JP2001091362A - Surface temperature measuring method amd apparatus therefor - Google Patents

Surface temperature measuring method amd apparatus therefor

Info

Publication number
JP2001091362A
JP2001091362A JP26859699A JP26859699A JP2001091362A JP 2001091362 A JP2001091362 A JP 2001091362A JP 26859699 A JP26859699 A JP 26859699A JP 26859699 A JP26859699 A JP 26859699A JP 2001091362 A JP2001091362 A JP 2001091362A
Authority
JP
Japan
Prior art keywords
light
heat radiation
light guide
guide path
detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26859699A
Other languages
Japanese (ja)
Inventor
Etsuro Suganuma
悦郎 菅沼
Jiro Ono
二郎 大野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokai Carbon Co Ltd
Original Assignee
Tokai Carbon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokai Carbon Co Ltd filed Critical Tokai Carbon Co Ltd
Priority to JP26859699A priority Critical patent/JP2001091362A/en
Publication of JP2001091362A publication Critical patent/JP2001091362A/en
Pending legal-status Critical Current

Links

Landscapes

  • Radiation Pyrometers (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a surface temperature measuring method and its apparatus wherein a compact equipment structure, in which cooling in the vicinity of a measuring part is unnecessary, can be realized, flexibility is imparted to a light guide path for receiving and introducing a thermal radiation light from a material surface, and an apparatus including a detector is sufficiently isolated from the material surface to be a measuring surface and can be installed with a increased degree of freedom. SOLUTION: In the method for measuring the surface temperature of a material by detecting a thermal radiation light from the material, a light guide path for receiving a thermal radiation light from the material surface and transmitting the light to a detector, and a light receiving mechanism capable of realizing a state of high reflection and a state of low reflection to the thermal radiation light introduced through the light guide path, are installed between the detector detecting the thermal radiation light and the material surface. The thermal radiation light introduced through the light guide path is introduced to the detector through the light receiving mechanism. Thermal radiation intensities corresponding to the state of high reflection and the state of low reflection are detected. On the basis of the detected values, emissivity of the material is corrected and the surface temperature is obtained. As to the light guide path, it is preferable that the surface side of the material is constituted of heat resisting optical material and the detector side is constituted of a multi-core optical fiber.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、表面温度測定方法
および装置、詳しくは材料からの熱放射光を検出して材
料の表面温度を測定する方法および装置の改良に関す
る。
The present invention relates to a method and an apparatus for measuring a surface temperature, and more particularly to an improvement in a method and an apparatus for measuring a surface temperature of a material by detecting heat radiation from the material.

【0002】[0002]

【従来の技術】材料からの熱放射光を検出して材料の表
面温度を測定する放射温度計は、非接触状態で材料の温
度を測定できるという利点がある一方、材料の光学定
数、材料の表面粗度、表面の汚れなどの要因で材料の放
射率が変化し、また周囲からの放射が材料表面で反射す
ることなどに起因して、測定誤差が生じるという問題点
がある。
2. Description of the Related Art A radiation thermometer that measures the surface temperature of a material by detecting heat radiation from the material has the advantage that the temperature of the material can be measured in a non-contact state, but the optical constant of the material, There is a problem that the emissivity of the material changes due to factors such as surface roughness and surface contamination, and a measurement error occurs due to reflection of radiation from the surroundings on the material surface.

【0003】この問題点を解決するために、例えば、内
面を金メッキして高反射率とした半球状のキャビティを
材料の表面に近接させ、キャビティの頂点部分に小さな
孔を開けて、この部分に検出器を取り付けて材料の表面
からの熱放射強度を測定する方式(社団法人計測自動制
御学会、温度測定部会編「温度計測」、第233頁)、
円筒状のキャビティを材料の表面に近接させ、キャビテ
ィの内面を材料の表面からの熱放射光に対して高反射率
とし、キャビティの上面の開口上に、材料からの熱放射
光に対して高反射特性と低反射特性を持つ回転セクター
を設け、回転セクタを回転させて、高反射状態と低反射
状態における熱放射強度を測定することによって材料の
表面温度を求める方式(特公昭52−7954号公報)
などが提案されている。
In order to solve this problem, for example, a hemispherical cavity having a high reflectivity by plating the inner surface with gold is brought close to the surface of the material, and a small hole is formed at the apex of the cavity. A method of measuring the thermal radiation intensity from the surface of the material by attaching a detector ("Temperature Measurement", edited by the Society of Instrument and Control Engineers, temperature measurement subcommittee, page 233),
The cylindrical cavity is brought close to the surface of the material, the inner surface of the cavity is made highly reflective to heat radiation from the surface of the material, and the opening on the top surface of the cavity is placed above the opening on the top surface of the cavity to reflect heat radiation from the material. A method in which a rotating sector having reflection characteristics and low reflection characteristics is provided, and the rotating sector is rotated to measure the heat radiation intensity in the high reflection state and the low reflection state to determine the surface temperature of the material (Japanese Patent Publication No. 52-7954) Gazette)
And so on.

【0004】これらの方式は、材料表面からの熱放射光
の強度を測定し、この値を補正して材料の放射率を求め
るとともに、材料表面の正確な温度を算出するものであ
るが、測定に際してキャビティを測定面上に近接しなけ
ればならず、そのため、測定面が高温の場合には、正確
な測定を行うために、キャビティや回転セクタを冷却す
ることが必要となり、装置が大がかりとなる難点があ
る。真空容器中や炉中の材料温度を測定する場合には、
冷却対策がとくに難しくなる。また、キャビティを高反
射率に保つのは容易ではなく、反射率が変化すると温度
測定に誤差を生じることとなる。
These methods measure the intensity of thermal radiation emitted from the surface of a material, correct this value to determine the emissivity of the material, and calculate the accurate temperature of the surface of the material. In this case, the cavity must be close to the measurement surface, and therefore, when the measurement surface is high temperature, it is necessary to cool the cavity and the rotating sector in order to perform accurate measurement, and the device becomes large-scale. There are difficulties. When measuring the material temperature in a vacuum vessel or furnace,
Cooling measures are particularly difficult. Also, it is not easy to keep the cavity at a high reflectance, and a change in the reflectance causes an error in temperature measurement.

【0005】[0005]

【発明が解決しようとする課題】本発明は、材料からの
熱放射光を検出して材料の表面温度を測定する放射温度
計における上記従来の問題点を解消するためになされた
ものであり、その目的は、測定部近傍における冷却が不
要でコンパクトな装置構造が実現でき、材料表面からの
熱放射光を受光、導入するための導光通路に可撓性を持
たせることにより、検出器を含む装置を測定面となる材
料表面から十分に離し、且つ増大された自由度をもって
設置することを可能とする表面温度測定方法および装置
を提供することにある。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned conventional problems in a radiation thermometer which measures heat radiation from a material and measures the surface temperature of the material. The purpose is to realize a compact device structure that does not require cooling in the vicinity of the measuring section, and to make the detector flexible by providing a flexible light guide path for receiving and introducing heat radiation from the material surface. It is an object of the present invention to provide a method and an apparatus for measuring a surface temperature, which make it possible to install an apparatus including the apparatus sufficiently away from the surface of the material to be measured and with an increased degree of freedom.

【0006】[0006]

【課題を解決するための手段】上記の目的を達成するた
めの本発明の請求項1による表面温度測定方法は、材料
からの熱放射光を検出して材料の表面温度を測定する方
法において、熱放射光を検出する検出器と材料の表面と
の間に、材料の表面からの熱放射光を受光し検出器に伝
えるための導光通路と、該導光通路を通じて導入される
熱放射光に対して高反射状態と低反射状態を実現できる
受光機構を設け、導光通路を通じて導入された熱放射光
を受光機構を介して検出器へ導き、前記高反射状態と低
反射状態に対応する熱放射強度を検出して、検出値に基
づいて材料の放射率を補正して表面温度を求めることを
特徴とする。
According to a first aspect of the present invention, there is provided a method for measuring a surface temperature of a material by detecting heat radiation from the material. A light guide path for receiving heat radiation from the surface of the material and transmitting the light to the detector between the detector for detecting the heat radiation and the surface of the material; and heat radiation introduced through the light guide path A light receiving mechanism capable of realizing a high reflection state and a low reflection state is provided, and the heat radiation light introduced through the light guide path is guided to a detector via the light receiving mechanism to correspond to the high reflection state and the low reflection state. It is characterized in that the heat radiation intensity is detected, and the emissivity of the material is corrected based on the detected value to obtain the surface temperature.

【0007】請求項2による表面温度測定方法は、請求
項1において、導光通路が、材料の表面側は耐熱光学材
料により構成され、検出器側は多芯光ファイバにより構
成されることを特徴とする。
According to a second aspect of the present invention, in the first aspect, the light guide path is formed of a heat-resistant optical material on the surface side of the material and a multi-core optical fiber on the detector side. And

【0008】また、請求項3による表面温度測定方法
は、請求項1〜2において、導光通路と検出器との間
に、導光通路を通じて導入される熱放射光に対して高反
射率を有する部分と低反射率を有する部分をそなえた回
転セクターを介設し、導光通路を通じて導入された熱放
射光に対して、高反射率を有する部分と低反射率を有す
る部分とが交互に現れるようにしたことを特徴とする。
According to a third aspect of the present invention, there is provided a surface temperature measuring method according to the first and second aspects, wherein a high reflectance is provided between the light guide path and the detector with respect to heat radiation introduced through the light guide path. A rotating sector having a portion having a low reflectance and a portion having a low reflectance are provided, and a portion having a high reflectance and a portion having a low reflectance alternate with respect to the heat radiation introduced through the light guide path. It is characterized by appearing.

【0009】本発明の請求項4による表面温度測定装置
は、材料からの熱放射光を検出して材料の表面温度を測
定する装置において、材料の表面からの熱放射光を受光
するための少なくとも材料の表面側は耐熱光学材料から
なる第1の導光通路と、該第1の導光通路を通じて導入
される熱放射光に対して高反射状態と低反射状態を実現
できる受光機構と、熱放射光を受光機構から検出器へ導
くための多芯光ファイバからなる第2の導光通路と、前
記受光機構を介して導入される熱放射光を検出するため
の検出器を備え、該検出器により前記高反射状態と低反
射状態に対応する熱放射強度を検出し、検出値に基づい
て材料の放射率を補正して表面温度を求めるよう構成し
たことを特徴とする。
According to a fourth aspect of the present invention, there is provided an apparatus for measuring the surface temperature of a material by detecting heat radiation from the material, the apparatus comprising at least a device for receiving the heat radiation from the surface of the material. On the surface side of the material, a first light guide path made of a heat-resistant optical material, a light receiving mechanism capable of realizing a high reflection state and a low reflection state with respect to heat radiation introduced through the first light guide path, A second light guide path comprising a multi-core optical fiber for guiding emitted light from the light receiving mechanism to the detector; and a detector for detecting thermal emitted light introduced via the light receiving mechanism. The heat radiation intensity corresponding to the high reflection state and the low reflection state is detected by a detector, and the emissivity of the material is corrected based on the detected value to obtain the surface temperature.

【0010】本発明による表面温度測定の原理について
説明すると、図1に示すように、温度測定の対象となる
材料Mの表面Sに対して略垂直に耐熱光学材料、例え
ば、石英、サファイア、耐熱ガラスなどからなるロッド
4Aを置き、ロッド4Aに多芯光ファイバ4Bを接続し
て、材料Mの表面Sからの熱放射光を受光するための第
1の導光通路4を形成する。
The principle of the surface temperature measurement according to the present invention will be described. As shown in FIG. 1, a heat-resistant optical material such as quartz, sapphire, A rod 4A made of glass or the like is placed, and a multi-core optical fiber 4B is connected to the rod 4A to form a first light guide path 4 for receiving heat radiation from the surface S of the material M.

【0011】多芯光ファイバ4Bの上面には、例えば図
2に示すように、受光機構2として、熱放射光に対して
高反射率を有する面(金メッキ面)6Aと低反射率を有
する面(黒色面)6Bを扇状に交互に配置した回転セク
タ6を配設し、回転セクタ6をモータ8により回転させ
る。なお、高反射率を有する面6Aの材料としては金が
望ましいが、アルミニウムなど高反射率を有する材料で
あれば適用可能である。
On the upper surface of the multi-core optical fiber 4B, for example, as shown in FIG. 2, as the light receiving mechanism 2, a surface (gold-plated surface) 6A having a high reflectance to heat radiation and a surface having a low reflectance are provided. A rotating sector 6 in which (black surface) 6B are alternately arranged in a fan shape is provided, and the rotating sector 6 is rotated by a motor 8. The material of the surface 6A having a high reflectivity is preferably gold, but any material having a high reflectivity such as aluminum can be applied.

【0012】加熱されている材料Mの表面Sにロッド4
を近付けると、図3に示すように、材料Mの表面Sから
の熱放射光Rの光束がロッド4の端面4E1からロッド
4内に入射し、ロッド4の屈折率で決まる最大受光角θ
max の範囲の熱放射光をロッド4内に取り込む。この入
射光は、ロッド4内を図3に示すように伝播する。ロッ
ド4内の熱放射光は、僅かな部分はロッド4に含まれる
不純物により散乱されてロッド4の側面壁から外部に漏
れ出るが、大部分はロッド4の内壁で全反射しながらロ
ッド4の回転セクタ6側の端面4E2に到達する。
The rod 4 is placed on the surface S of the material M being heated.
3, the light flux of the thermal radiation R from the surface S of the material M enters the rod 4 from the end face 4E1 of the rod 4, and the maximum light receiving angle θ determined by the refractive index of the rod 4, as shown in FIG.
The heat radiation in the range of max is taken into the rod 4. This incident light propagates in the rod 4 as shown in FIG. A small part of the heat radiation light in the rod 4 is scattered by impurities contained in the rod 4 and leaks out of the side wall of the rod 4 to the outside. It reaches the end face 4E2 on the rotating sector 6 side.

【0013】ロッド4の端面4E2に近接して配置して
ある回転セクタ6の高反射率面(金メッキ面)6Aがロ
ッド4の端面4E2上に来た場合には、ロッド4内を伝
播してきた熱放射光Rの大部分は反射して、再びロッド
4内を伝播し、材料Mの表面Sと対向する端面4E1か
ら材料表面Sに投光されるが、ロッド4の端面4E1と
材料表面Sとが近接していると、表面Sで反射して再び
ロッド4内に入射し、ロッド4内を伝播して行く、ロッ
ド4内では熱放射光Rの多重反射が繰り返されて放射強
度が増加する。
When the high-reflectance surface (gold-plated surface) 6A of the rotating sector 6 disposed close to the end surface 4E2 of the rod 4 comes on the end surface 4E2 of the rod 4, the light has propagated through the rod 4. Most of the thermal radiation light R is reflected, propagates again in the rod 4 and is projected onto the material surface S from the end surface 4E1 facing the surface S of the material M. However, the end surface 4E1 of the rod 4 and the material surface S Are close to each other, the light is reflected by the surface S, reenters the rod 4, and propagates through the rod 4. In the rod 4, the multiple reflection of the thermal radiation R is repeated, and the radiation intensity increases. I do.

【0014】一方、回転セクタ6の低反射率面(黒色
面)6Bがロッド4の端面4E2上に来た場合には、ロ
ッド4内を伝播してきた熱放射光の大部分は吸収され、
僅かな熱放射光のみが反射して再びロッド4内を伝播し
て材料Mの表面Sに投光される。投光された熱放射光の
一部は、材料表面Sで反射して再びロッド4内を伝播し
て多重反射を繰り返すが、放射強度は高反射率面の場合
に比べてきわめて弱くなる。
On the other hand, when the low reflectivity surface (black surface) 6B of the rotating sector 6 comes on the end surface 4E2 of the rod 4, most of the heat radiation propagating in the rod 4 is absorbed,
Only a small amount of heat radiation is reflected, propagates again in the rod 4 and is projected on the surface S of the material M. A part of the emitted thermal radiation is reflected on the material surface S, propagates again in the rod 4, and repeats multiple reflections. However, the radiation intensity is extremely weak as compared with the case of the high reflectance surface.

【0015】図1〜2に示すように、多重反射を繰り返
すロッド4内の熱放射光を、回転セクタ6の各反射率面
6A、6Bの中央に穿設したスリット7を通して多芯光
ファイバからなる第2の導光通路5に導入し、検出器3
に導く。検出器3は、高反射状態と低反射状態に対応す
る熱放射強度を検出し電気信号に変換する。図1におい
ては、第1の導光通路4と第2の導光通路5によって導
光通路1が構成されている。
As shown in FIGS. 1 and 2, the heat radiation in the rod 4 which repeats multiple reflections is transmitted from the multi-core optical fiber through a slit 7 formed at the center of each of the reflectance surfaces 6A and 6B of the rotating sector 6. Into the second light guide path 5 and the detector 3
Lead to. The detector 3 detects the heat radiation intensity corresponding to the high reflection state and the low reflection state and converts it into an electric signal. In FIG. 1, the first light guide path 4 and the second light guide path 5 constitute the light guide path 1.

【0016】高反射状態に対応する信号mg と、低反射
状態に対応する信号mb は、それぞれ(1)式、(2)
式で表される。これらの信号mg 、mb は、材料表面S
から直接検出器3に入る熱放射光、回転セクタ6で1回
反射して材料表面Sに戻り、再反射して検出器3に入る
熱放射光、回転セクタ6で2回反射して材料表面Sに戻
り、再反射して検出器3に入る熱放射光、3回反射した
熱放射光、4回反射した熱放射光、5回〜無限回反射し
た熱放射光に対する信号の総和となる。 mg =εL(t)+ερg (1−ε)L(t)+ερg 2 (1−ε)2 L(t) +--- =ε/{1−ρg (1−ε)}×L(t) (1) mb =ε/{1−ρb (1−ε)}×L(t) (2) tは材料Mの温度、L(t)は温度tの黒体炉からの放
射強度、εは材料Mの放射率、ρg は回転セクタ6の高
反射率面6Aの反射率(≒1.0)、ρb は回転セクタ
6の低反射率面6Bの反射率(≒0.0)である。
The signal mg corresponding to the high-reflection state and the signal mb corresponding to the low-reflection state are expressed by the following equations (1) and (2), respectively.
It is expressed by an equation. These signals mg and mb are calculated based on the material surface S
The heat radiation directly entering the detector 3, reflected once by the rotating sector 6, returns to the material surface S, re-reflected and enters the detector 3, reflected twice by the rotating sector 6, and the material surface Returning to S, the sum of the signals for the heat radiation reflected back and entering the detector 3, the heat radiation reflected four times, the heat radiation reflected four times, and the heat radiation reflected five to infinite times is obtained. mg = εL (t) + ερg (1-ε) L (t) + ερg 2 (1-ε) 2 L (t) + --- = ε / {1-ρg (1-ε)} × L (t) (1) mb = ε / {1-ρb (1-ε)} × L (t) (2) t is the temperature of the material M, L (t) is the radiation intensity from the blackbody furnace at the temperature t, and ε is The emissivity of the material M, ρg is the reflectance of the high reflectance surface 6A of the rotating sector 6 (≒ 1.0), and ρb is the reflectance of the low reflectance surface 6B of the rotating sector 6 (≒ 0.0).

【0017】(1)式と(2)式の比はつぎのとおりで
ある。 mb /mg ={1−ρg (1−ε)}/{1−ρb (1−ε)} (3) (3)式を放射率εで整理すると、(4)式となる。 ε={(1−ρg )mg −(1−ρb )mb }/(ρb mb −ρg mg )(4) (4)式において、ρb 、ρg は予め測定した既知のパ
ラメータ、放射強度mb、mg は測定値である。
The ratio between the expressions (1) and (2) is as follows. mb / mg = {1-ρg (1-ε)} / {1-ρb (1-ε)} (3) When the equation (3) is rearranged by the emissivity ε, the equation (4) is obtained. ε = {(1−ρg) mg− (1−ρb) mb} / (ρbmb−ρgmg) (4) In equation (4), ρb and ρg are known parameters measured in advance, and radiation intensities mb and mg Is a measured value.

【0018】一例として、図4は、横軸に放射率ε、縦
軸に放射強度比(mb /mg )をとり、両者の関係を示
したものである。この場合、ρb =0.02、ρg =
0.7とした。このようにして求めたεを(1)式に代
入してL(t)を求めると、 L(t)=mg {1−ρg (1−ε)}/ε (5) L(t)は温度tにおける黒体放射強度を表し、予め黒
体炉などを用いて両者の関係を求めておくことができ
る。従って、 t=L-1〔mg {1−ρg (1−ε)}/ε〕 (6) として、放射強度の測定値mg から温度を求めることが
できる。(6)式においてL-1〔〕は放射強度mg を独
立変数とし温度tを従属変数とした関数を示し、具体的
には黒体炉で測定した温度と放射強度との関係を用い
て、放射強度から温度を計算することを意味する。
As an example, FIG. 4 shows the relationship between the emissivity ε on the horizontal axis and the radiation intensity ratio (mb / mg) on the vertical axis. In this case, ρb = 0.02, ρg =
0.7. Substituting ε thus obtained into equation (1) to obtain L (t), L (t) = mg {1-ρg (1-ε)} / ε (5) L (t) is It indicates the blackbody radiation intensity at the temperature t, and the relationship between the two can be obtained in advance using a blackbody furnace or the like. Therefore, the temperature can be obtained from the measured value of the radiation intensity mg as t = L -1 [mg {1-ρg (1-ε)} / ε] (6). In the equation (6), L -1 [] indicates a function in which the radiation intensity mg is an independent variable and the temperature t is a dependent variable. Specifically, using the relationship between the temperature measured in a blackbody furnace and the radiation intensity, It means to calculate the temperature from the radiation intensity.

【0019】反射率ρg およびρb の決定はつぎのよう
にして行う。まず、予め、熱電対を取り付けた材料サン
プルを用いて放射温度計により放射率を測定する。この
場合、つぎの(7)式が成り立つ。 ε=m/L(t) (7) mは放射温度計の測定信号、L(t)は熱電対で測定し
た材料温度に対応する黒体炉からの放射強度である。
The reflectances ρg and ρb are determined as follows. First, emissivity is measured in advance by a radiation thermometer using a material sample to which a thermocouple is attached. In this case, the following equation (7) holds. ε = m / L (t) (7) m is the measurement signal of the radiation thermometer, and L (t) is the radiation intensity from the black body furnace corresponding to the material temperature measured by the thermocouple.

【0020】ついで、(1)式および(2)式を変形し
た(8)式および(9)式を用いて反射率ρg およびρ
b を決定する。 ρg =(1−εL(t)/mg )/(1−ε) (8) ρb =(1−εL(t)/mb )/(1−ε) (9) 測定に先立って反射率ρg およびρb を求めておき、こ
れらの値はロッド4と回転セクタ6の光学特性が変化し
ない限り一定であるから、これらの値を(4)式および
(6)式に代入しておき、測定された信号mg およびm
b から、材料表面の放射率εと温度tを求める。
Then, the reflectances ρg and ρ are calculated using the equations (8) and (9) obtained by modifying the equations (1) and (2).
Determine b. ρg = (1−εL (t) / mg) / (1−ε) (8) ρb = (1−εL (t) / mb) / (1−ε) (9) Before the measurement, the reflectances ρg and ρb is determined, and these values are constant unless the optical characteristics of the rod 4 and the rotating sector 6 change. Therefore, these values are substituted into the expressions (4) and (6) and measured. Signals mg and m
From b, the emissivity ε of the material surface and the temperature t are obtained.

【0021】[0021]

【発明の実施の形態】本発明において、材料Mの表面S
からの熱放射光を受光し、熱放射光に対して高反射状態
と低反射状態を実現できる受光機構2へ受光した熱放射
光を導く第1の導光通路4のうち、少なくとも材料Mの
表面S側に位置する部分は、耐熱光学材料により形成す
るのが好ましい。耐熱光学材料としては、石英、サファ
イア、耐熱ガラスなどを適用することができ、これらを
ロッドに成形して導光通路とすることができる、このう
ちでは石英ロッドが最も好適に使用される。耐熱光学材
料からなるロッドの使用により、測定面が高温の場合で
も冷却の必要がなく正確な測定を行うことができ、装置
への取り付けが簡単となる。なお、図1においては、ロ
ッド4Aに多芯光ファイバ4Bを接続して、第1の導光
通路1を形成しているが、多芯光ファイバは導光通路に
可撓性を持たせるために接続されているものであるか
ら、必ずしも使用する必要はなく、ロッド4Aのみで第
1の導光通路4を構成してもよい。
DETAILED DESCRIPTION OF THE INVENTION In the present invention, a surface S of a material M is used.
Out of the first light guide path 4 that guides the received heat radiation light to the light receiving mechanism 2 capable of realizing a high reflection state and a low reflection state with respect to the heat radiation light. The portion located on the surface S side is preferably formed of a heat-resistant optical material. As the heat-resistant optical material, quartz, sapphire, heat-resistant glass, or the like can be applied, and these can be formed into a rod to form a light guide path. Among them, a quartz rod is most preferably used. By using a rod made of a heat-resistant optical material, accurate measurement can be performed without the need for cooling even when the measurement surface is at a high temperature, and attachment to the apparatus is simplified. In FIG. 1, the multi-core optical fiber 4B is connected to the rod 4A to form the first light guide path 1. However, the multi-core optical fiber is used to make the light guide path flexible. The first light guide path 4 may be constituted by only the rod 4A.

【0022】第1の導光通路4を通じて受光、導入した
熱放射光に対して高反射状態と低反射状態を実現できる
受光機構2としては、図1〜2に示す回転セクタ6が最
も好適に使用され、精度の良い温度測定を可能とする。
本発明においては、受光機構2として回転セクタ6の他
に、図5〜7に示すように、一対のスリット部材9、1
0からなる受光機構を使用することもできる。すなわ
ち、第1の導光通路を形成するロッド4の端面4E2の
上部に、とくに図6に示すように、高反射部11とスリ
ット13とをすだれ状に並設してなり、中央部に測定用
の開口14を設けたスリット部材9を固定して配置し、
該スリット部材9とロッド4の端面4E2との間に、同
じ構成のスリット部材10を配置し、音叉を利用してス
リット部材10を横方向に振動させて、図6〜7に示す
ように、スリット部材9のスリット13の位置にスリッ
ト部材10の高反射部12が来て全面が高反射面となる
状態(図7)と、スリット部材9、10の高反射部1
1、12が重なって半分だけ高反射面となる状態(図
6)を実現するものである。この構成によれば、熱放射
光強度の変調を高速で実現することができるから、装置
の応答性が良くなり、装置の小型化、耐久性の向上を図
ることができるという利点がある。
As the light receiving mechanism 2 capable of realizing a high reflection state and a low reflection state with respect to the heat radiation light received and introduced through the first light guide path 4, the rotating sector 6 shown in FIGS. Used to enable accurate temperature measurement.
In the present invention, in addition to the rotating sector 6 as the light receiving mechanism 2, as shown in FIGS.
A light receiving mechanism consisting of zeros can also be used. That is, as shown in FIG. 6, the high reflection portion 11 and the slit 13 are arranged side by side in an interdigitated manner, particularly as shown in FIG. 6, on the upper surface of the end surface 4E2 of the rod 4 forming the first light guide path, and the measurement is performed at the center. Fixing the slit member 9 provided with the opening 14 for
A slit member 10 having the same configuration is arranged between the slit member 9 and the end surface 4E2 of the rod 4, and the slit member 10 is vibrated in a lateral direction using a tuning fork, as shown in FIGS. The state where the high reflection portion 12 of the slit member 10 comes to the position of the slit 13 of the slit member 9 and the entire surface becomes a high reflection surface (FIG. 7), and the high reflection portion 1 of the slit members 9 and 10
This realizes a state (FIG. 6) in which the reflective surfaces 1 and 12 overlap to form a half high reflection surface. According to this configuration, the modulation of the thermal radiation light intensity can be realized at a high speed, so that the response of the device is improved, and there is an advantage that the device can be downsized and the durability can be improved.

【0023】また、図8に示すように、液晶シャッター
を利用して反射率を変化させることもできる。すなわ
ち、ロッド4の端面4E2の上部に金めっきにより熱放
射光に高反射特性を与える高反射面15を配置し、この
高反射面15とロッド4の端面4E2との間に液晶シャ
ッター16を介装して、液晶シャッター16を開いた状
態では高反射状態が得られ、液晶シャッター16が閉じ
た状態では低反射状態が得られるようにし、多芯光ファ
イバからなる第2の導光通路5を通して、検出器3によ
り前記高反射状態と低反射状態に対応する熱放射強度を
検出する。高反射面15、液晶シャッター16には、中
央部に測定用の開口部を設ける。この方法によれば、機
械的な駆動部分がなく、高速で耐久性に優れた受光機構
が構成される。但し、液晶シャッターの機能する波長範
囲は可視領域に限られるため使用範囲は限定される。
As shown in FIG. 8, the reflectance can be changed by using a liquid crystal shutter. That is, a high-reflection surface 15 which gives high reflection characteristics to heat radiation light by gold plating is disposed above the end surface 4E2 of the rod 4, and a liquid crystal shutter 16 is interposed between the high-reflection surface 15 and the end surface 4E2 of the rod 4. When the liquid crystal shutter 16 is opened, a high reflection state is obtained, and when the liquid crystal shutter 16 is closed, a low reflection state is obtained. The detector 3 detects the heat radiation intensity corresponding to the high reflection state and the low reflection state. The high reflection surface 15 and the liquid crystal shutter 16 are provided with an opening for measurement at the center. According to this method, a light receiving mechanism having no mechanical driving portion and having high speed and excellent durability is configured. However, the wavelength range in which the liquid crystal shutter functions is limited to the visible region, so that the range of use is limited.

【0024】熱放射光を受光機構2へ導くための導光通
路は可撓性を有する多芯光ファイバで構成するのが望ま
しく、また受光機構2から検出器3に熱放射光を直接導
入することもできるが、受光機構2から検出器3へ導く
ための第2の導光通路5を設け、第2の導光通路5を可
撓性のある多芯光ファイバにより形成することもでき
る。可撓性をそなえた多芯光ファイバを使用することに
より装置の設置に自由度を与えることができ、高温の測
定表面から装置を十分に離間して設けることが可能とな
る。検出器3により検出された高反射状態と低反射状態
に対応する熱放射信号は、通常の方式に従って、例え
ば、信号処理装置で処理した後、演算装置を介して材料
表面の放射率εと温度tを算出し、これらの値を表示装
置により表示する。
It is desirable that the light guide path for guiding the heat radiation light to the light receiving mechanism 2 is constituted by a flexible multi-core optical fiber, and the heat radiation light is directly introduced from the light receiving mechanism 2 to the detector 3. Alternatively, a second light guide path 5 for guiding the light from the light receiving mechanism 2 to the detector 3 may be provided, and the second light guide path 5 may be formed of a flexible multi-core optical fiber. The use of a flexible multi-core optical fiber allows flexibility in the installation of the apparatus, and allows the apparatus to be provided sufficiently away from the high-temperature measurement surface. The heat radiation signals corresponding to the high reflection state and the low reflection state detected by the detector 3 are processed according to a normal method, for example, by a signal processing device, and then the emissivity ε of the material surface and the temperature are processed via an arithmetic device. t is calculated, and these values are displayed on the display device.

【0025】[0025]

【実施例】以下、本発明の実施例を説明すると共に、そ
れに基づいてその効果を実証する。なお、これらの実施
例は、本発明の好ましい一実施態様を説明するためのも
のであって、これにより本発明が制限されるものではな
い。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below, and effects thereof will be demonstrated based on the embodiments. It should be noted that these examples are for describing a preferred embodiment of the present invention, and the present invention is not limited thereto.

【0026】実施例1 本発明により、真空炉中のシリコンウエハの表面温度測
定例を示す。シリコンウエハは、温度により、また表面
の皮膜の種類や厚みにより放射率が変化することが知ら
れている。図9に示すように、真空炉18内には、上部
にヒータ19が配置され、シリコンウエハ17は上部か
ら加熱される。シリコンウエハ17の表面温度をシリコ
ンウエハ17の下面から測定する。
Example 1 An example of measuring the surface temperature of a silicon wafer in a vacuum furnace according to the present invention will be described. It is known that the emissivity of a silicon wafer changes depending on the temperature and the type and thickness of the film on the surface. As shown in FIG. 9, a heater 19 is arranged at the upper part in the vacuum furnace 18, and the silicon wafer 17 is heated from the upper part. The surface temperature of the silicon wafer 17 is measured from the lower surface of the silicon wafer 17.

【0027】直径12mm、長さ200mmの石英ロッ
ド4Aをシリコンウエハ17の下面に近接させて真空ホ
ルダ20を介して固定する。石英ロッド4Aの端面とシ
リコンウエハ17の下面との間隔は5mmに設定した。
石英ロッド4Aは真空ホルダ20内においてパッキング
を介して固定することにより容易に真空を保持すること
ができる。石英ロッド4Aで集光した熱放射光は、石英
ロッド4Aから多芯光ファイバ4Bを通して受光機構2
に導かれる。
A quartz rod 4A having a diameter of 12 mm and a length of 200 mm is fixed via a vacuum holder 20 so as to approach the lower surface of the silicon wafer 17. The distance between the end surface of the quartz rod 4A and the lower surface of the silicon wafer 17 was set to 5 mm.
The quartz rod 4A can easily maintain a vacuum by being fixed in the vacuum holder 20 via packing. The heat radiation light condensed by the quartz rod 4A passes through the multi-core optical fiber 4B from the quartz rod 4A, and the light receiving mechanism 2
It is led to.

【0028】受光機構2においては、多芯光ファイバ4
Bの端面に近接して、図2に示すように、高反射面と低
反射面とが交互に実現される回転セクタ(図示せず)を
毎分3000回転で回転させ、受光機構2を通して熱放
射光を検出器3に導入し、検出器3により熱放射強度を
測定する。検出器3で測定される放射信号は、図10に
示すように、、高反射状態で測定される信号mg と低反
射状態で測定される信号mb が交互に現れる。図10に
示す同期信号を用いてmg とmb を分離し、ついで、演
算装置(図示せず)により、前記(4)式および(6)
式を用いて放射率εと温度tを算出する。上記のように
して測定したシリコンウエハの温度tと放射率εの値の
時間による変化を図11に示す。時間とともに温度tが
上昇すると放射率εはやや低下するが、温度tが降下す
ると放射率εは元の値に近づいていく様子が認められ
る。
In the light receiving mechanism 2, the multi-core optical fiber 4
As shown in FIG. 2, a rotating sector (not shown) in which a high-reflection surface and a low-reflection surface are alternately realized is rotated at 3000 revolutions per minute near the end surface of B, The emitted light is introduced into the detector 3, and the thermal radiation intensity is measured by the detector 3. As shown in FIG. 10, in the radiation signal measured by the detector 3, a signal mg measured in a high reflection state and a signal mb measured in a low reflection state appear alternately. Using the synchronizing signal shown in FIG. 10, mg and mb are separated, and then the above equation (4) and (6) are calculated by an arithmetic unit (not shown).
The emissivity ε and the temperature t are calculated using the equations. FIG. 11 shows the change over time of the temperature t and the emissivity ε of the silicon wafer measured as described above. When the temperature t increases with time, the emissivity ε slightly decreases, but as the temperature t decreases, the emissivity ε approaches the original value.

【0029】半球状のキャビティや円筒状のキャビティ
を用いる従来の放射温度測定方式においては、正確な温
度測定のために、キャビティや測定部を冷却する必要が
あり、このため、温度測定対象のシリコンウエハを局部
的に冷却してしまうという問題があり、装置への取り付
けや調整を複雑にしていたが、本発明においては、石英
ロッドの冷却を行わなくとも十分に精度の良い温度測定
が可能であり、可撓性をそなえた多芯光ファイバ4Bに
より装置を測定箇所から十分離して設置することができ
るため、上記の問題は回避され、装置への取り付けは簡
単で場所をとらない有利性が得られる。また、測定点と
検出器との間を石英ロッドや光ファイバで連結している
ので、スパッタリングやプラズマエッチングの際に生じ
る電磁ノイズの影響を受けることがない。石英ロッドな
ど耐熱光学材料のロッドの集光効率が高いため、高反射
状態と低反射状態との間の変調比(放射強度比)が高く
取れ、精度の優れた測定が可能となる。
In the conventional radiation temperature measuring method using a hemispherical cavity or a cylindrical cavity, it is necessary to cool the cavity and the measuring part for accurate temperature measurement, and therefore, the temperature measurement target silicon There is a problem that the wafer is locally cooled, which complicates the mounting and adjustment to the apparatus.In the present invention, sufficiently accurate temperature measurement can be performed without cooling the quartz rod. In addition, since the device can be installed far away from the measurement location by the multi-core optical fiber 4B having flexibility, the above-described problem is avoided, and it is advantageous that the device is easily mounted and takes up little space. can get. Further, since the measurement point and the detector are connected by a quartz rod or an optical fiber, they are not affected by electromagnetic noise generated during sputtering or plasma etching. Since the light-collecting efficiency of a rod made of a heat-resistant optical material such as a quartz rod is high, a high modulation ratio (radiation intensity ratio) between a high reflection state and a low reflection state can be obtained, and highly accurate measurement can be performed.

【0030】実施例2 鋼板の表面に塗料を塗布した後、乾燥炉を通し、塗料を
焼き付ける塗料焼付け工程において、本発明により塗装
鋼板の表面温度を測定する。焼付け温度は、塗装焼付け
工程において、塗膜の密着性や耐食性に影響を与えるた
め、重要な管理項目となっているが、塗装鋼板の放射率
は、塗料の種類や基板となる鋼板の種類、表面状態で大
きく変化するため、従来精度の良い温度測定は行われて
いない。
Example 2 After a paint is applied to the surface of a steel sheet, the steel sheet is passed through a drying oven, and in a paint baking step of baking the paint, the surface temperature of the coated steel sheet is measured according to the present invention. The baking temperature is an important control item because it affects the adhesion and corrosion resistance of the coating film in the coating baking process, but the emissivity of the coated steel sheet is determined by the type of paint and the type of steel sheet used as the substrate, Conventionally, accurate temperature measurement has not been performed because the temperature greatly changes depending on the surface state.

【0031】従来、塗装鋼板の表面温度測定は、接触式
の熱電対温度計を鋼板に接触させて温度を間欠的に測定
する方式が慣用されている。この方式は、鋼板表面に疵
を付けてしまうことに加えて、間欠測定のため操業異常
の検知には十分に役立たないという難点がある。
Conventionally, for measuring the surface temperature of a coated steel sheet, a method of intermittently measuring the temperature by bringing a contact-type thermocouple thermometer into contact with the steel sheet has been commonly used. This method has drawbacks in that, in addition to scratching the surface of the steel sheet, intermittent measurement is not sufficiently useful for detecting an operation abnormality.

【0032】図12に示すように、塗装鋼板21の表面
に、ステンレス鋼管22でカバーした石英ロッド4Aを
近接して配置し、石英ロッド4Aの先端にエアパージフ
ード23を取り付け、エアパージフード23に空気を導
入して塗装鋼板21の表面に強いエアパージを施す。塗
料焼付け工程においては、塗膜の揮発成分が蒸発して塗
装鋼板21の表面に対向するロッドの端面を汚すことが
あるため、塗装鋼板21の温度測定表面にエアパージを
行うことにより、ロッドの端面の汚れを防止する。
As shown in FIG. 12, a quartz rod 4A covered with a stainless steel pipe 22 is disposed close to the surface of a coated steel plate 21, and an air purge hood 23 is attached to the tip of the quartz rod 4A. To perform a strong air purge on the surface of the coated steel plate 21. In the paint baking step, since the volatile component of the coating film evaporates and contaminates the end surface of the rod facing the surface of the coated steel plate 21, the temperature measurement surface of the coated steel plate 21 is subjected to air purge to thereby reduce the end surface of the rod. To prevent dirt.

【0033】石英ロッド4Aにより集光された塗装鋼板
21からの熱放射光は、石英ロッド4Aの上端部に近接
して配置された回転セクタからなる受光機構2(図2)
を介し、多芯光ファイバからなる導光通路5を通して検
出器3に導かれる。受光機構2は必要に応じて冷却水を
通して冷却するような構造を採用することもできる。検
出器3で測定される放射信号は実施例1と同様に処理さ
れて、塗装鋼板21の表面温度tおよび放射率εを表示
する。本発明により求めた温度tと従来の接触式の熱電
対温度計により実測した温度t´の時間による変化を図
13に示す。図13によれば、両者はきわめて良く一致
しているのが認められ、本発明による温度測定の正確性
が確認された。
The heat radiation light from the coated steel plate 21 condensed by the quartz rod 4A is received by a light receiving mechanism 2 (FIG. 2) consisting of a rotating sector arranged close to the upper end of the quartz rod 4A.
Is guided to the detector 3 through a light guide path 5 composed of a multi-core optical fiber. The light receiving mechanism 2 may adopt a structure in which cooling is performed through cooling water as needed. The radiation signal measured by the detector 3 is processed in the same manner as in the first embodiment, and the surface temperature t and the emissivity ε of the coated steel plate 21 are displayed. FIG. 13 shows the change over time of the temperature t obtained by the present invention and the temperature t ′ actually measured by a conventional contact-type thermocouple thermometer. According to FIG. 13, it was recognized that the two were in excellent agreement, and the accuracy of the temperature measurement according to the present invention was confirmed.

【0034】[0034]

【発明の効果】本発明によれば、つぎのような効果が期
待できる。 (1)高温の測定表面からの熱放射光を集光する導光通
路のうち、少なくとも測定表面側の導光通路を耐熱光学
材料から構成したので、冷却することなく正確な測定を
行うことができるから、装置への取り付けが簡単となり
コンパクトな構造が実現される。更に、測定表面が冷却
されて測定温度に誤差が生じるという問題が回避され
る。 (2)導光通路の一部に多芯光ファイバを使用すること
により、可撓性を有する導光通路が形成され、装置の設
置の自由度を増大させることができる。 (3)導光通路を形成するロッドの材質を適切に選択す
ることにより集光度を高めることができ、高反射状態と
低反射状態での放射強度の変調比(放射強度比)を大き
く取ることができるから、精度の良い温度測定が可能と
なる。 (4)真空炉や雰囲気炉内にある材料の表面温度測定
も、ロッドを炉内に挿着する場合、例えばパッキングで
固定することにより容易に雰囲気を保持することができ
るため、困難なく行うことができる。 (5)電磁ノイズの影響を受けることがない。
According to the present invention, the following effects can be expected. (1) Since at least the light guide path on the measurement surface side among the light guide paths for condensing thermal radiation from the high-temperature measurement surface is made of a heat-resistant optical material, accurate measurement can be performed without cooling. Since it is possible, it can be easily attached to the device and a compact structure can be realized. Furthermore, the problem of cooling the measuring surface and causing errors in the measuring temperature is avoided. (2) By using a multi-core optical fiber for a part of the light guide path, a flexible light guide path is formed, and the degree of freedom of installation of the device can be increased. (3) The light condensing degree can be increased by appropriately selecting the material of the rod forming the light guide path, and the modulation ratio (radiation intensity ratio) of the radiation intensity in the high reflection state and the low reflection state can be increased. Therefore, accurate temperature measurement can be performed. (4) When measuring the surface temperature of a material in a vacuum furnace or an atmosphere furnace, when the rod is inserted into the furnace, the atmosphere can be easily maintained by, for example, fixing by packing, so that measurement should be performed without difficulty. Can be. (5) It is not affected by electromagnetic noise.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の表面温度測定の装置構成の一実施例を
示す図である。
FIG. 1 is a diagram showing an embodiment of an apparatus configuration for measuring a surface temperature according to the present invention.

【図2】本発明の表面温度測定に用いる受光機構の一実
施例を示す平面図である。
FIG. 2 is a plan view showing one embodiment of a light receiving mechanism used for measuring a surface temperature according to the present invention.

【図3】本発明の表面温度測定における材料表面と導光
通路と受光機構の関係の詳細をを示す側面図である。
FIG. 3 is a side view showing details of the relationship among the material surface, the light guide path, and the light receiving mechanism in the surface temperature measurement of the present invention.

【図4】放射率と放射強度の関係を示す図である。FIG. 4 is a diagram showing a relationship between emissivity and radiation intensity.

【図5】本発明の表面温度測定に用いる受光機構の他の
実施例を示す平面図である。
FIG. 5 is a plan view showing another embodiment of the light receiving mechanism used for measuring the surface temperature of the present invention.

【図6】図5の受光機構のスリット部材を示す平面図で
ある。
FIG. 6 is a plan view showing a slit member of the light receiving mechanism of FIG.

【図7】図5の受光機構のスリット部材が重合して高反
射面を形成している状態を示す平面図である。
FIG. 7 is a plan view showing a state in which a slit member of the light receiving mechanism of FIG. 5 overlaps to form a high reflection surface.

【図8】本発明の表面温度測定に用いる受光機構のさら
に他の実施例を示す平面図である。
FIG. 8 is a plan view showing still another embodiment of the light receiving mechanism used for measuring the surface temperature according to the present invention.

【図9】本発明による表面温度測定方式を真空炉内で加
熱されるシリコンウエハの表面温度測定に適用した図で
ある。
FIG. 9 is a diagram in which the surface temperature measuring method according to the present invention is applied to surface temperature measurement of a silicon wafer heated in a vacuum furnace.

【図10】図9により測定された温度信号を示す図であ
る。
FIG. 10 is a diagram showing a temperature signal measured according to FIG. 9;

【図11】図9により測定された温度tと放射率εの時
間による変化を示す図である。
FIG. 11 is a diagram showing changes with time of the temperature t and the emissivity ε measured according to FIG. 9;

【図12】本発明による表面温度測定方式を塗装焼付け
工程で加熱される塗装鋼板の表面温度測定に適用した図
である。
FIG. 12 is a diagram in which the surface temperature measuring method according to the present invention is applied to the surface temperature measurement of a coated steel sheet heated in a paint baking step.

【図13】図12により測定された温度tと従来の接触
式の熱電対温度計で実測された温度t´の時間による変
化を示す図である。
FIG. 13 is a diagram showing a change over time of a temperature t measured by FIG. 12 and a temperature t ′ actually measured by a conventional contact-type thermocouple thermometer.

【符号の説明】[Explanation of symbols]

1 導光通路 2 受光機構 3 検出器 4 第1の導光通路 4A ロッド 4B 多芯光ファイバ 5 第2の導光通路 6 回転セクタ 6A 高反射率面 6B 低反射率面 7 スリット 8 モータ 9 スリット部材 10 スリット部材 11 高反射部 12 高反射部 13 スリット 14 開口部 15 高反射面 16 液晶シャッタ 17 シリコウエハ 18 真空炉 19 ヒータ 20 真空ホルダ 21 塗装鋼板 22 ステンレス鋼管 23 エアパージフード M 材料 S 表面 Reference Signs List 1 light guide path 2 light receiving mechanism 3 detector 4 first light guide path 4A rod 4B multi-core optical fiber 5 second light guide path 6 rotating sector 6A high reflectivity surface 6B low reflectivity surface 7 slit 8 motor 9 slit Member 10 Slit member 11 High reflection part 12 High reflection part 13 Slit 14 Opening 15 High reflection surface 16 Liquid crystal shutter 17 Silicon wafer 18 Vacuum furnace 19 Heater 20 Vacuum holder 21 Painted steel plate 22 Stainless steel tube 23 Air purge hood M Material S Surface

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 材料からの熱放射光を検出して材料の表
面温度を測定する方法において、熱放射光を検出する検
出器と材料の表面との間に、材料の表面からの熱放射光
を受光し検出器に伝えるための導光通路と、該導光通路
を通じて導入される熱放射光に対して高反射状態と低反
射状態を実現できる受光機構を設け、導光通路を通じて
導入された熱放射光を受光機構を介して検出器へ導き、
前記高反射状態と低反射状態に対応する熱放射強度を検
出して、検出値に基づいて材料の放射率を補正して表面
温度を求めることを特徴とする表面温度測定方法。
1. A method for measuring surface temperature of a material by detecting heat radiation from the material, wherein the heat radiation from the surface of the material is disposed between a detector for detecting the heat radiation and the surface of the material. And a light receiving mechanism capable of realizing a high-reflection state and a low-reflection state with respect to the heat radiation light introduced through the light guide path, and introduced through the light guide path. The heat radiation light is guided to the detector via the light receiving mechanism,
A method for measuring a surface temperature, comprising detecting heat radiation intensities corresponding to the high reflection state and the low reflection state, and correcting the emissivity of the material based on the detected value to obtain a surface temperature.
【請求項2】 導光通路は、材料の表面側は耐熱光学材
料により構成され、検出器側は多芯光ファイバにより構
成されることを特徴とする請求項1記載の表面温度測定
方法。
2. The surface temperature measuring method according to claim 1, wherein the light guide path is made of a heat-resistant optical material on the surface side of the material and a multi-core optical fiber on the detector side.
【請求項3】 導光通路と検出器との間に、導光通路を
通じて導入される熱放射光に対して高反射率を有する部
分と低反射率を有する部分をそなえた回転セクターを介
設し、導光通路を通じて導入された熱放射光に対して、
高反射率を有する部分と低反射率を有する部分とが交互
に現れるようにしたことを特徴とする請求項1または2
記載の表面温度測定方法。
3. A rotating sector having a portion having a high reflectivity and a portion having a low reflectivity for thermal radiation introduced through the light guide passage is interposed between the light guide passage and the detector. And the heat radiation introduced through the light guide path,
3. A part having a high reflectance and a part having a low reflectance alternately appear.
The described surface temperature measuring method.
【請求項4】 材料からの熱放射光を検出して材料の表
面温度を測定する装置において、材料の表面からの熱放
射光を受光するための少なくとも材料の表面側は耐熱光
学材料からなる第1の導光通路と、該第1の導光通路を
通じて導入される熱放射光に対して高反射状態と低反射
状態を実現できる受光機構と、熱放射光を受光機構から
検出器へ導くための多芯光ファイバからなる第2の導光
通路と、前記受光機構を介して導入される熱放射光を検
出するための検出器を備え、該検出器により前記高反射
状態と低反射状態に対応する熱放射強度を検出し、検出
値に基づいて材料の放射率を補正して表面温度を求める
よう構成したことを特徴とする表面温度測定装置。
4. An apparatus for measuring surface temperature of a material by detecting heat radiation from the material, wherein at least the surface side of the material for receiving the heat radiation from the surface of the material comprises a heat-resistant optical material. A light guide path, a light receiving mechanism capable of realizing a high reflection state and a low reflection state with respect to the heat radiation light introduced through the first light guide path, and a light guide mechanism for guiding the heat radiation light from the light receiving mechanism to the detector. A second light guide path made of a multi-core optical fiber, and a detector for detecting heat radiation light introduced through the light receiving mechanism, the detector detects the high reflection state and the low reflection state. A surface temperature measuring device configured to detect a corresponding heat radiation intensity and to correct a material emissivity based on the detected value to obtain a surface temperature.
JP26859699A 1999-09-22 1999-09-22 Surface temperature measuring method amd apparatus therefor Pending JP2001091362A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26859699A JP2001091362A (en) 1999-09-22 1999-09-22 Surface temperature measuring method amd apparatus therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26859699A JP2001091362A (en) 1999-09-22 1999-09-22 Surface temperature measuring method amd apparatus therefor

Publications (1)

Publication Number Publication Date
JP2001091362A true JP2001091362A (en) 2001-04-06

Family

ID=17460738

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26859699A Pending JP2001091362A (en) 1999-09-22 1999-09-22 Surface temperature measuring method amd apparatus therefor

Country Status (1)

Country Link
JP (1) JP2001091362A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015080443A1 (en) * 2013-11-27 2015-06-04 Woojin Eletro-Nite Inc. Continuous temperature measuring device and rh apparatus including the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015080443A1 (en) * 2013-11-27 2015-06-04 Woojin Eletro-Nite Inc. Continuous temperature measuring device and rh apparatus including the same
US9689048B2 (en) 2013-11-27 2017-06-27 Woojin Electro-Nite Inc. Continuous temperature measuring device and RH apparatus including the same

Similar Documents

Publication Publication Date Title
US7995195B2 (en) Method of optically monitoring the progression of a physical and/or chemical process taking place on a surface of a body
KR960013995B1 (en) Method for measuring surface temperature of semiconductor wafer substrate and heat-treating apparatus
US4435092A (en) Surface temperature measuring apparatus for object within furnace
US20170148690A1 (en) Thin-Film Fabrication System Employing Mechanical Stress Measurement
JP2011013145A5 (en)
JPH08184496A (en) Measurement of radiation luminance by angular wave filteringused in temperature measurement of heat radiating body
JP2001091362A (en) Surface temperature measuring method amd apparatus therefor
JPS6049849B2 (en) Device for measuring surface temperature and emissivity of objects
JPH04130746A (en) Radiation thermometer and method for wafer temperature measurement
JPH02245624A (en) Radiation temperature measuring apparatus
JP3600873B2 (en) Substrate temperature measurement unit
JP2000036468A (en) Substrate processor and substrate processing method therefor
JPS5987329A (en) Method for measuring temperature of steel
JP3259815B2 (en) Method and apparatus for measuring emissivity and temperature of an object, and rod-shaped radiation source
JPH04132944A (en) Device for measuring thermal coefficient of expansion
JPH08233542A (en) Non-contact displacement meter for sample in heated or cooled state
JPS6247525A (en) Radiation thermometer for fiber
JPH11153555A (en) Thin film-measuring apparatus
JPH0288929A (en) Infrared optical device
JPH03191838A (en) Infrared-ray thermometer
JPH10160579A (en) Temperature measuring device and board thermal treatment device using the same
JP3775034B2 (en) Infrared detector and radiation thermometer using the same
JPH03118429A (en) Infrared-ray thermometer
JPH05215611A (en) Noncontact temperature detector
JPH1019690A (en) Base temperature monitor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040630

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050907

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050912

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060120