JPH03118428A - Infrared-ray thermometer - Google Patents

Infrared-ray thermometer

Info

Publication number
JPH03118428A
JPH03118428A JP1255262A JP25526289A JPH03118428A JP H03118428 A JPH03118428 A JP H03118428A JP 1255262 A JP1255262 A JP 1255262A JP 25526289 A JP25526289 A JP 25526289A JP H03118428 A JPH03118428 A JP H03118428A
Authority
JP
Japan
Prior art keywords
temperature
light
amount
infrared
reference surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1255262A
Other languages
Japanese (ja)
Inventor
Shigetomo Sawada
澤田 茂友
Kazuo Kobayashi
和雄 小林
Yuji Uehara
裕二 上原
Fumihiko Sato
文彦 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP1255262A priority Critical patent/JPH03118428A/en
Publication of JPH03118428A publication Critical patent/JPH03118428A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To measure the temperature of a body accurately by computing the optical loss rate of a probe based on the amount of emitted light from a light emitting means, the reflectivity of a reference surface and the amount of light received by a light receiving means when the temperature is not measured, and correcting the amount of infrared rays when the temperature is measured. CONSTITUTION:When temperature is not measured, a reference surface is covered with a hood based on the signal from a reference-surface driving device 83. An optical fiber 5 is made to face with an optical fiber 5A by means of an optical switch 21. Under this state, the light emitted from a lamp 23 through a contamination detecting switch 40 is projected on the reference surface through a half mirror 22, the fiber 5A, the switch 21, the fiber 5 and a probe. Then, the light reflected from the reference surface is propagated through the original path and detected with a detector 24 through the mirror 22. In an optical-loss operating part 25, the correcting amount corresponding to the amount of the optical loss is computed and stored in a temperature operating part 27. When the temperature is measured, the hood is opened based on the signal from the device 83. The infrared rays are detected with an infrared-ray detector 26 through the fiber 5, the switch 21 and an optical fiber 5B. The result is corrected in correspondence with the amount of correction in the operating part 27, and a correct temperature is measured.

Description

【発明の詳細な説明】 〔概要〕 物体の発する赤外線量を検出して温度を測定する赤外線
温度計に関し、 真空装置内におけるプローブの汚染を防止すると共に、
プローブの汚染度を検出することにより物体の温度を正
確に測定することが可能な赤外線温度計の提供を目的と
し、 物体の発する赤外線をフードから集光し、集光した赤外
線の量から物体の温度を温度測定器により測定する赤外
線温度計において、前記フードの開口部に設けられた光
反射率が一定の基準面と、温度測定時に前記基準面を移
動させて前記フードを開口させる基準面駆動装置と、前
記温度測定器内の赤外線通路に設けられたハーフミラ−
と、前記ハーフミラ−の入力側に設けられた発光手段と
、前記ハーフミラ−の出力側に設けられた受光手段と、
温度非測定時に前記発光手段からの発光量と前記受光手
段からの受光量と基準面の反射率とにより光損失率を演
算する光損失演算手段と、温度測定時に前記光損失演算
手段からの光損失率に基づいて前記温度測定に入力され
る赤外線量を補正する赤外線量補正手段とを備えて構成
する。
[Detailed Description of the Invention] [Summary] This invention relates to an infrared thermometer that measures temperature by detecting the amount of infrared rays emitted by an object.
The aim is to provide an infrared thermometer that can accurately measure the temperature of an object by detecting the degree of contamination of the probe.The infrared rays emitted by the object are focused through a hood, and the amount of infrared rays collected is used to determine the temperature of the object. In an infrared thermometer that measures temperature with a temperature measuring device, a reference surface with a constant light reflectance provided at the opening of the hood, and a reference surface drive that moves the reference surface to open the hood during temperature measurement. a half mirror provided in an infrared path in the temperature measuring device;
a light emitting means provided on the input side of the half mirror; and a light receiving means provided on the output side of the half mirror;
a light loss calculating means for calculating a light loss rate based on the amount of light emitted from the light emitting means, the amount of light received from the light receiving means, and the reflectance of the reference surface when temperature is not being measured; and light from the light loss calculating means when measuring temperature. and infrared ray amount correction means for correcting the amount of infrared rays input to the temperature measurement based on the loss rate.

(産業上の利用分野〕 本発明は物体の発する赤外線量を検出して温度を測定す
る赤外線温度計に関する。
(Industrial Application Field) The present invention relates to an infrared thermometer that measures temperature by detecting the amount of infrared rays emitted by an object.

物体が発する赤外線量は、温度が高くなるにつれて多く
なる。従って、物体の発する赤外線量を測定すれば物体
の温度が分かる。この赤外線による温度測定法は、非接
触の方式であるため、測定面を汚染せず、接触による温
度変化が生じないために、優れた温度測定方法の1つで
ある。
The amount of infrared radiation emitted by an object increases as its temperature increases. Therefore, by measuring the amount of infrared radiation emitted by an object, the temperature of the object can be determined. This infrared temperature measurement method is an excellent temperature measurement method because it is a non-contact method, does not contaminate the measurement surface, and does not cause temperature changes due to contact.

従来、真空薄膜形成プロセス、即ち、真空中でスパッタ
リングを用いて基板に製膜するプロセスでは、膜の特性
を均一に保つ必要上、膜形成面の高度な清浄さが要求さ
れる。このため、プロセス中での温度測定には、非接触
方式で温度を測定す゛る赤外線温度計が究めて重要なも
のとなる。更に、この非接触方式の場合には、多くの基
板を扱う量産プロセスの温度特性に適用できる利点があ
る。
Conventionally, in a vacuum thin film formation process, that is, a process in which a film is formed on a substrate using sputtering in a vacuum, a high degree of cleanliness of the film forming surface is required in order to maintain uniform properties of the film. For this reason, infrared thermometers that measure temperature in a non-contact manner are extremely important for temperature measurement during processes. Furthermore, this non-contact method has the advantage of being applicable to the temperature characteristics of mass production processes that handle many substrates.

ところが、この赤外線温度計は、使用していくうちに、
赤外線を集光して測定部まで送る経路が汚れると、温度
測定誤差が生じてしまうので、赤外線伝播経路が汚れて
も正確に物体の温度を測定することのできる赤外線温度
計が望まれている。
However, as I used this infrared thermometer,
If the path that collects infrared rays and sends them to the measurement unit is dirty, temperature measurement errors will occur, so an infrared thermometer that can accurately measure the temperature of an object even if the infrared propagation path is dirty is desired. .

〔従来の技術〕[Conventional technology]

第6図は従来の赤外線温度計の構成を示すものであり、
真空装置50内に赤外線の検出プローブ10を置き、そ
の先端部に設けられたフード1により真空装置50内で
薄膜形成を行うディスクDからの赤外線を集光する。集
光した赤外線は反射鏡2で光路を直角に曲げ、プローブ
10の筒内に設けられた後述する光ファイバを通じて赤
外線を真空装置50の外に取り出し、真空装置50の外
では光フアイバケーブル30を通じて得られた赤外線の
量を温度測定器20に送り、ここで赤外線量を測定して
ディスクDの温度を表示する9図において51は真空装
置の外壁、52はこの外壁51に取り付けられたプロー
ブ10を固定するためのフランジ部、31は温度測定器
20に光フアイバケーブル30を接続する光コネクタで
ある。
Figure 6 shows the configuration of a conventional infrared thermometer.
An infrared detection probe 10 is placed inside the vacuum apparatus 50, and infrared rays from a disk D on which a thin film is formed within the vacuum apparatus 50 are collected by a hood 1 provided at the tip thereof. The optical path of the focused infrared light is bent at right angles by the reflecting mirror 2, and the infrared light is taken out of the vacuum device 50 through an optical fiber (described later) provided inside the cylinder of the probe 10, and outside the vacuum device 50, it is transmitted through an optical fiber cable 30. The obtained amount of infrared rays is sent to the temperature measuring device 20, where the amount of infrared rays is measured and the temperature of the disk D is displayed. A flange portion 31 for fixing is an optical connector for connecting the optical fiber cable 30 to the temperature measuring device 20.

第7図は第6図のプローブ10の断面図である。FIG. 7 is a cross-sectional view of the probe 10 of FIG.

プローブ10は、筒状の本体11と、この本体11内に
挿入される光フアイバ保持用のスリーブ12と、本体1
1の前面に取り付けられるキャップ13と、このキャッ
プ13に突設される赤外線導入管14とを備えており、
赤外線導入管14の先端部に反射鏡2を介してフード1
が取り付けられている。また、キャップ13と本体11
との間にはサファイヤ材料等からできた透過窓3が設け
られており、この透過窓3の下流側に同じくサファイヤ
等からできた集光レンズ4があり、集光レンズ4の後に
光ファイバ5が設けられている。5aは光フアイバカバ
ー、6はOリング、7は真空蛇腹を示している。
The probe 10 includes a cylindrical main body 11, a sleeve 12 for holding an optical fiber inserted into the main body 11, and a main body 1.
It is equipped with a cap 13 attached to the front surface of 1, and an infrared introduction tube 14 protruding from this cap 13,
The hood 1 is connected to the tip of the infrared introduction tube 14 via the reflector 2.
is installed. In addition, the cap 13 and the main body 11
A transmission window 3 made of sapphire material or the like is provided between the transmission window 3 and a condenser lens 4 made of sapphire or the like on the downstream side of the transmission window 3. is provided. 5a is an optical fiber cover, 6 is an O-ring, and 7 is a vacuum bellows.

ディスクDから発せられた赤外線はフード1からプロー
ブ10内に入り、反射鏡2でその伝播路が90度曲げら
れて赤外線導入間14内を伝わり、透過窓3を通過して
集光レンズ4で収束され、光ファイバ5に入射される。
The infrared rays emitted from the disk D enter the probe 10 through the hood 1, the propagation path of which is bent by 90 degrees by the reflector 2, the infrared rays are transmitted through the infrared introducing gap 14, pass through the transmission window 3, and are reflected by the condenser lens 4. The light is focused and input into the optical fiber 5.

以後は赤外線は光フアイバ5内を伝播する。Thereafter, the infrared rays propagate within the optical fiber 5.

第8図は第6図のA部の詳細を示すものである。FIG. 8 shows details of section A in FIG. 6.

図において、51は真空装置50の外壁を示しており、
この外壁51に気密状態でフランジ52が取り付けられ
ている。そして、このフランジ52に同じ(気密状態で
スリーブ53が取り付けられており、このスリーブ53
の中を光ファイバ5が通っている。真空装置50の外の
大気側では、光ファイバ5は光フアイバカバー55によ
って被覆され、この光フアイバカバー55は更にカバー
被膜56で覆われており、第4図に示した光フアイバケ
ーブル30はこれらの総称である。
In the figure, 51 indicates the outer wall of the vacuum device 50,
A flange 52 is attached to this outer wall 51 in an airtight manner. A sleeve 53 is attached to this flange 52 in an airtight manner.
An optical fiber 5 passes through it. On the atmospheric side outside the vacuum device 50, the optical fiber 5 is covered with an optical fiber cover 55, which is further covered with a cover coating 56, and the optical fiber cable 30 shown in FIG. It is a general term for

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところが、以上のように構成された従来の赤外線温度肝
は、測定面からの赤外線を集めて光ファイバを通して測
定器に伝送するのみであるので、プローブ10が汚染さ
れて検出される赤外線量が減少すると、測定値が正確で
なくなるという問題がある。即ち、真空薄膜形成中での
温度を測定する場合、膜の付着により反射鏡2の反射率
が低下したり、透過窓3が曇ったりすることにより赤外
線の検出量が減少し、温度の測定値が不確実になりやす
かった。更に、プローブ10のフード1が真空装置50
内で常に開放の状態にあるため、膜付着により検出器が
汚染されやすかった。
However, the conventional infrared temperature monitor configured as described above only collects infrared rays from the measurement surface and transmits them to the measuring instrument through an optical fiber, which can contaminate the probe 10 and reduce the amount of infrared rays detected. Then, there is a problem that the measured value becomes inaccurate. That is, when measuring the temperature during the formation of a vacuum thin film, the amount of infrared rays detected decreases due to the film adhesion reducing the reflectance of the reflecting mirror 2 or the transmission window 3 becoming cloudy, and the measured temperature value decreases. was likely to become uncertain. Furthermore, the hood 1 of the probe 10 is connected to the vacuum device 50.
Since the inside of the detector was always open, the detector was easily contaminated by membrane adhesion.

本発明の目的は、前記従来の赤外線温度計における課題
を解消し、真空装置内におけるプローブの汚染を防止す
ると共に、プローブの汚染度を検出することにより物体
の温度を正確に測定することが可能な赤外線温度計を提
供することにある。
The purpose of the present invention is to solve the problems with the conventional infrared thermometers, to prevent contamination of the probe in a vacuum device, and to accurately measure the temperature of an object by detecting the degree of contamination of the probe. Our objective is to provide an infrared thermometer that is suitable for

〔課題を解決するための手段〕[Means to solve the problem]

前記目的を達成する本発明の赤外線温度計の原理図が第
1図に示される。第1図における赤外線温度計は物体の
発する赤外線をフード1から集光し、集光した赤外線の
量から物体の温度を温度測定器20により測定するもの
であって、この発明では光反射率が既知の基準面8が前
記フード1の開口部に設けられており、この基準面8は
温度測定時に基準面駆動装置80により移動させられて
前記フードlが開口する。また、前記温度測定器20内
の赤外線通路にはハーフミラ−22が設けられており、
このハーフミラ−22の入力側には発光手段23が、出
力側には受光手段24が設けられている。そして、光損
失演算手段60は温度非測定時に前記発光手段23から
の発光量と前記受光手段24からの受光量と基準面8の
反射率とにより光損失率を演算し、赤外線量補正手段7
0は温度測定時に前記光損失演算手段60からの光損失
率に基づいて前記温度測定20に入力される赤外線量を
補正する。
A diagram of the principle of the infrared thermometer of the present invention that achieves the above object is shown in FIG. The infrared thermometer shown in FIG. 1 collects infrared rays emitted by an object through a hood 1, and measures the temperature of the object from the amount of the collected infrared rays using a temperature measuring device 20. A known reference surface 8 is provided at the opening of the hood 1, and this reference surface 8 is moved by a reference surface driving device 80 to open the hood 1 during temperature measurement. Further, a half mirror 22 is provided in the infrared passage within the temperature measuring device 20,
A light emitting means 23 is provided on the input side of the half mirror 22, and a light receiving means 24 is provided on the output side. The light loss calculating means 60 calculates a light loss rate based on the amount of light emitted from the light emitting means 23, the amount of light received from the light receiving means 24, and the reflectance of the reference surface 8 when the temperature is not measured, and the infrared light amount correcting means 7
0 corrects the amount of infrared rays input to the temperature measurement 20 based on the light loss rate from the light loss calculation means 60 during temperature measurement.

〔作用〕[Effect]

本発明の赤外線温度計では、温度非測定時にはフード1
の開口部を基準面8が塞いでいるので、汚れがフードl
内に入りにくい。また、温度非測定時には発光手段23
が光をハーフミラ−22に入力し、この光は光ファイバ
5を通って基準面8で反射し、再び光ファイバ5を経て
ハーフミラ−22から受光手段24に至る。従って、発
光手段23からの発光量と、基準面8の反射率と、受光
手段24における受光量との関係からプローブ10にお
ける光の損失率が分かり、この光損失率を用いて温度測
定時の赤外線量を補正することにより物体からの正しい
赤外線放射量が得られる。
In the infrared thermometer of the present invention, when not measuring temperature, the hood 1
Since the reference surface 8 covers the opening of the hood, dirt will
Difficult to get inside. In addition, when the temperature is not measured, the light emitting means 23
inputs light into the half mirror 22, this light passes through the optical fiber 5, is reflected by the reference surface 8, passes through the optical fiber 5 again, and reaches the light receiving means 24 from the half mirror 22. Therefore, the light loss rate in the probe 10 can be determined from the relationship between the amount of light emitted from the light emitting means 23, the reflectance of the reference surface 8, and the amount of light received by the light receiving means 24, and this light loss rate can be used to determine the light loss rate when measuring temperature. By correcting the amount of infrared radiation, the correct amount of infrared radiation from the object can be obtained.

〔実施例〕〔Example〕

以下添付図面を用いて本発明の実施例を詳細に説明する
Embodiments of the present invention will be described in detail below with reference to the accompanying drawings.

第2図は本発明の赤外線温度計の一実施例のプローブ部
の構成を示すものであり、従来の赤外線温度計と同じよ
うに、真空装置50の内部に配置されるものである。従
って、この実施例においては従来と同じ構成部品につい
ては同じ符号を付して説明する。
FIG. 2 shows the configuration of a probe section of an embodiment of an infrared thermometer according to the present invention, which is arranged inside a vacuum device 50 like a conventional infrared thermometer. Therefore, in this embodiment, components that are the same as those of the prior art will be described with the same reference numerals.

この実施例におけるプローブ10の構成は従来と同じで
あり、筒状の本体11内に挿入される光フアイバ保持用
のスリーブ12と、本体11の前面に取り付けられるキ
ャップ13と、このキャップ13に突設される赤外線導
入管14とがあり、赤外線導入管14の先端部に反射鏡
2を介してフード1が取り付けられている。また、キャ
ップ13と本体11との間にはサファイヤ材料等からで
きた透過窓3があり、この透過窓3の後流側に同じくサ
ファイヤ等からできた集光レンズ4があり、集光レンズ
4の後に光ファイバ5がある。5aは光フアイバカバー
 6は0リング、7は真空蛇腹を示している。
The configuration of the probe 10 in this embodiment is the same as that of the conventional one, and includes a sleeve 12 for holding an optical fiber inserted into a cylindrical body 11, a cap 13 attached to the front surface of the body 11, and a protrusion on this cap 13. There is an infrared introduction tube 14 provided, and a hood 1 is attached to the tip of the infrared introduction tube 14 via a reflecting mirror 2. Further, there is a transmission window 3 made of sapphire material or the like between the cap 13 and the main body 11, and on the downstream side of this transmission window 3 there is a condenser lens 4 also made of sapphire or the like. After that there is an optical fiber 5. 5a is an optical fiber cover, 6 is an O-ring, and 7 is a vacuum bellows.

フード1の開口部にはこれを塞ぐ光反射率が既知の基準
面8が設けられており、この基準面8は金属棒81でエ
アシリンダ82に接続されている。そして、ディスクD
の温度を測定しない時は、エアシリンダ82が伸びた状
態にあり、基準面8はフード1の開口部を塞いでいる。
A reference surface 8 having a known light reflectance is provided at the opening of the hood 1 to close the opening, and this reference surface 8 is connected to an air cylinder 82 by a metal rod 81. And disk D
When the temperature is not being measured, the air cylinder 82 is in an extended state, and the reference surface 8 closes the opening of the hood 1.

一方、ディスクDの温度を測定する時は、後述する測定
器20からの信号によりエアシリンダ82が縮み、基準
面8がフード1上から移動してフード1が開放される。
On the other hand, when measuring the temperature of the disk D, the air cylinder 82 is contracted by a signal from the measuring device 20, which will be described later, and the reference surface 8 is moved from above the hood 1, so that the hood 1 is opened.

この状態では、ディスクDから発せられた赤外線はフー
ド1からプローブ10内に入り、反射鏡2でその伝播路
が90度曲げられて赤外線導入間14内を伝わり、透過
窓3を通過して集光レンズ4で収束され、光ファイバ5
に入射される。以後は赤外線は光フアイバ5内を伝播す
る。
In this state, the infrared rays emitted from the disk D enter the probe 10 through the hood 1, the propagation path of which is bent by 90 degrees by the reflector 2, propagates through the infrared introducing gap 14, passes through the transmission window 3, and is concentrated. It is converged by a light lens 4 and connected to an optical fiber 5.
is incident on the Thereafter, the infrared rays propagate within the optical fiber 5.

なお、前述のエアシリンダ82は空気圧により駆動され
るものであり、ベローズの変形による動作のため空気漏
れの問題はないものである。
Note that the aforementioned air cylinder 82 is driven by air pressure and is operated by deformation of the bellows, so there is no problem of air leakage.

第3図は本発明の一実施例の赤外線温度計の温度測定器
20の構成を示すものである。この実施例の温度測定器
20には光ファイバ5からの入力経路に光スィッチ21
が設けられており、温度測定時と温度非測定時とで光フ
ァイバ5を、温度非測定時には光フアイバ5八に接続し
、温度測定時には光ファイバ5Bに接続するようになっ
ている。
FIG. 3 shows the configuration of a temperature measuring device 20 of an infrared thermometer according to an embodiment of the present invention. The temperature measuring device 20 of this embodiment has an optical switch 21 in the input path from the optical fiber 5.
is provided, and the optical fiber 5 is connected to the optical fiber 58 when temperature is being measured and when the temperature is not being measured, and to the optical fiber 5B when the temperature is being measured.

光ファイバ5Aの他端側には光フアイバ間の結合性を良
くするためのロッドレンズ22aを介してハーフミラ−
22が接続されており、このハーフミラ−22の入力側
にはロッドレンズ22bを介してランプ23が接続され
、出力側にはロッドレンズ22cを介して光検出器24
が接続されている。一方、光ファイバ5Bの他端側には
赤外線検出器26が接続されている。25は光検出器2
4に接続する光損失演算部であり、予め設定されたラン
プ23の発光量と、基準面8の反射率と、光検出部24
からの受光量により、プローブ10の汚れによる光の損
失率がここで演算され、損失率に応じた補正信号が温度
演算部27に送られる。温度演算部27には赤外線検出
器26からの赤外線検出量が入力されるようになってお
り、検出された赤外線量が補正信号によって補正され、
正しい赤外線量に応じた温度が温度表示部28に出力さ
れて温度が表示されている。
A half mirror is connected to the other end of the optical fiber 5A via a rod lens 22a to improve the coupling between the optical fibers.
A lamp 23 is connected to the input side of this half mirror 22 via a rod lens 22b, and a photodetector 24 is connected to the output side of the half mirror 22 via a rod lens 22c.
is connected. On the other hand, an infrared detector 26 is connected to the other end of the optical fiber 5B. 25 is photodetector 2
4 is an optical loss calculation section connected to the light detection section 24, which calculates the amount of light emitted from the lamp 23 set in advance, the reflectance of the reference surface 8, and the light detection section 24.
Here, the loss rate of light due to dirt on the probe 10 is calculated based on the amount of light received from the probe 10, and a correction signal corresponding to the loss rate is sent to the temperature calculation unit 27. The detected amount of infrared rays from the infrared detector 26 is input to the temperature calculation section 27, and the detected amount of infrared rays is corrected by a correction signal.
The temperature corresponding to the correct amount of infrared rays is output to the temperature display section 28 and the temperature is displayed.

図示しないスイッチ等により温度非検出状態となった時
には、基準面駆動装置83によりエアシリンダ82が伸
長させられて基準面8がプローブ10のフード1が塞が
れ、同時に基準面駆動装置83からの信号を受けた光ス
イツチ駆動部29により光スィッチ21を切り換えられ
、光ファイバ5と光ファイバ5Aが接続される。一方、
温度検出状態となった時には、基準面駆動装置83によ
りエアシリンダ82が収縮させられてプローブ10のフ
ード1が開口され、同時に光りスイッチ駆動部29によ
り光スィッチ21が切り換えられて光ファイバ5と光フ
ァイバ5Bが接続される。また、温度非検出状態になっ
た後、フード1が基準面8によって塞がれ、光ファイバ
5が光ファイバ5Aに接続された状態の時に、汚れ検出
スイッチ40が押されるとランプ23が点灯するように
なっている。
When the temperature is not detected by a switch (not shown) or the like, the air cylinder 82 is extended by the reference surface driving device 83, and the hood 1 of the probe 10 is closed off from the reference surface 8, and at the same time, the air cylinder 82 is extended by the reference surface driving device 83. Upon receiving the signal, the optical switch driving section 29 switches the optical switch 21, and the optical fiber 5 and the optical fiber 5A are connected. on the other hand,
When the temperature detection state is reached, the air cylinder 82 is contracted by the reference plane drive device 83 to open the hood 1 of the probe 10, and at the same time, the light switch drive unit 29 switches the optical switch 21 to connect the optical fiber 5 and the light. Fiber 5B is connected. Further, after the temperature is not detected, when the hood 1 is covered by the reference surface 8 and the optical fiber 5 is connected to the optical fiber 5A, when the dirt detection switch 40 is pressed, the lamp 23 lights up. It looks like this.

なお、前述の光損失演算部25にはアラーム装置90を
設けておき、光損失演算部25で演算した光の損失率が
所定値以上の時はこのアラーム装置90から警報を発生
させ、プローブ10の透過窓3や反射鏡2の交換時期を
知らせるようにしても良いものである。
An alarm device 90 is provided in the optical loss calculation section 25, and when the light loss rate calculated by the optical loss calculation section 25 is equal to or higher than a predetermined value, the alarm device 90 generates an alarm, and the probe 10 It is also possible to inform the user of the time to replace the transmitting window 3 or the reflecting mirror 2.

第4図は第3図の光スィッチ21の構成の一例を示すも
のである。光スィッチ21の内部には光ファイバ論と光
ファイバ5Bとが並んで固定されており、これらの端面
に対向する側に僅かな距離を隔ててプローブ10側の光
ファイバ5が可動状態で設けられている。この実施例で
は光ファイバ5は、2つの端子213.214間に電圧
を印加することにより変形するPZTバイモルフのよう
なピエゾ素子210の上端部に取り付けられており、電
圧を印加しない状態では光ファイバ5の端面が光ファイ
バ5Aと向かい合うようになっている。この状態を矢印
■方向から見たものが第5図(a)に示される。第4図
、第5図における211.212はピエゾ素子210の
動きを制限するストッパである。第5図(a)の状態か
ら2つの端子213.214間に電圧を印加すると、ピ
エゾ素子210は第5図(b)のように変形し、光ファ
イバ5の端面が光ファイバ5Bと向かい合うようになる
FIG. 4 shows an example of the configuration of the optical switch 21 shown in FIG. 3. Inside the optical switch 21, an optical fiber 5B and an optical fiber 5B are fixed side by side, and the optical fiber 5 on the probe 10 side is movably provided on the side opposite to these end faces with a slight distance therebetween. ing. In this embodiment, the optical fiber 5 is attached to the upper end of a piezo element 210 such as a PZT bimorph that is deformed by applying a voltage between two terminals 213 and 214, and when no voltage is applied, the optical fiber 5 The end face of the optical fiber 5 faces the optical fiber 5A. This state is shown in FIG. 5(a) when viewed from the direction of the arrow {circle around (2)}. Reference numerals 211 and 212 in FIGS. 4 and 5 indicate stoppers that limit the movement of the piezo element 210. When a voltage is applied between the two terminals 213 and 214 from the state shown in FIG. 5(a), the piezo element 210 deforms as shown in FIG. 5(b), so that the end surface of the optical fiber 5 faces the optical fiber 5B. become.

次に、以上のように構成された実施例の動作を、ディス
クDの温度の非測定時と測定時とに分けて説明する。
Next, the operation of the embodiment configured as described above will be explained separately for when the temperature of the disk D is not measured and when it is measured.

(1)温度非測定時 この時は汚れ基準面駆動装置83からの信号により、エ
アシリンダ82が伸長した状態にあって基準面8がフー
ド1を覆っており、また、光スィッチ21により光ファ
イバ5が光ファイバ5Aに対向している。この状態で汚
れ検出スイッチ40が押されるとランプ23が発光し、
光はハーフミラ−22を経て光ファイバ5A、光スィッ
チ21を通り、光フアイバ5内を伝播してプローブlO
に到り、赤外線導入管14を通って反射鏡2で光路が曲
げられて基準面8で反射する。反射した光は今までの経
路を逆に伝播し、ハーフミラ−22で反射されて検出器
24に受光される。
(1) When temperature is not measured At this time, the air cylinder 82 is in an extended state and the reference surface 8 covers the hood 1 due to the signal from the dirty reference surface driving device 83, and the optical switch 21 5 faces the optical fiber 5A. When the dirt detection switch 40 is pressed in this state, the lamp 23 emits light,
The light passes through the half mirror 22, the optical fiber 5A, and the optical switch 21, propagates within the optical fiber 5, and reaches the probe lO.
The light passes through the infrared introducing tube 14, is bent by the reflecting mirror 2, and is reflected by the reference surface 8. The reflected light propagates in the opposite direction along the previous path, is reflected by the half mirror 22, and is received by the detector 24.

ランプ23の発光量と基準面8の反射率は予め分かって
いるので、検出器における受光量が分かれば光のプロー
ブ10での損失が分かる。ところが、この場合、ランプ
23からの光は、二度プローブ10内を通る。このため
、光のプローブ10の部分における光損失による実際の
感度低下の割合は、ここで求めた損失の割合の平方根と
して求めることができる。
Since the amount of light emitted by the lamp 23 and the reflectance of the reference surface 8 are known in advance, the loss of light at the probe 10 can be determined by knowing the amount of light received by the detector. However, in this case, the light from the lamp 23 passes through the probe 10 twice. Therefore, the actual rate of decrease in sensitivity due to optical loss in the optical probe 10 can be determined as the square root of the loss rate determined here.

このようにして、プローブ10における光の損失率が分
かると、補正信号が光損失演算部25で作られ、これが
温度演算部27に入力される。そして、温度演算部25
では非測定時のプローブ10における光の損失量に応じ
た補正量が記憶される。
In this manner, when the light loss rate in the probe 10 is known, a correction signal is generated by the optical loss calculating section 25 and is input to the temperature calculating section 27. Then, the temperature calculation section 25
Then, a correction amount corresponding to the amount of light loss in the probe 10 during non-measurement is stored.

(2)温度測定時 この時は汚れ基準面駆動装置83からの信号により、エ
アシリンダ82が収縮した状態にあって基準面8がフー
ド1の上になく、フード1が開口している。また、光ス
ィッチ21により光ファイバ5が光ファイバ5Bに対向
している。この状態ではディスクDからの赤外線がフー
ド1からプローブ10内に入り、反射鏡2で光路が曲げ
られて赤外線導入管14を通り、透過窓3、集光レンズ
4を経て光ファイバ5に入射される。
(2) Temperature measurement At this time, the air cylinder 82 is in a contracted state due to the signal from the dirty reference surface driving device 83, the reference surface 8 is not on the hood 1, and the hood 1 is open. Further, the optical switch 21 causes the optical fiber 5 to face the optical fiber 5B. In this state, infrared rays from the disk D enter the probe 10 through the hood 1, the optical path is bent by the reflector 2, passes through the infrared introduction tube 14, passes through the transmission window 3, the condensing lens 4, and enters the optical fiber 5. Ru.

この後、赤外線は光ファイバ5を進み、光スィッチ21
で光ファイバ5Bに入力される。光ファイバ5Bにより
伝播された赤外線の光量は赤外線検出器26で検出され
、検出信号が温度演算部27に送られる。温度演算部2
7には、温度非測定時のプローブ10における光の損失
量に応じた補正量が記憶されているので、検出された赤
外線の光量がこの補正量に応じて補正され、正しい赤外
線量が演算により求められてディスクDの正しい温度が
測定される。
After this, the infrared rays travel through the optical fiber 5 and switch to the optical switch 21.
is input into the optical fiber 5B. The amount of infrared light propagated by the optical fiber 5B is detected by the infrared detector 26, and a detection signal is sent to the temperature calculation section 27. Temperature calculation section 2
7 stores a correction amount corresponding to the amount of light loss in the probe 10 when the temperature is not measured, the detected infrared light amount is corrected according to this correction amount, and the correct amount of infrared rays can be determined by calculation. The correct temperature of disk D is determined.

以上説明したように、本発明の赤外線温度計によれば、
測定プローブの汚染を最小限に抑えられると共に、測定
プローブが汚染した場合でも、汚染による赤外線の損失
量を把握することができるので、温度測定時の赤外線量
を損失量で補正することにより、正確な温度測定ができ
る。
As explained above, according to the infrared thermometer of the present invention,
Contamination of the measurement probe can be minimized, and even if the measurement probe becomes contaminated, the amount of infrared rays lost due to contamination can be determined. temperature measurement.

なお、第3図の実施例において、赤外線検出器26を光
検出器24に並べるように構成すれば、光スィッチ21
を設けなくても良い状態となる。
In the embodiment shown in FIG. 3, if the infrared detector 26 is arranged next to the photodetector 24, the optical switch 21
It becomes a state where it is not necessary to provide .

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明の赤外線温度計によれば、
測定プローブの汚染を最小限に抑えられると共に、測定
プローブが汚染した場合でも裔精度の温度測定が可能に
なるという効果がある。
As explained above, according to the infrared thermometer of the present invention,
This has the effect that contamination of the measurement probe can be minimized, and even if the measurement probe becomes contaminated, temperature measurement can be performed with perfect accuracy.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の赤外線温度計の原理構成図、第2図は
本発明の赤外線温度計の一実施例のプローブの断面図、
第3図は本発明の赤外線温度計の一実施例の温度測定器
の構成を示すブロック図、第4図は第3図の光スィッチ
の内部構成の一例を示す斜視図、第5図(a)、 (b
)は第4図の光スィッチの動作を示す説明図、第6図は
従来の赤外線温度計の構成図、第7図は第6図のプロー
ブの詳細を示す断面図、第8図は第6図のAブロックの
詳細を示す断面図である。 1・・・フード、2・・・反射鏡、3・・・透過窓、4
・・・集光レンズ、5・・・光ファイバ、8・・・基準
面、10・・・プローブ、20・・・温度測定器、22
・・・ハーフミラ−223・・・発光手段、24・・・
受光手段、24・・・光検出器、25・・・光損失演算
部、26・・・赤外線検出器、27・・・温度演算部、
28・・・温度表示部、50・・・真空装置、60・・
・光損失演算手段、70・・・赤外線量補正手段、D・
・・物体(ディスク)。 本発明の原理構成図 本発明の一実施例のプ0−プ 第 図 第3図の光スィッチの構成例 (a) (b) 第4図の光スィッチの動作 第 図 従来の赤外線温度計 第6図 り 第6図のプローブの断面図 第7図 第6図のA部の詳細図 第 図
FIG. 1 is a basic configuration diagram of an infrared thermometer of the present invention, and FIG. 2 is a sectional view of a probe of an embodiment of an infrared thermometer of the present invention.
FIG. 3 is a block diagram showing the configuration of a temperature measuring device according to an embodiment of the infrared thermometer of the present invention, FIG. 4 is a perspective view showing an example of the internal configuration of the optical switch in FIG. 3, and FIG. ), (b
) is an explanatory diagram showing the operation of the optical switch in FIG. 4, FIG. 6 is a configuration diagram of a conventional infrared thermometer, FIG. 7 is a sectional view showing details of the probe in FIG. 6, and FIG. FIG. 3 is a cross-sectional view showing details of block A in the figure. 1...Hood, 2...Reflector, 3...Transmission window, 4
...Condensing lens, 5...Optical fiber, 8...Reference surface, 10...Probe, 20...Temperature measuring device, 22
...half mirror 223...light emitting means, 24...
Light receiving means, 24... Photodetector, 25... Optical loss calculation section, 26... Infrared detector, 27... Temperature calculation section,
28... Temperature display section, 50... Vacuum device, 60...
- Optical loss calculation means, 70... Infrared ray amount correction means, D.
...object (disk). Principle configuration diagram of the present invention Practical diagram of one embodiment of the present invention Configuration example of the optical switch in Figure 3 (a) (b) Operation diagram of the optical switch in Figure 4 Conventional infrared thermometer diagram 6. Cross-sectional view of the probe in Figure 6. Figure 7. Detailed view of section A in Figure 6.

Claims (1)

【特許請求の範囲】 物体の発する赤外線をフード(1)から集光し、集光し
た赤外線の量から物体の温度を温度測定器(20)によ
り測定する赤外線温度計であって、 前記フード(1)の開口部に設けられた光反射率が一定
の基準面(8)と、 温度測定時に前記基準面(8)を移動させて前記フード
(1)を開口させる基準面駆動装置(80)と、前記温
度測定器(20)内の赤外線通路に設けられたハーフミ
ラー(22)と、 前記ハーフミラー(22)の入力側に設けられた発光手
段(23)と、 前記ハーフミラー(22)の出力側に設けられた受光手
段(24)と、 温度非測定時に前記発光手段(23)の発光量と前記受
光手段(24)の受光量と基準面(8)の反射率とより
光損失率を演算する光損失演算手段(60)と、温度測
定時に前記光損失演算手段(60)からの光損失率に基
づいて前記温度測定(20)に入力される赤外線量を補
正する赤外線量補正手段(70)とを備える赤外線温度
計。
[Scope of Claims] An infrared thermometer that collects infrared rays emitted by an object from a hood (1) and measures the temperature of the object from the amount of the collected infrared rays using a temperature measuring device (20), the hood ( a reference surface (8) with a constant light reflectance provided in the opening of 1); and a reference surface driving device (80) that moves the reference surface (8) to open the hood (1) during temperature measurement. , a half mirror (22) provided in the infrared path in the temperature measuring device (20), a light emitting means (23) provided on the input side of the half mirror (22), and the half mirror (22). A light receiving means (24) provided on the output side of the light receiving means (24), and a light loss determined by the amount of light emitted by the light emitting means (23), the amount of light received by the light receiving means (24), and the reflectance of the reference surface (8) when the temperature is not measured. a light loss calculation means (60) for calculating the rate; and an infrared amount correction for correcting the amount of infrared rays input to the temperature measurement (20) based on the light loss rate from the light loss calculation means (60) during temperature measurement. an infrared thermometer comprising means (70).
JP1255262A 1989-10-02 1989-10-02 Infrared-ray thermometer Pending JPH03118428A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1255262A JPH03118428A (en) 1989-10-02 1989-10-02 Infrared-ray thermometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1255262A JPH03118428A (en) 1989-10-02 1989-10-02 Infrared-ray thermometer

Publications (1)

Publication Number Publication Date
JPH03118428A true JPH03118428A (en) 1991-05-21

Family

ID=17276308

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1255262A Pending JPH03118428A (en) 1989-10-02 1989-10-02 Infrared-ray thermometer

Country Status (1)

Country Link
JP (1) JPH03118428A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8192077B2 (en) * 2005-09-01 2012-06-05 Siemens Energy, Inc. Method of measuring in situ differential emissivity and temperature

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8192077B2 (en) * 2005-09-01 2012-06-05 Siemens Energy, Inc. Method of measuring in situ differential emissivity and temperature

Similar Documents

Publication Publication Date Title
US4933545A (en) Optical pressure-sensing system using optical resonator cavity
JP2014006268A (en) Optical interferometric pressure sensor
JPS6212827A (en) Detector for combustion pressure of engine
WO2020248080A1 (en) Fiber optic temperature sensor
US6208422B1 (en) Surface plasmon sensor
JPS62190728A (en) Method and apparatus for monitoring etching end point
KR20120036351A (en) Pressure measuring cell arrangement comprising an optical diaphragm prssure measuing cell
JPH03118428A (en) Infrared-ray thermometer
JPH1075934A (en) Radiation thermometer
US20200393307A1 (en) Fiber Optic Temperature Sensor
JPH03118429A (en) Infrared-ray thermometer
JP2632125B2 (en) Radiation thermometer
JPH03191838A (en) Infrared-ray thermometer
JPH03156327A (en) Radiation temperature measuring apparatus
JPS6344134A (en) Image guide type radiation thermometer
JPH1019689A (en) Substrate temperature measuring unit
KR102512972B1 (en) Optical measuring apparatus for diaphragm displacement
JPH0499925A (en) Infrared radiation measuring apparatus
JP2001091362A (en) Surface temperature measuring method amd apparatus therefor
JPS618648A (en) Optical fiber detector
JPS6336290Y2 (en)
JP2002333370A (en) Infrared detector and radiant thermometer using the same
JPH08334327A (en) Inclination angle sensor
JPH0321502Y2 (en)
GB2112131A (en) Apparatus for measuring the temperature of an object form the IR radiation emitted thereby