度の架
橋密度と比表面積を付与することにより達成できる。
The crosslinked polyacrylamide for biofluid concentration used in the method for concentrating polymer substances in biological fluid according to the present invention has the property of absorbing only low molecular component aqueous solution in a short time while excluding lipids and / or polymer substances. Is a water-absorbing resin having
Such properties can be achieved by imparting an appropriate crosslink density and a specific surface area to a water-absorbent resin composed of a crosslinked nonionic acrylic polymer mainly composed of acrylamide.

即ち,その吸水倍率を20以下とすることにより高分子
物質等は架橋樹脂内部に侵入することができず低分子成
分水溶液のみが吸収される。アクリルアミドを主体とす
る高分子官能基の親水性と50cm2/g以上の高比表面積を
具備する結果,このポリアクリルアミドゲルは,吸水を
短時間で完了し,一定の濃縮率を与えることができる。
That is, by setting the water absorption ratio to 20 or less, the high molecular substance and the like cannot enter the inside of the crosslinked resin, and only the low molecular component aqueous solution is absorbed. As a result of the hydrophilicity of the polymer functional group mainly composed of acrylamide and the high specific surface area of 50 cm 2 / g or more, this polyacrylamide gel can complete water absorption in a short time and give a constant concentration rate .

また,この発明による生体液中の高分子物質の濃縮方
法に使用される生体液濃縮用吸水性樹脂は,表面が平滑
であるため,高分子物質等の吸着が少なく回収率が高
い。このように,簡便な操作により,脂質及び/又は高
分子物質を低分子成分水溶液と分離濃縮できることか
ら,この発明は生体液中の脂質,DNA,蛋白質等の分析用
のための前処理法として最適である。
Further, the water-absorbing resin for concentrating biological fluid used in the method for concentrating a high-molecular substance in a biological fluid according to the present invention has a smooth surface, and therefore has little adsorption of high-molecular substances and a high recovery rate. As described above, the lipid and / or the high molecular substance can be separated and concentrated from the aqueous solution of the low molecular component by a simple operation. Therefore, the present invention is used as a pretreatment method for analyzing lipids, DNA, proteins, etc. in biological fluids. Optimal.

上記濃縮分離操作は残液に対し再度実施することも可
能であり,希釈操作を併用することもできる。
The above concentration and separation operation can be performed again on the residual liquid, and the dilution operation can be used in combination.

例えば,ラジオアイソトープでラベリングした生合成
高分子物質から低分子成分を除去する場合に,この生体
液濃縮用吸水性樹脂に低分子成分を水と共に,吸収分離
後,残液を希釈し再度濃縮処理を繰り返すことにより目
的を達成でき,吸水ゲルを乾燥することにより放射性物
質の廃棄量を減少させることもできる。
For example, when removing low-molecular components from biosynthetic high-molecular substances labeled with a radioisotope, the low-molecular components are absorbed and separated into water with the water-absorbent resin for concentrating biological fluid, and the remaining liquid is diluted and concentrated again. By repeating the above, the object can be achieved, and the amount of radioactive substances to be discarded can be reduced by drying the water-absorbing gel.

〔実施例〕〔Example〕

次に,この発明による生体液中の高分子物質の濃縮方
法についての実施例を説明するが,この発明は,該特許
請求の範囲に記載された事項によって構成される技術的
思想の範囲を超えない限り,以下の実施例に制約される
ものではないことは勿論である。
Next, an embodiment of a method for concentrating a high molecular substance in a biological fluid according to the present invention will be described. However, the present invention is not limited to the technical idea constituted by the matters described in the claims. Unless otherwise described, it is needless to say that the present invention is not limited to the following embodiments.

合成例−1 撹拌機,温度計,還流冷却器,窒素導入管を備えた50
0mlの五つ口のセパラブルフラスコに,シクロヘキサン2
00gを仕込み,エチルセルロース(ハーキュリーズ社製
T−100)を1gを加えて60℃に加温して溶解させ,窒素
ガスを通して酸素を除去した。アクリルアミドの20%水
溶液100gに,N,N−メチレンビスアクリルアミドの10%水
溶液を1ccと2,2′−アゾビス(2−アミジノプロパン)
塩酸塩の10%水溶液を1.6g加えたものを滴下ロートに仕
込み,窒素ガスを通して酸素を除いた。これを撹拌しつ
つシクロヘキサン中に徐々に滴下し,重合を行った。
Synthesis Example-1 50 equipped with a stirrer, thermometer, reflux condenser, and nitrogen inlet tube
In a 0 ml 5-neck separable flask, add cyclohexane 2
Then, 1 g of ethylcellulose (T-100 manufactured by Hercules) was added and dissolved by heating to 60 ° C., and oxygen was removed by passing nitrogen gas. To 100 g of a 20% aqueous solution of acrylamide, 1 cc of a 10% aqueous solution of N, N-methylenebisacrylamide and 2,2'-azobis (2-amidinopropane)
1.6 g of a 10% aqueous solution of hydrochloride was added to a dropping funnel, and oxygen was removed through nitrogen gas. This was gradually dropped into cyclohexane with stirring to carry out polymerization.

60℃で3時間重合した後,還流冷却器を共沸水分離器
に替え,フラスコ中で撹拌下,外温80〜90℃の湯浴にて
共沸脱水を行った。充分,脱水後,ポリマー粒子を濾別
し,シクロヘキサンを乾燥により除くと,ビーズ状の高
吸水性樹脂を得ることができる。
After polymerization at 60 ° C. for 3 hours, the reflux condenser was replaced with an azeotropic water separator, and azeotropic dehydration was performed in a water bath at an external temperature of 80 to 90 ° C. while stirring in a flask. After sufficient dehydration, the polymer particles are separated by filtration and the cyclohexane is removed by drying, whereby a bead-shaped superabsorbent resin can be obtained.

この樹脂をふるい分けて得た直径0.1〜1mmの粒子を含
水率12%に調整したものを試料−1と呼ぶ。試料−1は
乾自重の7.6倍の生理食塩水を吸収した。
Particles having a diameter of 0.1 to 1 mm obtained by sieving this resin and having a water content of 12% are referred to as Sample-1. Sample-1 absorbed physiological saline 7.6 times its own weight.

合成例−2 合成例−1のセパラブルフラスコにイソパラフィン
(アイソパーG,エクソン社製)150g,ソルビタンモノオ
レート0.5gを加え,60℃に加温して溶解させ,窒素ガス
を通して酸素を除去した。アクリルアミドの15%水溶液
100gにN,N−メチレンビスアクリルアミド0.1g,トリアク
リルホルマール0.1g及び2,2′−アゾビス(2−アミジ
ノプロパン)塩酸塩の1%水溶液1.6gを添加混合した液
を窒素曝気後,上記フラスコ内に撹拌しつつ徐々に滴下
し重合を行った。60℃で3時間重合した後,ポリマー粒
子を濾別し,ノルマルヘキサンで油分を洗浄除去した
後,24時間流水によって洗浄した後,105℃にて通風乾燥
を行い,含水率12.5%の球状粒子を得た。
Synthesis Example-2 To the separable flask of Synthesis Example-1, 150 g of isoparaffin (Isopar G, exxon) and 0.5 g of sorbitan monooleate were added, heated to 60 ° C. to dissolve, and oxygen was removed by passing nitrogen gas. 15% aqueous solution of acrylamide
A mixture obtained by adding 0.1 g of N, N-methylenebisacrylamide, 0.1 g of triacrylformal and 1.6 g of a 1% aqueous solution of 2,2'-azobis (2-amidinopropane) hydrochloride to 100 g of the mixture was subjected to nitrogen aeration. While stirring, the mixture was gradually dropped to perform polymerization. After polymerization at 60 ° C for 3 hours, polymer particles were filtered off, the oil was washed off with normal hexane, washed with running water for 24 hours, then dried at 105 ° C with ventilation, and spherical particles having a water content of 12.5% were obtained. I got

これをふるい分けて得た直径0.1〜1mmの粒子を試料−
2と呼ぶ。試料−2は乾自重に対し6.9倍の生理食塩水
を吸収した。
Particles having a diameter of 0.1 to 1 mm obtained by sieving this are
Call it 2. Sample-2 absorbed physiological saline 6.9 times its own weight.

合成例−3 合成例−1と同一のセパラブルフラスコ内にシクロヘ
キサン200gを仕込み,エチルセルロース(ハーキュリー
ズ社製T−100)を1g添加し60℃に加温して溶解させ窒
素ガスを通して酸素を除去した。
Synthesis Example-3 200 g of cyclohexane was charged into the same separable flask as in Synthesis Example-1, 1 g of ethylcellulose (T-100, manufactured by Hercules) was added, and the mixture was heated to 60 ° C. to dissolve, and oxygen was removed through nitrogen gas. .

アクリルアミド8g,ジアセトン・アクリルアミド6g,N,
N−メチレンビスアクリルアミド0.5g,ジエチレングリコ
ールジメタクリレート0.5g及び水85gを混合した水溶液
に2,2′−アゾビス(2−アミジノプロパン)塩酸塩の1
0%水溶液1.6gを加えてモノマー溶液を調整した。この
モノマー水溶液を窒素曝気後,撹拌しつつシクロエキサ
ン中に徐々に滴下し重合を行った。撹拌下60℃にて滴下
終了後,3時間放置し重合を完結させた後,温シクロヘキ
サンにより洗浄し,次いで流水によって24時間洗浄した
後,105℃にて通風乾燥を行い,含水率12%,吸水倍率8.
3倍の樹脂を得た。
Acrylamide 8g, diacetone / acrylamide 6g, N,
An aqueous solution obtained by mixing 0.5 g of N-methylenebisacrylamide, 0.5 g of diethylene glycol dimethacrylate and 85 g of water was mixed with an aqueous solution of 2,2′-azobis (2-amidinopropane) hydrochloride.
1.6 g of a 0% aqueous solution was added to prepare a monomer solution. After the monomer aqueous solution was aerated with nitrogen, it was gradually dropped into cyclohexane with stirring to carry out polymerization. After completion of the dropwise addition with stirring at 60 ° C., the mixture was left for 3 hours to complete the polymerization, washed with warm cyclohexane, then washed with running water for 24 hours, and then dried at 105 ° C. with ventilation to give a water content of 12%. Water absorption 8.
Three times the resin was obtained.

これをふるい分けて得た直径0.1〜1mmの粒子を試料−
3と呼ぶ。このふるい分けにより発生した直径0.1mm以
下の粒子を比較試料−1と呼び,直径1mm以上の粒子を
比較試料−2と呼ぶ。
Particles having a diameter of 0.1 to 1 mm obtained by sieving this are
Called 3. Particles having a diameter of 0.1 mm or less generated by this sieving are referred to as Comparative Sample-1 and particles having a diameter of 1 mm or more are referred to as Comparative Sample-2.

実施例−1 内容量400mlの遠心濾過チューブ内に各吸水樹脂試料
を秤取し,20mMリン酸緩衝液にBSA(牛血清アルブミン)
1ppmを溶解したBSA溶液300mgを注入後,30分間静置して
吸水させた後,2000Gにて5分間遠心濾過を行って母液を
分離した。母液中のBSA濃度を液体クロマトグラフによ
り定量し,濃縮倍率による理論濃縮率との比較によりBS
Aの回収率を算出した。液体クロマトグラフの条件は,
下記のとおりである。
Example-1 Each water-absorbing resin sample was weighed into a 400 ml centrifugal filtration tube, and BSA (bovine serum albumin) was added to 20 mM phosphate buffer.
After injecting 300 mg of a BSA solution in which 1 ppm was dissolved, the solution was allowed to stand for 30 minutes to absorb water, and then subjected to centrifugal filtration at 2000 G for 5 minutes to separate a mother liquor. The concentration of BSA in the mother liquor was determined by liquid chromatography, and compared with the theoretical concentration ratio based on the concentration ratio.
The recovery of A was calculated. The conditions for liquid chromatography are
It is as follows.

カラム;クリアパックGFS−3.8×300mm 溶解液;20mMリン酸緩衝液(pH7.0 0.2M NaCl 検出器;UV 215nm 2.0AUSF 注入量;100μ 各評価試験の結果を表−1に示す。 Column; Clear Pack GFS-3.8 × 300 mm solution; 20 mM phosphate buffer (pH 7.0 0.2 M NaCl detector; UV 215 nm 2.0 AUSF injection amount; 100 μ) The results of each evaluation test are shown in Table-1.

実施例−2 実施例−1と同一の操作により,表−2に記載した各
分子量の標準蛋白溶液を,各吸水樹脂試料40mgに吸水さ
せ,回収率を測定した結果を表−2に示す。
Example-2 By the same operation as in Example-1, the standard protein solution of each molecular weight described in Table-2 was absorbed by 40 mg of each water-absorbing resin sample, and the recovery rate was measured. The result is shown in Table-2.

実施例−3 内容量400μの遠心濾過チューブ内に吸水樹脂試料
−1を,表−3に記載の量を秤取し,λ−DNA12μg/ml
を含むDNA水溶液350μを注入後,30分間静置して吸水
させた後,2000Gで5分間遠心濾過を行い,母液を分離し
た。母液中のDNA濃度は260nmの吸光度から測定し,濃縮
倍率との比較からDNAの回収率を算出した。結果を表−
3に示す。
Example 3 A water-absorbing resin sample-1 was weighed into a centrifugal filtration tube having a content of 400 µm, and the amount described in Table 3 was weighed.
After injecting 350 μm of an aqueous DNA solution containing, the mixture was allowed to stand still for 30 minutes to absorb water, followed by centrifugal filtration at 2000 G for 5 minutes to separate the mother liquor. The DNA concentration in the mother liquor was measured from the absorbance at 260 nm, and the DNA recovery was calculated from the comparison with the concentration ratio. Table-Results
3 is shown.

実施例−4 実施例−3と同様の操作により,表−4に記載した各
分子量のDNAを各吸水樹脂試料40mgに吸水させ,回収率
を測定した。結果を表−4に示す。
Example-4 By the same operation as in Example-3, DNA of each molecular weight shown in Table-4 was absorbed by 40 mg of each water-absorbing resin sample, and the recovery rate was measured. The results are shown in Table-4.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) G01N 33/48 C08F 20/56 B01J 20/26──────────────────────────────────────────────────続 き Continued on front page (58) Field surveyed (Int.Cl. 6 , DB name) G01N 33/48 C08F 20/56 B01J 20/26

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】生理食塩水中における平衡吸水倍率が5〜
10であり,アクリルアミドモノマー単位を50〜100モル
%含有する高分子架橋体の含水率が20重量%以下であり
且つ直径0.1〜1mmの球状粒子から成る吸水樹脂を被検用
生体液中に浸漬後,吸水したゲルを濾別することによ
り,分子量が10000以上の蛋白質及び/又はDNAを濃縮す
ることを特徴とする分析の前処理としての生体液中の高
分子物質の濃縮方法。
(1) an equilibrium water absorption ratio in a physiological saline solution of 5
The water-absorbing resin consisting of spherical particles having a water content of 20% by weight or less and a diameter of 0.1 to 1 mm is immersed in a biological fluid to be tested. Thereafter, a method of concentrating a high molecular substance in a biological fluid as a pretreatment for analysis, comprising concentrating a protein and / or DNA having a molecular weight of 10,000 or more by filtering a gel that has absorbed water.
JP1132677A 1989-05-29 1989-05-29 Method for concentrating polymer substances in biological fluids Expired - Lifetime JP2794592B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1132677A JP2794592B2 (en) 1989-05-29 1989-05-29 Method for concentrating polymer substances in biological fluids

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1132677A JP2794592B2 (en) 1989-05-29 1989-05-29 Method for concentrating polymer substances in biological fluids

Publications (2)

Publication Number Publication Date
JPH02311506A JPH02311506A (en) 1990-12-27
JP2794592B2 true JP2794592B2 (en) 1998-09-10

Family

ID=15086927

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1132677A Expired - Lifetime JP2794592B2 (en) 1989-05-29 1989-05-29 Method for concentrating polymer substances in biological fluids

Country Status (1)

Country Link
JP (1) JP2794592B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8132676B2 (en) * 2008-08-18 2012-03-13 Emd Millipore Corporation Hydrophilic, high protein binding, low fluorescence, western blotting membrane
CN109569023B (en) * 2018-11-29 2021-03-02 杭州立昂科技有限公司 Dry hydrogel particles doped with detergent, and macromolecule concentration and specific activity enhancement
KR102329816B1 (en) * 2020-03-20 2021-11-19 인천대학교 산학협력단 A Method for Separating and Concentrating Cells or Secretion thereof using Super Absorbent Beads
CN116113826A (en) * 2020-09-11 2023-05-12 富士胶片株式会社 Concentrating device, concentrating method for body fluid to be tested, testing method for body fluid to be tested, and testing kit
EP4212876A4 (en) * 2020-09-11 2024-02-28 Fujifilm Corp Liquid specimen concentration method, and liquid specimen inspection method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6081229A (en) * 1983-10-11 1985-05-09 Mitsui Petrochem Ind Ltd Production of water-swelling crosslinked polymer
JPS60250014A (en) * 1984-05-28 1985-12-10 Mitsui Toatsu Chem Inc Resin for concentration
JPH066614B2 (en) * 1985-01-17 1994-01-26 三井石油化学工業株式会社 Method for producing spherical cross-linked polymer

Also Published As

Publication number Publication date
JPH02311506A (en) 1990-12-27

Similar Documents

Publication Publication Date Title
AU653731B2 (en) Method and device for removing heparin
KR101555533B1 (en) Hydrophilic polymer microparticle filler for ion exchange liquid chromatography and method for production of filler for ion exchange liquid chromatography
US6573307B1 (en) Process for making fluorinated polymer adsorbent particles
JPS584047B2 (en) Kin'itsuna Sunpounotakoushitsuki Yujiyoubi-Zunoseizouhouhou
CN101703923B (en) Hydrophilic, high protein binding, low fluorescence, western blotting membrane
JPS5899752A (en) Multi-layer analysis element
US11364480B2 (en) Chromatography medium with bound microglobules and method for the preparation thereof
JP2794592B2 (en) Method for concentrating polymer substances in biological fluids
Rembaum et al. Design of polymeric immunomicrospheres for cell labelling and cell separation
JP3215455B2 (en) Polyoxyalkylene side chain containing copolymer
CN115541895A (en) Formula liquid for improving sensitivity of micro-fluidic inverse detection card and application
US20090191644A1 (en) Imprinted polymer for binding of organic molecules or metal ions
JPH03255360A (en) Separation and determination of glycohemoglobin
JPH03118466A (en) Assay of saccharified hemoglobin
Gök et al. Protein adsorption on functional hydrophilic polymer beads: role of structural properties and medium conditions
JPS5850646B2 (en) Method for producing latex for serological diagnostic reagents
JPS6392627A (en) Hydrophilic porous particle
Dabrovska et al. Transport properties of hydrolyzed polyacrylonitrile
JPH08226920A (en) Method for determining glycohemoglobin and fructosamine
JP2017138271A (en) Grafted coloring cellulose fine particles
CN116891551A (en) Star polymer and preparation method and application thereof
JP2000072822A (en) Water-absorptive resin for living body fluid condensation, its production, and use thereof
Fan Chemical sensors based on swellable molecularly imprinted polymer microspheres in a hydrogel
Milbrath et al. Heilman et al.[45] Date of Patent: Mar. 8, 1994
JP2007327821A (en) Packing for ion-exchange liquid chromatography, and analyzing method of saccharified hemoglobin

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080626

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090626

Year of fee payment: 11

EXPY Cancellation because of completion of term