JPS62277149A - Composite structure - Google Patents

Composite structure

Info

Publication number
JPS62277149A
JPS62277149A JP61120117A JP12011786A JPS62277149A JP S62277149 A JPS62277149 A JP S62277149A JP 61120117 A JP61120117 A JP 61120117A JP 12011786 A JP12011786 A JP 12011786A JP S62277149 A JPS62277149 A JP S62277149A
Authority
JP
Japan
Prior art keywords
polymer
carrier
composite structure
reactive group
solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61120117A
Other languages
Japanese (ja)
Other versions
JPH0738943B2 (en
Inventor
Yoshio Okamoto
佳男 岡本
Koichi Hatada
畑田 耕一
Yoichi Yuki
結城 陽一
Yoshitaka Matsumoto
松本 義孝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daicel Corp
Original Assignee
Daicel Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daicel Chemical Industries Ltd filed Critical Daicel Chemical Industries Ltd
Priority to JP61120117A priority Critical patent/JPH0738943B2/en
Publication of JPS62277149A publication Critical patent/JPS62277149A/en
Publication of JPH0738943B2 publication Critical patent/JPH0738943B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PURPOSE:To obtain the title composite structure useful as a separating agent, a filler, etc., by forming the thin film of a polymer having a reactive group on the surface of a specified porous carrier, and then cross-linking the polymer with use of the reactive group in an insoluble solvent. CONSTITUTION:The polymer having a reactive group is deposited on the porous carrier (e.g., silica, etc.) having 1mum-1cm particle diameter and 10Angstrom -100mum mean pore diameter and wherein the ratio of the pore diameter to the particle diameter is controlled to <=1/10. The deposited polymer is then cross-linked in an inactive solvent not dissolving the polymer, and insolubilized to obtain the composite structure. The composite structure different from the material obtained by granulating the polymer itself is hard and pressure-tight, and the resistance to solvent is improved as compared with the material obtained by physically adsorbing the polymer on the carrier.

Description

【発明の詳細な説明】 3、発明の詳細な説明 (産業上の利用分野) 本発明は複合構造物に間し、特に重合物を担体に担持さ
せてなる、分離剤、充填剤等として有用な複合構造物に
関するものである。
Detailed Description of the Invention 3. Detailed Description of the Invention (Field of Industrial Application) The present invention is useful for composite structures, particularly as a separating agent, filler, etc., in which a polymer is supported on a carrier. It concerns composite structures.

(従来技術と問題点) 従来、合成或は天然の重合物はそれ自身を粒状にし、分
離剤や化粧品等の広い分野での利用が期待されている。
(Prior Art and Problems) Conventionally, synthetic or natural polymers have been made into granules and are expected to be used in a wide range of fields such as separating agents and cosmetics.

しかし、これらの粒状物はその合成が困難であることが
多く、又例え可能あっても比較的長い工程を要した。ざ
らに、これらは一般的に柔らかいものがおおく、そのた
めその利用範囲を著しく狭めていた。本発明者らはこれ
ら重合物の持つ有用な性質を損なわずに、上記欠点を克
服して重合物を粒状で利用し得る様にするために鋭意研
究した結果、本発明に到達したものである。
However, these granules are often difficult to synthesize and, even if possible, require relatively long processes. Furthermore, these materials are generally soft, which has significantly narrowed their range of use. The present inventors have arrived at the present invention as a result of extensive research in order to overcome the above-mentioned drawbacks and make it possible to utilize polymers in granular form without impairing the useful properties of these polymers. .

(問題点を解決するための手段) 即ち本発明は、粒径が1μm〜1cmで、平均孔径が1
0Å〜100μmであり、孔径対粒径の比が1710以
下である多孔性担体の表面に反応性基を有する重合物の
被膜を形成した後、不溶性溶媒中重合物をこの反応性基
を用いて架橋することによって不溶化することを特徴と
する多孔性担体に不溶化した重合物を担持させてなる複
合構造物を提供するものである。
(Means for Solving the Problems) That is, the present invention has a particle size of 1 μm to 1 cm and an average pore size of 1 μm to 1 cm.
After forming a film of a polymer having a reactive group on the surface of a porous carrier having a diameter of 0 Å to 100 μm and a ratio of pore size to particle size of 1710 or less, the polymer is coated in an insoluble solvent using the reactive group. The present invention provides a composite structure in which an insolubilized polymer is supported on a porous carrier that is insolubilized by crosslinking.

本発明の複合構造物は重合物と担体とよりなるが、まず
本発明に使用される担体について説明する。
The composite structure of the present invention is composed of a polymer and a carrier, and first, the carrier used in the present invention will be explained.

担体としては多孔質有機担体又は多孔質無機担体があり
、好ましくは多孔質無機担体である。多のは、ポリスチ
レン、ポリアクリルアミド、ボリ孔質有機担体として適
当なもアクリレート等からなる高分子物質が挙げられる
。多孔質無機担体として適当なものはシリカ、アルミナ
、マグネシア、酸化チタン、ガラス、ケイ酸塩、カオリ
ンの如き合成もしくは天然の物質が挙げられ、重合物と
の親和性を良くするため表面処理を行っても良い。
The carrier may be a porous organic carrier or a porous inorganic carrier, preferably a porous inorganic carrier. Polymeric materials include polystyrene, polyacrylamide, acrylate suitable as a polyporous organic carrier, and the like. Suitable porous inorganic supports include synthetic or natural materials such as silica, alumina, magnesia, titanium oxide, glass, silicates, and kaolin, which may be surface-treated to improve their compatibility with the polymer. It's okay.

表面処理の方法としては有機シラン化合物を用いたシラ
ン化処理やプラズマ処理等がある・。
Surface treatment methods include silanization using organic silane compounds and plasma treatment.

木質的に担体表面と該重合物とが架橋剤を介して化学結
合する必要は無いが、担体表面の反応性基の有無により
一部化学結合が生じても差し支えない。担体の粒径は1
μm〜1cmであり、好ましくは1μm〜1mmであり
、更に好ましくは1μm〜300μmである。平均孔径
は10Å〜100μmであり好ましくは50λ〜500
00人である。又、孔径対粒径の比が1/10以下であ
る。
Although it is not necessary for the surface of the carrier and the polymer to be chemically bonded via a crosslinking agent due to the nature of wood, there is no problem even if some chemical bonding occurs depending on the presence or absence of reactive groups on the surface of the carrier. The particle size of the carrier is 1
It is μm to 1 cm, preferably 1 μm to 1 mm, and more preferably 1 μm to 300 μm. The average pore diameter is 10 Å to 100 μm, preferably 50 λ to 500 μm.
There are 00 people. Further, the ratio of pore size to particle size is 1/10 or less.

次に本発明における重合物について説明する。Next, the polymer in the present invention will be explained.

本発明における重合物とは、合成重合物、天然重合物、
変性天然重合物のいずれかを問わず、反応性基を有する
ものであればいかなるものでも良く、単一成分もしくは
多成分の混合物又は共重合物のいずれでも良い。即ち、
反応性基を持つ成分と持たない成分の共重合物でも良い
。合成重合物としてはアクリル酸またはメタアクリル酸
のエステル、アクリル酸またはメタアクリル酸のアミド
等、スチレン誘導体、ビニルアルコールおよびその誘導
体、アリルアルコールおよびその誘導体等のビニル化合
物の重合物あるいはこれらの共重合物、ラクタム、ラク
トン、オキセタン、エポキシド等の開環重合物、多価ア
ルコール、ジカルボン酸およびその誘導体、アミノアル
コール、アミノ酸、ヒドロキシ酸、ジアミン、ジイソシ
アン酸等任意の組合わせによる縮合物等が挙げられる。
Polymers in the present invention include synthetic polymers, natural polymers,
Any modified natural polymer may be used as long as it has a reactive group, and it may be a single component, a mixture of multiple components, or a copolymer. That is,
A copolymer of a component having a reactive group and a component not having a reactive group may also be used. Synthetic polymers include esters of acrylic acid or methacrylic acid, amides of acrylic acid or methacrylic acid, polymers of vinyl compounds such as styrene derivatives, vinyl alcohol and its derivatives, allyl alcohol and its derivatives, or copolymers thereof. Examples include ring-opening polymers such as lactams, lactones, oxetanes, and epoxides, polyhydric alcohols, dicarboxylic acids and their derivatives, amino alcohols, amino acids, hydroxy acids, diamines, diisocyanates, and other condensates in any combination. .

天然重合物としては、多糖、蛋白質等が挙げられる、又
変性天然重合物としては例えば、置換度の高くない多糖
等、これらを化学的もしくは物理的に処理したものが挙
げられる。これら重合物が光学活性である場合、得られ
る複合構造物は光学分割剤として利用することが期待さ
れる。光学活性な重合物としては、トリフェニルメチル
メタクリレート、光学活性なアミンとアクリル酸のアミ
ド、又は光学活性なアミンとメタアクリル酸のアミド等
の光学活性なポリマーを含む重合物、ポリアミノ酸およ
びその誘導体、蛋白質、多糖およびその誘導体が挙げら
れる。多糖としてはより具体的にはセルロース、アミロ
ース、キチン、キトサン、マンナン、キシラン、イヌリ
ン、カードラン等がある。またその誘導体としてはアセ
テート、ベンゾエート、シンナメート、カルバメート、
ベンジルエーテル、およびこれらの置換誘導体がある。
Examples of natural polymers include polysaccharides and proteins, and examples of modified natural polymers include polysaccharides that do not have a high degree of substitution, and those obtained by chemically or physically treating these. When these polymers are optically active, the resulting composite structure is expected to be used as an optical resolution agent. Examples of optically active polymers include polymers containing optically active polymers such as triphenylmethyl methacrylate, amide of optically active amine and acrylic acid, or amide of optically active amine and methacrylic acid, polyamino acids and derivatives thereof. , proteins, polysaccharides and their derivatives. More specific examples of polysaccharides include cellulose, amylose, chitin, chitosan, mannan, xylan, inulin, and curdlan. Its derivatives include acetate, benzoate, cinnamate, carbamate,
benzyl ethers, and substituted derivatives thereof.

また重合物を不溶化した複合構造物は、超臨界クロマト
グラフィーのようここ、溶解力の大きな溶離媒体を使用
する場合の分離剤としても利用できる。
Moreover, the composite structure in which the polymer is insolubilized can be used as a separation agent in cases such as supercritical chromatography, where an elution medium with a large dissolving power is used.

これら重合物の反応性基とは、アミノ基、ヒドロキシ基
、チオール基、カルボキシル基、エステル基、アミド基
、イソシアネート基、アルデヒド基、エポキシ基、シリ
ルエーテル基、シラノール基等が挙げられる。したがっ
て、反応性基を有する重合物とは上記の基を含むものを
指す。
Examples of the reactive groups of these polymers include amino groups, hydroxy groups, thiol groups, carboxyl groups, ester groups, amide groups, isocyanate groups, aldehyde groups, epoxy groups, silyl ether groups, and silanol groups. Therefore, a polymer having a reactive group refers to one containing the above group.

本発明において使用される可溶性および不溶性溶媒はい
かなるものを用いても良い。
Any soluble and insoluble solvent may be used in the present invention.

本発明における架橋とは上記反応性基と共有結合する多
官能性化合物、若しくは上記反応性基とイオン結合を形
成する多官能性化合物、若しくは多価金属化合物を用い
て、重合物を分子内および/もしくは分子間で結合する
通常の架橋反応および加熱、遠赤外線照射、紫外線照射
、放射線照射あるいはプラズマ処理により架橋剤無しに
直接重合物同士が結合する゛ことを言う。
Crosslinking in the present invention refers to crosslinking of a polymer by using a polyfunctional compound that covalently bonds with the above-mentioned reactive group, a polyfunctional compound that forms an ionic bond with the above-mentioned reactive group, or a polyvalent metal compound. /Or refers to the direct bonding of polymers without a crosslinking agent by a normal crosslinking reaction and heating, far infrared ray irradiation, ultraviolet irradiation, radiation irradiation, or plasma treatment to bond between molecules.

次に、重合物毛担体に担持する方法について説明する。Next, a method of supporting the polymer on the polymer hair carrier will be explained.

重合物を溶媒に溶解し、これを担体に加える。その後溶
媒を留去するか、若しくは重合物を溶解しない多量の溶
媒中に移して可溶性溶媒を分散させることによって除去
し、重合物を担体に担持する。担体に担持された重合物
は、重合物を溶解しない不活性溶媒中で架橋される。更
に残存する反応性基を別の反応剤を用いて処理しても良
い。
The polymer is dissolved in a solvent and added to the carrier. Thereafter, the solvent is removed by distillation or transferred into a large amount of solvent that does not dissolve the polymer to disperse the soluble solvent, and the polymer is supported on the carrier. The polymer supported on the carrier is crosslinked in an inert solvent that does not dissolve the polymer. Furthermore, the remaining reactive groups may be treated with another reactant.

この様にして得られた複合構造物は担体と重合物の間に
結合が形成されている必要はないが、一部結合していて
も差し支えない。
In the composite structure obtained in this way, it is not necessary that a bond be formed between the carrier and the polymer, but there is no problem even if a portion of the bond is formed.

(発明の効果) 本発明の重合物を担体に担持した複合構造物は、従来の
重合物そのものを粒状にしたものと異なり、硬質で耐圧
能力があり、又担体に重合物を物理的に吸着させたもの
に比べ対溶剤性に優れることから、幅広い用途が期待さ
れる。例えば、分離剤とした場合従来使用が不可能であ
った溶媒が使用可能となったことからより広い範囲の化
合物の分離が期待される。その他、充填剤、化粧品パウ
ダー、除放性担体等としての利用も期待される。
(Effects of the Invention) The composite structure in which the polymer of the present invention is supported on a carrier is hard and pressure-resistant, unlike conventional granular polymers, and it also physically adsorbs the polymer on the carrier. It is expected to be used in a wide range of applications because it has superior solvent resistance compared to other materials. For example, when used as a separating agent, it is now possible to use solvents that were previously impossible to use, so separation of a wider range of compounds is expected. It is also expected to be used as a filler, cosmetic powder, sustained release carrier, etc.

(実施例) 次に本発明を実施例をもって説明するが、本発明はこれ
らの実施例に限定されるものはない。
(Examples) Next, the present invention will be explained with examples, but the present invention is not limited to these examples.

合成例1゜ 微結晶セルロース(アビセル、E、メルク社製)4.8
6gを真空中乾燥させ、乾燥ピリジン100m1中95
°Cでイソシアン酸フェニル9.64gと反応させる。
Synthesis example 1゜Microcrystalline cellulose (Avicel, E, manufactured by Merck & Co.) 4.8
95 g in 100 ml of dry pyridine.
React with 9.64 g of phenyl isocyanate at °C.

8時間反応させた後、室温に戻しメタノールll中に移
してポリマーを沈殿させる。沈殿物をグラスフィルター
に集めて乾燥させた後、再びアセトン200m1に溶解
しこれをメタノール1.71に再沈殿させる。得られた
ポリマーは10.3gであった。このポリマー7.0g
をアセトン100m1に溶かしその1/2を、シラン処
理した粒径10μm、平均孔径1000人のシリカゲル
(リクロスファ−9I1000゜10μmSE、メルク
社製)21gに均一に加えた後、アセトンを留去する。
After reacting for 8 hours, the mixture was returned to room temperature and transferred into 1 liter of methanol to precipitate the polymer. The precipitate was collected in a glass filter and dried, then dissolved again in 200 ml of acetone and reprecipitated in 1.7 ml of methanol. The amount of polymer obtained was 10.3 g. 7.0g of this polymer
was dissolved in 100 ml of acetone, and 1/2 of the solution was uniformly added to 21 g of silane-treated silica gel with a particle size of 10 μm and an average pore size of 1000 (Licrospher-9I 1000° 10 μm SE, manufactured by Merck & Co., Ltd.), and then the acetone was distilled off.

その後、残りのア七トン溶液をシリカゲルに加え、再び
アセトンを留去すると、約90%置換されたセルロース
が担持されたシリカゲルが得られる。
Thereafter, the remaining a7tone solution is added to the silica gel and the acetone is distilled off again to obtain a silica gel on which approximately 90% substituted cellulose is supported.

実施例1゜ 合成例1.で得られたシリカゲル15gを真空中乾燥し
乾燥トルエン70m1に分散させ、1時間半加熱還流し
た後、1,6−ジイソシアン酸ヘキサン1mlを加え更
に3時間反応させる。−晩室温で放置した後、イソシア
ン酸フェニル3mlを加え、9時間加熱還流する。その
後、室温にもどしメタノール10m1を加えて、過剰の
イソシアン酸をつぶし、I遇する。続けてメタノール、
アセトンで洗浄し可溶性のポリマーを除く。得られた充
填剤の元素分析値は次のとおりてあった。
Example 1゜Synthesis example 1. 15 g of the obtained silica gel was dried in vacuo and dispersed in 70 ml of dry toluene, heated under reflux for 1.5 hours, then 1 ml of 1,6-diisocyanate hexane was added and reacted for an additional 3 hours. - After standing overnight at room temperature, 3 ml of phenyl isocyanate is added and heated under reflux for 9 hours. Thereafter, the temperature was returned to room temperature, and 10 ml of methanol was added to destroy excess isocyanic acid. Followed by methanol,
Wash with acetone to remove soluble polymer. The elemental analysis values of the obtained filler were as follows.

C;9.48%、H;1.17%、N;1.09%。尚
、ポリマーを担持する前の担体シリカゲルの元素分析値
は次のとおりてあった。
C: 9.48%, H: 1.17%, N: 1.09%. The elemental analysis values of the carrier silica gel before supporting the polymer were as follows.

C;1.51%、H;0.42%、N;0.24%。C: 1.51%, H: 0.42%, N: 0.24%.

実施例2゜ 合成例1.で得られたシリカゲル15gを真空中乾燥し
乾燥トルエン70m1に分散させ、1時間半加熱還流し
た後、4,4′−ジイソシアン酸ジフェニルメタン1.
5mlを加え更に3時間反応させる。−晩室温で放置し
た後、イソシアン酸フェニル3mlを加え、9時間加熱
還流する。その後、室温にもどしメタノール10m1を
加えて、過剰のイソシアン酸をつぶし、ア遇する。続け
てメタノール、アセトンで洗浄し可溶性のポリマーを除
く。得られた充填剤の元素分析値は次のとおりてあった
Example 2゜Synthesis Example 1. 15 g of the obtained silica gel was dried in vacuo, dispersed in 70 ml of dry toluene, and heated under reflux for 1.5 hours.
Add 5 ml and react for an additional 3 hours. - After standing overnight at room temperature, 3 ml of phenyl isocyanate is added and heated under reflux for 9 hours. Thereafter, the temperature was returned to room temperature, and 10 ml of methanol was added to destroy excess isocyanic acid. Next, wash with methanol and acetone to remove soluble polymers. The elemental analysis values of the obtained filler were as follows.

C;9.62%、H;0.98%、N;1.02%。尚
、ポリマーを担持する前の担体シリカゲルの元素分析値
は次のとおりてあった。
C: 9.62%, H: 0.98%, N: 1.02%. The elemental analysis values of the carrier silica gel before supporting the polymer were as follows.

C;1.51%、H;0.42%、N;0.24%。C: 1.51%, H: 0.42%, N: 0.24%.

応用例1゜ 実施例1oて得られたシリカゲル充填剤を長さ25cm
、内径0.46cmのステンレス製カラムに充填し、種
々のラセミ化合物の光学分割を行ったところ、従来セル
ローストリスフェニルカルバメートをシラン処理したシ
リカゲルに物理的に吸着させたものと同様の光学分割能
をしめし、更に従来セルローストリスフェニルカルバメ
ートを溶解せしめるために使用できなかった塩化メチレ
ンを20%以上含む溶離ン夜を使用しても、重合物は溶
出して来ずしかもこの溶離液でも良好な分割結果を与え
た。また、アセトンを用いてカラム内の汚れを洗浄する
ことも可能であった。表−1に本充填カラムによるラセ
ミ化合物の光学分割結果を示す。溶媒にはヘキサンと2
−プロパツールの9:1混合溶媒を流速0.5ml/m
in、(20℃)で用いた。
Application example 1゜The silica gel filler obtained in Example 1o was 25 cm long.
, packed in a stainless steel column with an inner diameter of 0.46 cm, and optically resolved various racemic compounds.The optical resolution was similar to that of conventional cellulose trisphenyl carbamate physically adsorbed onto silanized silica gel. Furthermore, even when using an eluent containing 20% or more of methylene chloride, which could not be used to dissolve cellulose trisphenyl carbamate, the polymer did not elute, and even with this eluent, good resolution results were obtained. gave. It was also possible to clean the dirt inside the column using acetone. Table 1 shows the results of optical resolution of racemic compounds using this packed column. The solvent is hexane and 2
- Propatool 9:1 mixed solvent at a flow rate of 0.5ml/m
in, (20°C).

表中kl、は最初に溶出するエナンチオマーの保持容量
を示し、k′2は二番目に溶出するエナンチオマーの保
持容量を示す。また、αは分離度を、Rsは分離係数を
示す。
In the table, kl indicates the retention capacity of the first eluting enantiomer, and k'2 indicates the retention capacity of the second eluting enantiomer. Further, α indicates the degree of separation, and Rs indicates the separation coefficient.

表−1 ラセミ体    k′1  k′2   αトラシスー
スチルヘーンオNシト 0.32     0.40 
    1.242−フェニルシフ0へキサ力   0
.86     0.99     1.15Co(a
cac)3       1.61     2.00
     1.242.2.2−トリ刀lオo−1−0
,730,991,24(9−7ンスリル)エタノール トレガー塩基  0.50  0.67  1.33ビ
ナフトール  2,67  2,83  1.06ボイ
ドボリユーム(Vo)として1,3.5−1’リターシ
ヤリーブチルベンゼンの保持時間8.89分を用いた。
Table-1 Racemic body k'1 k'2 α-tracis-still-heon-site 0.32 0.40
1.242-phenylschiff 0 hex force 0
.. 86 0.99 1.15Co(a
cac)3 1.61 2.00
1.242.2.2-Tori sword l o-1-0
, 730,991,24 (9-7thryl) Ethanol Trager base 0.50 0.67 1.33 Binaphthol 2,67 2,83 1.06 1,3.5-1'liter as void volume (Vo) A retention time of 8.89 minutes for live-butylbenzene was used.

応用例2゜ 実施例2.て得られたシリカゲル充填剤を長さ25cm
、内径0−46cmのステンレス製カラムに充填し、種
々のラセミ化合物の光学分割を行ったところ、従来セル
ローストリスフェニルカルバメートをシラン処理したシ
リカゲルに物理的に吸着させたものと同様の光学分割能
をしめし、更に従来セルローストリスフェニルカルバメ
ートを溶解せしめるために使用できなかった塩化メチレ
ンを20%以上含む溶離液を使用しても重合物は溶出し
て来ずしかも、この溶離液ても良好な分割結果を与えた
。表−2に本充填カラムによるラセミ化合物の光学分割
結果を示す。溶媒にはヘキサンと2−プロパツールの9
:1混合溶媒を流速0゜5ml/min、(20℃)で
用いた。
Application example 2゜Example 2. The silica gel filler obtained by
When various racemic compounds were optically resolved using a stainless steel column with an inner diameter of 0 to 46 cm, the results showed that the optical resolution was similar to that of conventional cellulose trisphenyl carbamate physically adsorbed onto silanized silica gel. Moreover, even when using an eluent containing more than 20% methylene chloride, which could not be used conventionally to dissolve cellulose trisphenyl carbamate, the polymer did not elute, and even with this eluent, good resolution results were obtained. gave. Table 2 shows the optical resolution results of racemic compounds using this packed column. Solvents include hexane and 2-propanol
:1 mixed solvent was used at a flow rate of 0.5 ml/min (20.degree. C.).

表中kt、は最初に溶出するエナンチオマーの保持容量
を示し、k′2は二番目に溶出するエナンチオマーの保
持容量を示す。また、αは分離度を、Rsは分離係数を
示す。
In the table, kt indicates the retention capacity of the first eluting enantiomer, and k'2 indicates the retention capacity of the second eluting enantiomer. Further, α indicates the degree of separation, and Rs indicates the separation coefficient.

表−2 ラセミ体    k′1  k′2   αトラシス−
スチルへ゛ンオキシド 0.21     0.28 
    1.32表−2つづき ラセミ体    k’+   k’2    α2−フ
ェニルシクロへキサノン   0.68     0,
79     1.17Co(acac)3     
  1,40     1.73     1.242
.2.2−トリフルオ0−1−0.44     0.
69     1.56(9−7シス1月1)エタノー
ル トレガー塩基  0.25  0,38  1.54ビ
ナフトール  2,01  2.38  1.18フェ
ニ11ヒー二;lスルホキシド  2.17     
2.34     1.08ボイドボリユーム(7口)
として1,3.5−)リターシャリーブチルベンゼンの
保持時間11゜0分を用いた。
Table-2 Racemic body k'1 k'2 α tracys-
Still hen oxide 0.21 0.28
1.32 Table-2 continued Racemic form k'+ k'2 α2-phenylcyclohexanone 0.68 0,
79 1.17Co(acac)3
1,40 1.73 1.242
.. 2.2-trifluoro0-1-0.44 0.
69 1.56 (9-7 cis January 1) Ethanol Traeger base 0.25 0,38 1.54 Binaphthol 2,01 2.38 1.18 Phenyl 11 Heini;l Sulfoxide 2.17
2.34 1.08 void volume (7 mouths)
A retention time of 11°0 minutes for 1,3.5-) tertiary butylbenzene was used as the holding time.

Claims (1)

【特許請求の範囲】[Claims]  粒径が1μm〜1cmで、平均孔径が10Å〜100
μmであり、孔径対粒径の比が1/10以下である多孔
性担体の表面に反応性基を有する重合物の被膜を形成し
た後、不溶性溶媒中重合物をこの反応性基を用いて架橋
することによって不溶化したことを特徴とする複合構造
物。
The particle size is 1 μm to 1 cm, and the average pore size is 10 Å to 100 Å.
After forming a film of a polymer having a reactive group on the surface of a porous carrier having a pore size to a particle size ratio of 1/10 or less, the polymer is coated in an insoluble solvent using this reactive group. A composite structure characterized by being insolubilized by crosslinking.
JP61120117A 1986-05-27 1986-05-27 Composite structure Expired - Lifetime JPH0738943B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61120117A JPH0738943B2 (en) 1986-05-27 1986-05-27 Composite structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61120117A JPH0738943B2 (en) 1986-05-27 1986-05-27 Composite structure

Publications (2)

Publication Number Publication Date
JPS62277149A true JPS62277149A (en) 1987-12-02
JPH0738943B2 JPH0738943B2 (en) 1995-05-01

Family

ID=14778375

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61120117A Expired - Lifetime JPH0738943B2 (en) 1986-05-27 1986-05-27 Composite structure

Country Status (1)

Country Link
JP (1) JPH0738943B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02309253A (en) * 1989-05-23 1990-12-25 Sekisui Chem Co Ltd Determination of saccharified hemoglobin
JPH0373848A (en) * 1989-05-23 1991-03-28 Sekisui Chem Co Ltd Packing material for liquid chromatography and production thereof
JPH03118466A (en) * 1989-09-29 1991-05-21 Sekisui Chem Co Ltd Assay of saccharified hemoglobin
EP0625524A2 (en) * 1993-05-14 1994-11-23 Nakano Vinegar Co., Ltd. Polysaccharides bonded to a porous carrier, process for preparing them and their use
WO1997023778A1 (en) * 1995-12-21 1997-07-03 Daicel Chemical Industries, Ltd. Packing material for high-speed liquid chromatography
US6333426B1 (en) 1992-12-03 2001-12-25 Eka Nobel Ab Chiral adsorbents and preparation thereof as well as compounds on which the absorbents are based and preparation of the compounds
CN115569643A (en) * 2022-10-20 2023-01-06 宁波大学 Method for preparing chiral separation material by vacuum-assisted solid-phase reaction bonding

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6947748B2 (en) 2000-12-15 2005-09-20 Adaptix, Inc. OFDMA with adaptive subcarrier-cluster configuration and selective loading

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5144992A (en) * 1974-10-15 1976-04-16 Toyo Soda Mfg Co Ltd
JPS5256087A (en) * 1975-07-29 1977-05-09 Merieux Inst Novel cationic substances reversibly capable to fix bioohighhpolymer substances*method of manufacturing said substances and utilization
JPS6258164A (en) * 1985-09-07 1987-03-13 Yamamura Kagaku Kenkyusho:Kk Carrier for chromatography

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5144992A (en) * 1974-10-15 1976-04-16 Toyo Soda Mfg Co Ltd
JPS5256087A (en) * 1975-07-29 1977-05-09 Merieux Inst Novel cationic substances reversibly capable to fix bioohighhpolymer substances*method of manufacturing said substances and utilization
JPS6258164A (en) * 1985-09-07 1987-03-13 Yamamura Kagaku Kenkyusho:Kk Carrier for chromatography

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02309253A (en) * 1989-05-23 1990-12-25 Sekisui Chem Co Ltd Determination of saccharified hemoglobin
JPH0373848A (en) * 1989-05-23 1991-03-28 Sekisui Chem Co Ltd Packing material for liquid chromatography and production thereof
JPH087197B2 (en) * 1989-05-23 1996-01-29 積水化学工業株式会社 Packing material for liquid chromatography and its manufacturing method
JPH087198B2 (en) * 1989-05-23 1996-01-29 積水化学工業株式会社 Quantitative method for glycated hemoglobin
JPH03118466A (en) * 1989-09-29 1991-05-21 Sekisui Chem Co Ltd Assay of saccharified hemoglobin
US6333426B1 (en) 1992-12-03 2001-12-25 Eka Nobel Ab Chiral adsorbents and preparation thereof as well as compounds on which the absorbents are based and preparation of the compounds
EP0625524A2 (en) * 1993-05-14 1994-11-23 Nakano Vinegar Co., Ltd. Polysaccharides bonded to a porous carrier, process for preparing them and their use
EP0625524A3 (en) * 1993-05-14 1995-08-02 Nakano Vinegar Co Ltd Polysaccharides bonded to a porous carrier, process for preparing them and their use.
WO1997023778A1 (en) * 1995-12-21 1997-07-03 Daicel Chemical Industries, Ltd. Packing material for high-speed liquid chromatography
CN115569643A (en) * 2022-10-20 2023-01-06 宁波大学 Method for preparing chiral separation material by vacuum-assisted solid-phase reaction bonding
CN115569643B (en) * 2022-10-20 2023-10-03 宁波大学 Method for preparing chiral separation material by vacuum-assisted solid phase reaction bonding

Also Published As

Publication number Publication date
JPH0738943B2 (en) 1995-05-01

Similar Documents

Publication Publication Date Title
Zeng et al. Membrane chromatography: preparation and applications to protein separation
US4245005A (en) Pellicular coated support and method
JP3896468B2 (en) Chiral stationary phases for chromatographic separation of enantiomers.
EP0656333B1 (en) Optical isomer separating agent and process for producing the same
JP2005513492A (en) Optically active support materials, methods for their preparation and their use
JP4320068B2 (en) Separating agent for optical isomers and process for producing the same
JPH0144725B2 (en)
JPH0475213B2 (en)
JPH0475214B2 (en)
JPS62277149A (en) Composite structure
US20120165516A1 (en) Filler for optical isomer separation
WO2008102920A1 (en) Optical isomer separating filler
JP2004167343A (en) Optical isomer separating agent
WO2003087808A1 (en) Optical isomer separation packing for simulated moving bed chromatography
JPWO2002030853A1 (en) Filler for separating optical isomers and method for separating optical isomers using the same
Millot et al. Enantiomeric properties of human albumin immobilized on porous silica supports coated with polymethacryloyl chloride
JPS6344946A (en) Cation exchangeable material
US5032277A (en) Optical resolution with β-1,4-mannan tribenzoate
US5186838A (en) Chromatographic packing material having functionalized polymeric coating on a substrate
JP3848377B2 (en) Manufacturing method of separation agent
EP0699902A1 (en) Filler for high-performance liquid chromatography and method of manufacturing the same
JPH0475893B2 (en)
US5135653A (en) Optical resolution with β-1,4-xylan dibenzoate
JPS62270602A (en) Production of polysaccharide derivative
JP3029640B2 (en) Adsorbent

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

EXPY Cancellation because of completion of term
R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350