JPH10160579A - Temperature measuring device and board thermal treatment device using the same - Google Patents

Temperature measuring device and board thermal treatment device using the same

Info

Publication number
JPH10160579A
JPH10160579A JP31901296A JP31901296A JPH10160579A JP H10160579 A JPH10160579 A JP H10160579A JP 31901296 A JP31901296 A JP 31901296A JP 31901296 A JP31901296 A JP 31901296A JP H10160579 A JPH10160579 A JP H10160579A
Authority
JP
Japan
Prior art keywords
temperature
radiation
semi
radiation intensity
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP31901296A
Other languages
Japanese (ja)
Other versions
JP3366538B2 (en
Inventor
Kiyohiro Sasaki
清裕 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dainippon Screen Manufacturing Co Ltd
Original Assignee
Dainippon Screen Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dainippon Screen Manufacturing Co Ltd filed Critical Dainippon Screen Manufacturing Co Ltd
Priority to JP31901296A priority Critical patent/JP3366538B2/en
Publication of JPH10160579A publication Critical patent/JPH10160579A/en
Application granted granted Critical
Publication of JP3366538B2 publication Critical patent/JP3366538B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To measure temperature accurately. SOLUTION: Among beat radiation radiated from a board (W), the heat radiation passing through a semi-transparent mirror 611 enters a probe 620a and is led to a radiation pyrometer 630a. Heat radiation passing through a transparent element 612 enters a probe 620b and is led to a radiation pyrometer 630b. Then, respective semi-transparent radiant intensity and nonreflective radiant intensity of the radiation pyrometer 630a and the radiation pyrometer 630b are derived, on the basis of these values a processor 640 calculates temperature of the board (W) and thickness of a film created under the board (W) using a given operation expression, and based on the value temperature and power of a lamp 20 are controlled. Thus, because temperature of the board (W) is derived considering transmission factor and reflectance of the semi-transparent mirror 611, temperature is accurately measured.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、被測定体からの
熱放射を基に被測定体の温度を測定する温度測定装置、
およびそれによる液晶用ガラス基板、半導体ウエハ等の
基板(以下「基板」という。)の温度測定結果を基に基
板の加熱の制御を行う基板熱処理装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a temperature measuring device for measuring the temperature of a device under test based on heat radiation from the device under test.
The present invention also relates to a substrate heat treatment apparatus that controls heating of a substrate based on a temperature measurement result of a substrate such as a liquid crystal glass substrate and a semiconductor wafer (hereinafter, referred to as a “substrate”).

【0002】[0002]

【従来の技術】従来から、半導体基板の熱処理装置等に
おける温度測定方法としては、特開平6−341905
号公報に示されるような非接触型の技術がある。すなわ
ち、熱処理の対象となる基板を水平に支持するととも
に、その基板に近接してその上下にそれぞれ上部壁およ
び下部壁が設けられた熱処理チャンバにおいて、下部壁
の下のクーリング・プレート内に導管を設けて導管に入
射する熱放射を放射高温計に導き、そこで捉えた放射強
度を基に基板の温度Tを計測している。
2. Description of the Related Art Conventionally, a method of measuring a temperature in a heat treatment apparatus for a semiconductor substrate has been disclosed in Japanese Patent Application Laid-Open No. 6-341905.
There is a non-contact type technology as disclosed in Japanese Unexamined Patent Publication (Kokai) No. H10-26095. That is, in a heat treatment chamber which horizontally supports a substrate to be subjected to a heat treatment and has upper and lower walls close to and above the substrate, a conduit is provided in a cooling plate below the lower wall. The heat radiation incident on the conduit is guided to a radiation pyrometer, and the temperature T of the substrate is measured based on the radiation intensity captured there.

【0003】具体的には、基板と下方の反射板との間に
生ずる多重反射を考慮しつつ、下部壁の反射率r=1と
みなすことによって熱放射の導管への入射放射強度Iと
黒体放射強度L0(T)の関係を近似的にI=L0(T)と
し、さらに黒体放射強度L0(T)としてステファン−ボ
ルツマンの式を用いて得られた式を基礎としている。そ
して、導管への入射放射強度Iを測定し、その入射放射
強度Iから前述の式を用いてTを求めている。
[0003] Specifically, by considering the reflectance r of the lower wall as 1 while taking into account the multiple reflections occurring between the substrate and the lower reflector, the intensity of the incident radiation I to the conduit of the thermal radiation and the blackness are reduced. The relationship between the body radiation intensity L0 (T) is approximately I = L0 (T), and the blackbody radiation intensity L0 (T) is based on the equation obtained using the Stefan-Boltzmann equation. Then, the incident radiation intensity I to the conduit is measured, and T is obtained from the incident radiation intensity I by using the above-described equation.

【0004】[0004]

【発明が解決しようとする課題】ところで、上記の技術
では下部壁が、その反射率r=1を完全に満たすものと
して基板の温度T0を求めているが、現実の下部壁では
反射率r<1であり、完全に「1」となるような材質は
知られていない。そのため、上記のような方法では入射
放射強度Iにより求めた温度Tと実際の基板の真温度と
は差異が生じてしまい精度の高い温度測定が行えなかっ
た。
In the above technique, the temperature T0 of the substrate is determined assuming that the lower wall completely satisfies the reflectance r = 1. The material which is 1 and is completely “1” is not known. Therefore, in the above-described method, a difference occurs between the temperature T obtained from the incident radiation intensity I and the actual temperature of the actual substrate, so that highly accurate temperature measurement cannot be performed.

【0005】この発明は、従来技術における上述の問題
の克服を意図しており、精度の高い温度測定を行うこと
ができる温度測定装置およびそれを用いた基板熱処理装
置を提供することを目的とする。
An object of the present invention is to overcome the above-mentioned problems in the prior art, and to provide a temperature measuring apparatus capable of performing accurate temperature measurement and a substrate heat treatment apparatus using the same. .

【0006】[0006]

【課題を解決するための手段】上記の目的を達成するた
め、この発明の請求項1の装置は、被測定体からの熱放
射を基に当該被測定体の温度を測定する温度測定装置で
あって、前記熱放射を不完全に透過する半透鏡と、前記
半透鏡を透過した前記熱放射の強度である半透過放射強
度を求める第1放射強度測定手段と、いずれの物体によ
ってもほぼ反射されていない状態の前記熱放射の強度で
ある無反射放射強度を求める第2放射強度測定手段と、
前記半透過放射強度および前記無反射放射強度を基に前
記被測定体の温度を求める温度算出手段と、を備える。
According to a first aspect of the present invention, there is provided a temperature measuring apparatus for measuring the temperature of a device under test based on heat radiation from the device. A semi-transmissive mirror that imperfectly transmits the heat radiation; a first radiation intensity measuring means for obtaining a semi-transmissive radiation intensity which is an intensity of the heat radiation transmitted through the semi-transparent mirror; Second radiation intensity measuring means for determining a non-reflection radiation intensity which is an intensity of the heat radiation in a state where the heat radiation is not performed,
Temperature calculating means for calculating the temperature of the measured object based on the semi-transmissive radiation intensity and the non-reflection radiation intensity.

【0007】また、この発明の請求項2の装置は、請求
項1の温度測定装置であって、前記半透鏡が前記第1放
射強度測定手段に対向する位置を中心とした円盤状であ
ることを特徴とする。
The device according to a second aspect of the present invention is the temperature measuring device according to the first aspect, wherein the semi-transparent mirror has a disk shape centered on a position facing the first radiation intensity measuring means. It is characterized by.

【0008】また、この発明の請求項3の装置は、請求
項1および請求項2のうちのいずれかの温度測定装置で
あって、前記半透鏡の前記第1放射強度測定手段側の面
の前記第1放射強度測定手段に対向する部分以外の部分
が黒化処理されていることを特徴とする。
According to a third aspect of the present invention, there is provided the temperature measuring apparatus according to any one of the first and second aspects, wherein the surface of the semi-transparent mirror on the side of the first radiation intensity measuring means is provided. A portion other than the portion facing the first radiation intensity measuring means is blackened.

【0009】また、この発明の請求項4の装置は、請求
項1ないし請求項3のうちのいずれかの温度測定装置で
あって、前記第1放射強度測定手段および前記第2放射
強度測定手段または前記被測定体のうちのいずれかを回
転させる回転手段をさらに備え、前記回転手段により前
記第1放射強度測定手段および前記第2放射強度測定手
段のそれぞれの前記被測定体に対する相対的位置が互い
に入れ替わることを特徴とする。
According to a fourth aspect of the present invention, there is provided the temperature measuring apparatus according to any one of the first to third aspects, wherein the first radiation intensity measuring means and the second radiation intensity measuring means are provided. Or, further comprising rotating means for rotating any one of the measured objects, wherein the relative position of the first radiation intensity measuring means and the second radiation intensity measuring means with respect to the measured object is changed by the rotating means. It is characterized by being replaced with each other.

【0010】また、この発明の請求項5の装置は、被測
定体からの熱放射を基に当該被測定体の温度を測定する
温度測定装置であって、第1波長および第2波長の前記
熱放射を含む熱放射群のうち、前記第1波長の熱放射を
不完全に透過するとともに、前記第2波長の前記熱放射
をほぼ完全に透過する半透鏡と、前記半透鏡を透過した
前記熱放射群のうち前記第1波長の熱放射の強度である
半透過放射強度および前記第2波長の熱放射の強度であ
る無反射放射強度を求める放射強度測定手段と、前記半
透過放射強度および前記無反射放射強度を基に前記被測
定体の温度を求める温度算出手段と、を備える。
According to a fifth aspect of the present invention, there is provided a temperature measuring apparatus for measuring the temperature of a measured object based on heat radiation from the measured object, wherein the temperature of the first and second wavelengths is measured. Among the heat radiation group including the heat radiation, the heat radiation of the first wavelength is incompletely transmitted, and the semi-transparent mirror that transmits the heat radiation of the second wavelength almost completely, and the semi-transparent mirror that transmits the heat radiation of the second wavelength. A radiation intensity measuring means for obtaining a semi-transmissive radiation intensity which is the intensity of the heat radiation of the first wavelength and a non-reflection radiation intensity which is the intensity of the heat radiation of the second wavelength in the heat radiation group; Temperature calculating means for calculating the temperature of the measured object based on the non-reflected radiation intensity.

【0011】また、この発明の請求項6の装置は、請求
項5の温度測定装置であって、前記半透鏡が前記放射強
度測定手段に対向する位置を中心とした円盤状であるこ
とを特徴とする。
According to a sixth aspect of the present invention, there is provided the temperature measuring apparatus according to the fifth aspect, wherein the semi-transparent mirror has a disk shape centered on a position facing the radiation intensity measuring means. And

【0012】また、この発明の請求項7の装置は、請求
項5および請求項6のうちのいずれかの温度測定装置で
あって、前記半透鏡の前記放射強度測定手段側の面の前
記放射強度測定手段に対向する部分以外の部分が黒化処
理されていることを特徴とする。
A device according to a seventh aspect of the present invention is the temperature measuring device according to any one of the fifth and sixth aspects, wherein the radiation on the surface of the semi-transparent mirror on the side of the radiation intensity measuring means is provided. A portion other than the portion facing the intensity measuring means is blackened.

【0013】また、この発明の請求項8の装置は、請求
項5ないし請求項7のうちのいずれかの温度測定装置で
あって、前記第1波長および前記第2波長のいずれもが
前記被測定体の放射率のほぼ温度に依存しない波長域に
含まれることを特徴とする。
An apparatus according to an eighth aspect of the present invention is the temperature measuring apparatus according to any one of the fifth to seventh aspects, wherein each of the first wavelength and the second wavelength is the target wavelength. It is characterized in that the emissivity of the measurement object is included in a wavelength range that does not substantially depend on temperature.

【0014】さらに、この発明の請求項9の装置は、請
求項1ないし請求項8のうちのいずれかの温度測定装置
を温度測定手段として備え、前記被測定体を基板とする
とともに加熱手段によって前記基板を加熱する基板熱処
理装置であって、前記温度測定手段によって求められた
前記基板の温度をもとに前記加熱手段の動作制御を行う
加熱制御手段を備える。
Further, an apparatus according to a ninth aspect of the present invention includes the temperature measuring device according to any one of the first to eighth aspects as a temperature measuring means, wherein the object to be measured is a substrate and heating means is provided. A substrate heat treatment apparatus for heating the substrate, comprising: a heating control unit that controls an operation of the heating unit based on the temperature of the substrate obtained by the temperature measurement unit.

【0015】[0015]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

【0016】[0016]

【1.発明の原理】各実施の形態の説明の前に、以下に
おいてこの発明の温度測定原理について説明する。
[1. Prior to the description of the embodiments, the principle of temperature measurement of the present invention will be described below.

【0017】まず基板において、光の透過はないものと
してその放射率εおよび反射率ρ(いずれも「0」〜
「1」の値をとる)との関係は、次式のようになる。
First, assuming that the substrate does not transmit light, its emissivity .epsilon. And reflectance .rho.
(Takes a value of "1") is as follows.

【0018】[0018]

【数1】 (Equation 1)

【0019】また、半透鏡を透過しない基板からの熱放
射の放射強度である無反射放射強度I0は測定系のゲイ
ンも含めた温度Tの黒体の放射強度L0(T)を用いて
表わすと、次式となる。
The non-reflection radiation intensity I0, which is the radiation intensity of heat radiation from the substrate that does not transmit through the semi-transparent mirror, is expressed using the radiation intensity L0 (T) of a black body at a temperature T including the gain of the measurement system. The following equation is obtained.

【0020】[0020]

【数2】 (Equation 2)

【0021】ただし、この式(2)でT0は基板の温度
を表わしている。なお、この発明においては半透鏡は必
ずしも反射率が50%である鏡を意味するものではな
く、反射率が0%および100%以外のその間の反射率
の鏡を意味するものである。したがって、この発明にお
いて不完全に透過とは、透過率が0%および100%以
外のその間であることを意味している。
In the equation (2), T0 represents the temperature of the substrate. In the present invention, the semi-transparent mirror does not necessarily mean a mirror having a reflectance of 50%, but means a mirror having a reflectance other than 0% and 100%. Therefore, incomplete transmission in the present invention means that the transmittance is between 0% and 100%.

【0022】また、基板を半透鏡に近づけると基板と半
透鏡との間で多重反射を起こす。図1は基板と半透鏡と
の間の熱放射の多重反射の説明図である。以下において
半透鏡の反射率rおよび透過率t(いずれも「0」〜
「1」の値をとる)を用いて説明する。
When the substrate is brought close to the semi-transparent mirror, multiple reflections occur between the substrate and the semi-transparent mirror. FIG. 1 is an explanatory diagram of multiple reflection of heat radiation between a substrate and a semi-transparent mirror. Hereinafter, the reflectance r and the transmittance t of the semi-transparent mirror (both are “0” to
This will be described using “1”.

【0023】まず基板Wの下面から放射された無反射放
射強度I0の熱放射は半透鏡HMにおいて上方にrI0の
強度で反射されるとともに、下方にtI0の強度で透過
する。そして反射された熱放射は基板Wの下面において
rρI0の強度で反射される。その反射された熱放射は
再び半透鏡HMに入射しtrρI0の強度で透過する。
このように基板Wと半透鏡HMとの間で多重反射がおき
る場合に半透鏡HMから基板Wによる反射を経て再び半
透鏡HMに戻る1往復の後の熱放射の強度はrρ倍に減
衰している。したがって、最終的に半透鏡HMの下方に
おいて捉えられる熱放射の強度である半透過放射強度I
は1回〜無限回の多重反射の後に半透鏡HMを透過する
熱放射の強度の和になる。そして、この和は初項tI
0、公比rρの等比級数となり、次式のようになる。
First, the thermal radiation of the non-reflection radiation intensity I0 radiated from the lower surface of the substrate W is reflected upward by the semi-transparent mirror HM at the intensity of rI0 and transmitted downward by the intensity of tI0. The reflected heat radiation is reflected on the lower surface of the substrate W with an intensity of rρI0. The reflected heat radiation is again incident on the semi-transparent mirror HM and transmitted with an intensity of trρI0.
In this way, when multiple reflection occurs between the substrate W and the semi-transmissive mirror HM, the intensity of the heat radiation after one round trip returning from the semi-transparent mirror HM to the semi-transparent mirror HM via the reflection by the substrate W attenuates rρ times. ing. Therefore, the semi-transmissive radiation intensity I, which is the intensity of the heat radiation finally captured below the semi-transparent mirror HM
Is the sum of the intensities of the thermal radiation transmitted through the semi-transparent mirror HM after one to infinite multiple reflections. And this sum is the first term tI
0, the geometric series of the common ratio rρ is given by the following equation.

【0024】[0024]

【数3】 (Equation 3)

【0025】そして、以上3式を連立して、基板Wの放
射率ε、反射率ρおよび基板Wの放射強度L0(T0)に
ついて解くと以下の3式になる。
When the above three equations are simultaneously solved for the emissivity ε, the reflectance ρ of the substrate W, and the radiation intensity L 0 (T 0) of the substrate W, the following three equations are obtained.

【0026】[0026]

【数4】 (Equation 4)

【0027】[0027]

【数5】 (Equation 5)

【0028】[0028]

【数6】 (Equation 6)

【0029】以下の実施の形態では半透過放射強度I、
無反射放射強度I0を測定し、その値と予め分かってい
る半透鏡の反射率r、透過率tの値を式(4)、式
(5)、式(6)に用いて放射率ε、反射率ρおよび基
板Wの放射強度L0(T0)を求める。さらに、図2に示
すような黒体の温度Tに対する放射強度L0(T)を示
すグラフに式(6)から求めた基板Wの放射強度L0(T
0)を用いて基板Wの温度T0を求めている。
In the following embodiment, the semi-transmitted radiation intensity I,
The non-reflective radiation intensity I0 is measured, and the values and the values of the reflectance r and the transmittance t of the semi-transparent mirror, which are known in advance, are used in equations (4), (5), and (6) to obtain the emissivity ε, The reflectance ρ and the radiation intensity L0 (T0) of the substrate W are obtained. Further, as shown in FIG. 2, a graph showing the radiation intensity L0 (T) with respect to the temperature T of the black body, the radiation intensity L0 (T
0) is used to determine the temperature T0 of the substrate W.

【0030】さらに、シリコン基板Wの放射率εとその
薄膜の膜厚dとの関係式(藤原史郎(編著):光学薄
膜,12/18,共立出版(1986)参照)は次式で与えられ
る。
Further, the relational expression between the emissivity ε of the silicon substrate W and the thickness d of the thin film (see Shiro Fujiwara (ed.): Optical Thin Film, December 18, Kyoritsu Shuppan (1986)) is given by the following expression. .

【0031】[0031]

【数7】 (Equation 7)

【0032】この式においてρ1は薄膜と空気の境界で
の反射率、ρ2は薄膜とSiの境界での反射率、θは測
定方向と基板Wの法線の角度、λは測定波長、nは薄膜
の屈折率、dは膜厚を表わしている。
In this equation, ρ1 is the reflectance at the boundary between the thin film and air, ρ2 is the reflectance at the boundary between the thin film and Si, θ is the angle between the measurement direction and the normal to the substrate W, λ is the measurement wavelength, and n is The refractive index of the thin film, d, represents the film thickness.

【0033】この式(7)にフレネルの公式により求め
たρ1、ρ2や、予め測定されているθ、λ、n、および
式(4)により求められた基板Wの放射率εを用いて基
板Wの膜厚dを求める。
The equation (7) uses ρ1, ρ2 determined by Fresnel's formula, θ, λ, n measured in advance, and the emissivity ε of the substrate W determined by equation (4). The thickness d of W is determined.

【0034】以下に示す実施の形態においては、以上の
ようにして求めた基板Wの温度T0により温度制御を行
うとともに、膜厚dが所定値に達しているかどうかによ
り加熱・成膜処理の終了を制御する。
In the embodiment described below, the temperature control is performed based on the temperature T0 of the substrate W obtained as described above, and the completion of the heating / film forming process is determined based on whether the film thickness d has reached a predetermined value. Control.

【0035】[0035]

【2.第1の実施の形態】 <2−1.機構的構成および動作>図3は第1の実施の
形態の基板熱処理装置1の断面図である。同図、図4お
よび図6の各図においては、水平面をX−Y面とし、鉛
直方向をZ軸方向とする3次元座標系X−Y−Zが定義
されている。以下、図3を参照しつつこの装置の構成を
説明していく。
[2. First Embodiment><2-1. Mechanical Structure and Operation> FIG. 3 is a sectional view of the substrate heat treatment apparatus 1 according to the first embodiment. In each of FIG. 4, FIG. 4 and FIG. 6, a three-dimensional coordinate system XYZ that defines a horizontal plane as an XY plane and a vertical direction as a Z-axis direction is defined. Hereinafter, the configuration of this device will be described with reference to FIG.

【0036】第1の実施の形態の基板熱処理装置1は主
に炉体10、ランプ20、石英ガラス30、基板支持部
40、リニアモータ50、温度・膜厚測定部60、制御
部70、ランプドライバ80、モータドライバ90とを
備えている。
The substrate heat treatment apparatus 1 according to the first embodiment mainly includes a furnace body 10, a lamp 20, a quartz glass 30, a substrate support section 40, a linear motor 50, a temperature / film thickness measurement section 60, a control section 70, a lamp A driver 80 and a motor driver 90 are provided.

【0037】炉体10は上部をリフレクター110、下
部をハウジング120とする箱状の炉体であり、それら
の内部には多数の冷却管130(図3には一部にのみ参
照番号を記載)が設けられている。また、炉体10の側
面にはガス供給口GIおよびガス排出口GOが、ハウジ
ング120にはガス供給管140およびガス排出管15
0が設けられており、加熱・成膜処理の際に処理ガスが
所定のタイミングで供給される。
The furnace body 10 is a box-shaped furnace body having a reflector 110 at an upper part and a housing 120 at a lower part, and has a number of cooling pipes 130 therein (only a part of the cooling pipes is shown in FIG. 3). Is provided. A gas supply port GI and a gas discharge port GO are provided on a side surface of the furnace body 10, and a gas supply pipe 140 and a gas discharge pipe 15 are provided in the housing 120.
0 is provided, and a processing gas is supplied at a predetermined timing during the heating / film-forming process.

【0038】ランプ20はリフレクター110の下面に
多数設けられ(図3には一部にのみ参照番号を記載)点
灯時にはその熱放射により基板Wを加熱する。
A large number of lamps 20 are provided on the lower surface of the reflector 110 (only a part of the lamps are shown in FIG. 3).

【0039】石英ガラス30はランプ20の下方に設け
られ、それによる熱放射を透過する。
The quartz glass 30 is provided below the lamp 20 and transmits the heat radiation therefrom.

【0040】基板支持部40は、基板Wを支持するとと
もに、そのZ軸方向を軸とした回転により基板Wを回転
させる。
The substrate supporting section 40 supports the substrate W, and rotates the substrate W by rotating the substrate W about the Z-axis direction.

【0041】リニアモータ50は磁気浮上式のリニアモ
ータであり基板Wを支持した基板支持部40を回転させ
る。
The linear motor 50 is a magnetic levitation type linear motor, and rotates the substrate support 40 supporting the substrate W.

【0042】温度・膜厚測定部60は、後に詳述するが
基板Wからの熱放射強度を測定し、それを基に基板Wの
温度T0や膜厚d等を求め、それらの信号を制御部70
に送る。
The temperature / thickness measuring section 60 measures the heat radiation intensity from the substrate W, which will be described in detail later, obtains the temperature T0, the film thickness d, and the like of the substrate W based on the intensity, and controls those signals. Part 70
Send to

【0043】制御部70は後に詳述するように、後述の
ランプドライバ80にランプ20の制御信号を送った
り、後述のモータドライバ90に所定のタイミングで駆
動信号を送ったりする。
As will be described in detail later, the control unit 70 sends a control signal for the lamp 20 to a later-described lamp driver 80 and sends a drive signal to a later-described motor driver 90 at a predetermined timing.

【0044】ランプドライバ80は制御部70からの制
御信号を受けてランプ20に電力を供給する。
The lamp driver 80 supplies power to the lamp 20 in response to a control signal from the control unit 70.

【0045】モータドライバ90は制御部70からの駆
動信号を受けてリニアモータ50に電力を供給する。
The motor driver 90 receives a drive signal from the control unit 70 and supplies power to the linear motor 50.

【0046】つぎに、要部についてさらに詳細に説明し
ていく。
Next, the main parts will be described in more detail.

【0047】基板支持部40は基板Wの周縁部分を支持
する支持リング410とその下面の数点において支持す
る支持脚420とから成り、その支持脚420の下端に
はリニアモータ50の浮揚部510が設けられ、基板W
の周縁に沿うように設けられた円環状のレール520上
面に嵌合している。そして、モータドライバ90からの
電力により浮揚部510が浮揚してレールに沿って摺動
し、基板支持部40を回転駆動し基板Wを回転させる。
この回転は基板Wの加熱を基板Wの各部分で均一にする
とともに、後述するように基板Wからの半透過放射強度
Iおよび無反射放射強度I0を測定する基板Wの測定対
象位置をプローブ620aとプローブ620bとで共通
にするために行われている。
The substrate supporting portion 40 is composed of a supporting ring 410 for supporting the peripheral portion of the substrate W and supporting legs 420 for supporting at several points on the lower surface thereof. Is provided, and the substrate W
Are fitted on the upper surface of an annular rail 520 provided along the periphery of the rail. Then, the levitating unit 510 levitates and slides along the rail by the electric power from the motor driver 90, and the substrate supporting unit 40 is rotationally driven to rotate the substrate W.
This rotation makes the heating of the substrate W uniform in each part of the substrate W, and also uses the probe 620a to move the measurement target position of the substrate W for measuring the semi-transmitted radiation intensity I and the non-reflected radiation intensity I0 from the substrate W as described later. And the probe 620b.

【0048】温度・膜厚測定部60は透過板610、プ
ローブ620a,620b、放射高温計630a,63
0b、演算部640より成っている。
The temperature / film thickness measuring section 60 includes a transmission plate 610, probes 620a and 620b, radiation pyrometers 630a and 63.
0b, and an operation unit 640.

【0049】図4は第1の実施の形態の透過板610の
平面図である。透過板610は半透鏡611の周囲に透
明部材612が設けられた円盤状部材であり、ハウジン
グ120の上面に固設されている。
FIG. 4 is a plan view of the transmission plate 610 according to the first embodiment. The transmission plate 610 is a disc-shaped member in which a transparent member 612 is provided around a semi-transparent mirror 611, and is fixed on the upper surface of the housing 120.

【0050】半透鏡611は後述するプローブ620a
を中心とした円盤状で、上面が鏡面となっており上方か
らの熱放射を不完全に反射および透過する。また、半透
鏡611の下面においてはプローブ620aに対向する
部分は透明であり、さらにそれ以外の部分は黒化処理さ
れており、上方からの熱放射を全吸収して反射しない。
The semi-transparent mirror 611 is connected to a probe 620a to be described later.
And a mirror-like upper surface, and imperfectly reflects and transmits heat radiation from above. In addition, on the lower surface of the semi-transparent mirror 611, the portion facing the probe 620a is transparent, and the other portions are blackened, so that heat radiation from above is totally absorbed and not reflected.

【0051】また、透明部材612は上方の基板Wから
の熱放射をほぼ完全に透過する性質を持っており、その
下方に設けられた後述するプローブ620bに入射さ
せ、無反射放射強度I0を後述する放射高温計630b
によって正確に測定することができる。
The transparent member 612 has a property of transmitting heat radiation from the upper substrate W almost completely. The transparent member 612 is made incident on a probe 620b, which will be described below, provided therebelow, and the non-reflection radiation intensity I0 is measured. Radiation pyrometer 630b
Can be measured accurately.

【0052】プローブ620a,620bは入射する熱
放射を伝える光ファイバであり、図中の上端において熱
放射を放射高温計630a,630bに送る。
The probes 620a and 620b are optical fibers for transmitting the incident thermal radiation, and transmit the thermal radiation to the radiation pyrometers 630a and 630b at the upper end in the figure.

【0053】放射高温計630a,630bは入射する
高温の熱放射を電圧すなわち、それぞれ半透過放射強度
Iおよび無反射放射強度I0を表わす電気信号に変換
し、演算部640に送る。
The radiation pyrometers 630a and 630b convert the incident high-temperature heat radiation into electric signals representing a voltage, that is, a semi-transmissive radiation intensity I and a non-reflection radiation intensity I 0, respectively, and send them to the arithmetic unit 640.

【0054】なお、上記、プローブ620aと放射高温
計630aとを併せたものが第1放射強度測定手段に相
当し、プローブ620bと放射高温計630bとを併せ
たものが第2放射強度測定手段に相当する。
The combination of the probe 620a and the radiation pyrometer 630a corresponds to the first radiation intensity measuring means, and the combination of the probe 620b and the radiation pyrometer 630b corresponds to the second radiation intensity measuring means. Equivalent to.

【0055】さらに、演算部640は図示しないCPU
およびメモリから成り、放射高温計630a,630b
から時々刻々と送られてくる半透過放射強度Iおよび無
反射放射強度I0を示す信号のうち、前述のように回転
する基板Wの測定対象位置がプローブ620aおよび6
20bのそれぞれの上方に位置したタイミングで測定さ
れた値を1組の放射強度信号として用いる。すなわち、
両放射強度を求めるタイミングを基板W上の同じ位置を
測定するために同期をとっている。こうすることによ
り、半透過放射強度Iと無反射放射強度I0を求める測
定対象位置を共通にしている。そのため、より精度の高
い温度測定および膜厚測定を行うことができる。
Further, the arithmetic unit 640 is provided with a CPU (not shown).
And pyrometers 630a and 630b
Out of the signals indicating the semi-transmissive radiation intensity I and the non-reflection radiation intensity I0 transmitted from time to time, the probe 620a and 6
The value measured at the timing located above each of 20b is used as a set of radiation intensity signals. That is,
Timing for obtaining both radiation intensities is synchronized to measure the same position on the substrate W. By doing so, the measurement target positions for obtaining the semi-transmissive radiation intensity I and the non-reflection radiation intensity I0 are common. Therefore, more accurate temperature measurement and film thickness measurement can be performed.

【0056】そして、このようにして得られた半透過放
射強度Iおよび無反射放射強度I0と、予めメモリに記
憶されていた発明の原理の項で用いた各パラメータとを
用いて基板Wの測定対象位置の温度T0、放射率ε、反
射率ρおよび膜厚dを求め、それらを制御部70に送
る。
Then, the measurement of the substrate W is performed using the thus obtained semi-transmissive radiation intensity I and non-reflection radiation intensity I 0 and each parameter previously stored in the memory and used in the section of the principle of the invention. The temperature T0, the emissivity ε, the reflectance ρ, and the film thickness d of the target position are obtained, and these are sent to the control unit 70.

【0057】<2−2.処理および制御>図5は第1の
実施の形態の基板熱処理装置1の制御の流れを示す図で
ある。以下、図5を用いてこの装置における加熱・成膜
処理およびランプ20の制御について説明していく。
<2-2. Processing and Control> FIG. 5 is a diagram showing a control flow of the substrate heat treatment apparatus 1 according to the first embodiment. Hereinafter, the heating / film forming process and the control of the lamp 20 in this apparatus will be described with reference to FIG.

【0058】まず、図示しない搬入口から基板Wがデバ
イス面を下にして搬入され、基板支持部40に支持され
る。ここで基板Wをデバイス面を下にした状態で支持す
るのは温度・膜厚測定部60によって膜厚dを測定する
ために、デバイス面に生成される薄膜からの熱放射をプ
ローブ620a,620bに入射させる必要があるため
である。
First, a substrate W is carried in from a carry-in port (not shown) with the device surface facing down, and is supported by the substrate support 40. Here, the substrate W is supported with the device surface facing down. In order to measure the film thickness d by the temperature / film thickness measuring unit 60, the heat radiation from the thin film generated on the device surface is measured by the probes 620a and 620b. This is because it is necessary to make the light incident on

【0059】つぎに、制御部70は図示しない処理ガス
供給手段に制御信号を送り加熱・成膜処理のための処理
ガスを炉体10内に供給させるとともに、ランプドライ
バ80に制御信号を送り、ランプ20を点灯して加熱を
開始する。それと同時にモータドライバ90に駆動信号
を送り、リニアモータ50を駆動して基板支持部40を
回転させることによって基板Wを回転させる。なお、以
下の加熱・成膜処理中において基板Wの回転は続けられ
る。
Next, the control unit 70 sends a control signal to a processing gas supply means (not shown) to supply a processing gas for heating and film forming processing into the furnace body 10 and sends a control signal to the lamp driver 80. The lamp 20 is turned on to start heating. At the same time, a drive signal is sent to the motor driver 90 to drive the linear motor 50 to rotate the substrate support 40, thereby rotating the substrate W. Note that the rotation of the substrate W is continued during the following heating and film forming processing.

【0060】ランプ20から発せられた放射熱は石英ガ
ラス30を透過して基板Wに至り、それにより基板Wは
加熱され、その温度に対応する熱放射が発生する。
The radiant heat emitted from the lamp 20 passes through the quartz glass 30 and reaches the substrate W, whereby the substrate W is heated, and heat radiation corresponding to the temperature is generated.

【0061】透過板610の半透鏡611を透過した基
板Wからの熱放射はプローブ620aに入射し、放射高
温計630aに導かれる。同様に、透過板610の透明
部材612を透過した基板Wからの熱放射はプローブ6
20bに入射し、放射高温計630bに導かれる。
The heat radiation from the substrate W transmitted through the semi-transparent mirror 611 of the transmission plate 610 enters the probe 620a and is guided to the radiation pyrometer 630a. Similarly, heat radiation from the substrate W transmitted through the transparent member 612 of the transmission plate 610 is transmitted to the probe 6.
20b, and is guided to the radiation pyrometer 630b.

【0062】そして、放射高温計630aからは半透鏡
611を透過した熱放射の半透過放射強度Iおよび、放
射高温計630bからは透明部材612を透過した熱放
射の無反射放射強度I0のそれぞれを表わす放射強度信
号が演算部640に送られる。
From the radiation pyrometer 630a, the semi-transmission radiation intensity I of the heat radiation transmitted through the semi-transparent mirror 611, and from the radiation pyrometer 630b, the non-reflection radiation intensity I 0 of the heat radiation transmitted through the transparent member 612, respectively. The represented radiation intensity signal is sent to arithmetic unit 640.

【0063】演算部640では半透過放射強度I、無反
射放射強度I0および、予め得られていて演算部640
内部のメモリに記憶されている半透鏡611の透過率
t、反射率r等をもとに発明の原理で述べた式(4)、
式(5),式(6)を用いて基板Wの温度T0、基板W
の放射率εおよび反射率ρを求めるとともに、予め求め
られてメモリに記憶されている前述のρ1、ρ2、θ、
λ、n、および式(4)により求められたεを式(7)
に用いて基板Wに形成された膜厚dを求める。
The calculating section 640 calculates the semi-transmitted radiation intensity I, the non-reflected radiation intensity I 0, and the arithmetic section 640 obtained in advance.
Equation (4) described in the principle of the present invention based on the transmittance t, the reflectance r, and the like of the semi-transmissive mirror 611 stored in the internal memory,
Using the equations (5) and (6), the temperature T0 of the substrate W and the substrate W
Of the above-mentioned ρ1, ρ2, θ, which are obtained in advance and stored in the memory.
[lambda], n, and [epsilon] obtained by equation (4) are expressed by equation (7).
Is used to determine the film thickness d formed on the substrate W.

【0064】なお、第1の実施の形態では図2のような
黒体の温度Tに対する放射強度L0(T)を示すグラフ
に相当する変換テーブルを演算部640内のメモリに記
憶している。そして、これを用いて基板Wの温度T0を
求めている。
In the first embodiment, a conversion table corresponding to a graph showing the radiation intensity L0 (T) with respect to the temperature T of the black body as shown in FIG. Then, the temperature T0 of the substrate W is obtained using this.

【0065】そして、演算部640で求められた基板W
の温度T0は温度信号として制御部70に送られ、それ
を基に制御部70は基板Wの温度を所定値に保つために
制御信号をランプドライバ80に送り、ランプドライバ
80はその制御信号に応じた電力をランプ20に供給す
る。
Then, the substrate W obtained by the arithmetic unit 640 is obtained.
Is transmitted to the control unit 70 as a temperature signal. Based on the temperature T0, the control unit 70 sends a control signal to the lamp driver 80 to keep the temperature of the substrate W at a predetermined value. The corresponding electric power is supplied to the lamp 20.

【0066】また、演算部640で求められた膜厚信号
は温度信号と同様に制御部70に送られ、制御部70で
は求めた膜厚dが所定の厚さに達しているかどうかを判
断し、所定の膜厚に達していたか否かに応じてランプ2
0のパワーを指示する制御信号をランプドライバ80に
送る。ランプドライバ80はその制御信号がONである
間は、上記のような基板Wの温度T0を一定に保つ温度
制御を行いつつ基板Wの加熱・成膜処理を行っていき、
制御信号がOFFになるとランプ20への電力の供給を
停止し加熱・成膜処理を終了する。
The film thickness signal obtained by the arithmetic unit 640 is sent to the control unit 70 in the same manner as the temperature signal, and the control unit 70 determines whether the obtained film thickness d has reached a predetermined thickness. , Depending on whether the film thickness has reached a predetermined value or not.
A control signal indicating a power of 0 is sent to the lamp driver 80. While the control signal is ON, the lamp driver 80 performs the heating / film forming process on the substrate W while performing the temperature control for keeping the temperature T0 of the substrate W constant as described above.
When the control signal is turned off, the supply of power to the lamp 20 is stopped, and the heating / film forming process is terminated.

【0067】以上説明したように、第1の実施の形態の
基板熱処理装置1の温度・膜厚測定部60では半透鏡6
11を透過した熱放射の強度である半透過放射強度I、
および、透明部材612を透過した熱放射の強度である
無反射放射強度I0を基に演算部640により基板Wの
温度T0を算出する構成であるため、半透鏡611の反
射率rおよび透過率tを考慮して基板Wの温度T0およ
び膜厚dを求めることができるので、精度の高い基板の
温度測定および膜厚測定を行うことができる。
As described above, the temperature / film thickness measuring section 60 of the substrate heat treatment apparatus 1 of the first embodiment has the semi-transparent mirror 6.
11, a semi-transmissive radiation intensity I, which is the intensity of thermal radiation transmitted through
In addition, since the temperature T0 of the substrate W is calculated by the calculation unit 640 based on the non-reflected radiation intensity I0 which is the intensity of the heat radiation transmitted through the transparent member 612, the reflectance r and the transmittance t of the semi-transparent mirror 611 are calculated. In consideration of the above, the temperature T0 and the film thickness d of the substrate W can be obtained, so that the temperature measurement and the film thickness measurement of the substrate with high accuracy can be performed.

【0068】また、半透鏡611がプローブ620aを
中心とした円盤状をしているため、プローブ620aに
入射する熱放射がその周りの半透鏡611と基板Wとの
間で多重反射した熱放射の影響を均等に受けたものであ
るので、より精度の高い温度測定および膜厚測定を行う
ことができる。
Further, since the semi-transmissive mirror 611 has a disk shape with the probe 620a at the center, the heat radiation incident on the probe 620a is reflected by the multi-reflected heat radiation between the semi-transparent mirror 611 and the substrate W around it. Since the influences are uniformly received, more accurate temperature measurement and film thickness measurement can be performed.

【0069】また、半透鏡611の下面は黒化処理され
ているため、半透鏡611の上面の鏡面を透過した熱放
射が下面において反射して半透鏡内で多重反射した後に
プローブ620aに入射することがなく、その下面にお
いて反射していない熱放射のみがプローブ620aに入
射するので半透過放射強度Iを放射高温計630aによ
って正確に測定することができ、したがって、温度・膜
厚測定部60において、より精度の高い温度測定および
膜厚測定を行うことができる。
Further, since the lower surface of the semi-transparent mirror 611 is blackened, the heat radiation transmitted through the mirror surface of the upper surface of the semi-transparent mirror 611 is reflected on the lower surface and is multiply reflected in the semi-transparent mirror before being incident on the probe 620a. Since only the heat radiation not reflected on the lower surface of the probe 620 enters the probe 620a, the transflective radiation intensity I can be accurately measured by the radiation pyrometer 630a. In addition, more accurate temperature measurement and film thickness measurement can be performed.

【0070】また、基板Wを回転させ、半透過放射強度
Iおよび無反射放射強度I0を捉えるタイミングを基板
W上の同じ位置を測定するために同期をとることによ
り、基板Wの同一部分からの熱放射を捉えることができ
るのでより精度の高い温度測定および膜厚測定を行うこ
とができる。
Further, by rotating the substrate W and synchronizing the timing for capturing the semi-transmissive radiation intensity I and the non-reflection radiation intensity I 0 to measure the same position on the substrate W, Since thermal radiation can be captured, more accurate temperature measurement and film thickness measurement can be performed.

【0071】また、第1の実施の形態の基板熱処理装置
1では上記のような温度・膜厚測定部60による精度の
高い基板Wの温度T0および膜厚dの測定結果に基づい
てランプ20の温度制御およびランプパワーの制御を行
っているため、基板Wの高精度の加熱・成膜処理を行う
ことができる。
Further, in the substrate heat treatment apparatus 1 of the first embodiment, the lamp 20 is controlled based on the highly accurate measurement result of the temperature T0 and the film thickness d of the substrate W by the temperature / film thickness measuring section 60 as described above. Since the temperature control and the lamp power control are performed, the substrate W can be heated and formed with high accuracy.

【0072】さらに、従来装置のように基板Wを所定温
度下で所定時間処理することによって膜厚を制御してい
ないため、オペレータが基板Wを炉体10から取り出し
膜厚測定をし、再び戻して加熱・成膜処理を続行した
り、加熱・成膜処理の間、基板Wの温度T0が一定でな
くてもよいので予めダミー基板等を用いて所定温度まで
加熱する暖機運転を行う必要がないので、処理効率のよ
い加熱・成膜処理を行うことができる。
Further, since the film thickness is not controlled by treating the substrate W at a predetermined temperature for a predetermined time as in the conventional apparatus, the operator takes out the substrate W from the furnace body 10, measures the film thickness, and returns it again. It is necessary to perform a warm-up operation in which the temperature T0 of the substrate W is not constant during the heating and film forming process, and the substrate is heated to a predetermined temperature using a dummy substrate or the like in advance. Since there is no heat treatment, it is possible to perform a heating and film forming process with high processing efficiency.

【0073】[0073]

【3.第2の実施の形態】図6は第2の実施の形態の基
板熱処理装置2の断面図である。また、図7は第2の実
施の形態の透過板の平面図である。以下、図6および図
7を用いて第2の実施の形態の基板熱処理装置2につい
て、第1の実施の形態の基板熱処理装置1との相違点を
中心に説明していく。
[3. FIG. 6 is a sectional view of a substrate heat treatment apparatus 2 according to a second embodiment. FIG. 7 is a plan view of a transmission plate according to the second embodiment. Hereinafter, the substrate heat treatment apparatus 2 according to the second embodiment will be described with reference to FIGS. 6 and 7 focusing on differences from the substrate heat treatment apparatus 1 according to the first embodiment.

【0074】基板熱処理装置2における透過板610は
その中心に円盤状の半透鏡611が設けられている。そ
して、その上面は後に詳述する性質を持つ鏡面になって
おり、逆に下面においてはプローブ620に対向する部
分は透明であり、それ以外の部分は黒化処理されてい
る。
The transmission plate 610 in the substrate heat treatment apparatus 2 is provided with a disk-shaped semi-transparent mirror 611 at the center. The upper surface is a mirror surface having a property described in detail later. Conversely, on the lower surface, a portion facing the probe 620 is transparent, and the other portions are blackened.

【0075】図8は第2の実施の形態の半透鏡611の
性質を示す図である。この半透鏡611は半透鏡の性質
を示すと透明な性質とを併せ持っている。すなわち、図
示のようにこの半透鏡611は半透過波長λ1=0.9
μmと全透過波長λ2=1.0μmとの間の、0.95
μm付近の波長域で透過率tが急激に増加しており、逆
に反射率rは波長が0.95μm付近で急激に減少して
いる。そして、約0.95μm以下の波長域では透過率
tおよび反射率rがいずれも約「0.5」になってい
る。また、約0.95μmより上の波長域では透過率t
がほぼ「1」であり、逆に反射率rはほぼ「0」になっ
ている。そのため、この半透鏡611は約0.95μm
以下の波長域では半透鏡の性質を示すが、それより上の
波長域では透明な性質を示すものである。半透鏡611
にこのような性質を持たすために第2の実施の形態では
その鏡面を例えば、SiO2とTiO2の薄膜を透過させ
る波長に応じた厚さにし、互いに積層させるものとして
いる。
FIG. 8 is a diagram showing the properties of the semi-transparent mirror 611 according to the second embodiment. The semi-transmissive mirror 611 has both the properties of a semi-transparent mirror and the property of being transparent. That is, as shown, the semi-transparent mirror 611 has a semi-transmissive wavelength λ 1 = 0.9.
0.95 μm and the total transmission wavelength λ 2 = 1.0 μm.
The transmittance t sharply increases in a wavelength region near μm, and the reflectance r sharply decreases near 0.95 μm in wavelength. In the wavelength region of about 0.95 μm or less, the transmittance t and the reflectance r are both about “0.5”. In the wavelength region above about 0.95 μm, the transmittance t
Is almost “1”, and conversely, the reflectance r is almost “0”. Therefore, this semi-transparent mirror 611 is about 0.95 μm
In the following wavelength range, the property of the semi-transparent mirror is exhibited, but in the wavelength range higher than that, the property is transparent. Semi-transparent mirror 611
In order to have such properties, in the second embodiment, the mirror surface is made to have a thickness corresponding to, for example, a wavelength at which a thin film of SiO2 and TiO2 is transmitted, and is laminated on each other.

【0076】また、プローブ620はその一端がハウジ
ング20内の半透鏡611に対向するようにその中心の
直下に1本だけ設けられており、半透鏡611に対向し
ていない端部において2色高温計635に接続されてい
る。
Further, only one probe 620 is provided immediately below the center of the housing 20 so that one end thereof faces the semi-transmissive mirror 611 in the housing 20. 635 in total.

【0077】さらに、2色高温計635は上述の半透過
波長λ1および全透過波長λ2の2つの波長の熱放射が含
まれる熱放射群が入力されるとその熱放射群から半透過
波長λ1の熱放射と全透過波長λ2の熱放射とを抽出して
それぞれの波長の熱放射の放射強度を測定することがで
きる高温計である。なお、プローブ620と2色高温計
635とを併せたものが放射強度測定手段に相当する。
Further, when a two-color pyrometer 635 receives a heat radiation group including heat radiation of two wavelengths of the above-described semi-transmission wavelength λ1 and total transmission wavelength λ2, the two-color pyrometer 635 outputs a semi-transmission wavelength λ1 from the heat radiation group. This is a pyrometer capable of extracting heat radiation and heat radiation of the total transmission wavelength λ2 and measuring the radiation intensity of the heat radiation of each wavelength. The combination of the probe 620 and the two-color pyrometer 635 corresponds to a radiation intensity measuring unit.

【0078】そして、上記以外の構成および動作は第1
の実施の形態の装置と同様である。
The configuration and operation other than the above are the first
This is the same as the device of the embodiment.

【0079】以上のような構成によりこの装置は以下の
ような制御を行う。
With this configuration, this apparatus performs the following control.

【0080】基板支持部40にデバイス面を下にして支
持された基板Wから下方に発せられた熱放射は、様々な
波長が混じった熱放射群としてプローブ620の上端に
入射している。
The heat radiation emitted downward from the substrate W supported on the substrate support part 40 with the device surface down is incident on the upper end of the probe 620 as a heat radiation group in which various wavelengths are mixed.

【0081】そして、プローブ620により2色高温計
635に送られた熱放射のうち前述の半透過波長λ1と
全透過波長λ2とが抽出され、半透過波長λ1の熱放射の
放射強度が半透過放射強度I、全透過波長λ2の放射強
度が無反射放射強度I0としてそれぞれ求められ、放射
強度信号として演算部640に送られる。そして、これ
らの信号を基に第1の実施の形態と同様に基板Wの温度
T0および膜厚dが求められ、それらに基づいてランプ
20の温度制御およびランプパワーの制御を行う。
Then, the above-mentioned semi-transmission wavelength λ1 and total transmission wavelength λ2 are extracted from the heat radiation sent to the two-color pyrometer 635 by the probe 620, and the radiation intensity of the heat radiation of the semi-transmission wavelength λ1 is semi-transmitted. The radiation intensity I and the radiation intensity of the total transmission wavelength λ2 are obtained as the non-reflection radiation intensity I0, respectively, and sent to the arithmetic unit 640 as a radiation intensity signal. Then, the temperature T0 and the film thickness d of the substrate W are obtained based on these signals in the same manner as in the first embodiment, and the temperature control and the lamp power of the lamp 20 are performed based on these.

【0082】ただし、半透過波長λ1および全透過波長
λ2は以下のような条件を満たしている必要がある。図
8はSiの熱放射の放射率の温度依存性を示す図であ
る。図示のようにSiはその温度が約800°K以下に
おいては1.0〜2.0μmの間の熱放射の波長域にお
いて急激にその放射率が低下しており、さらに約15μ
mの波長域にかけて緩やかにその放射率が上昇してい
る。
However, the semi-transmission wavelength λ1 and the total transmission wavelength λ2 need to satisfy the following conditions. FIG. 8 is a diagram showing the temperature dependence of the emissivity of thermal radiation of Si. As shown in the figure, the emissivity of Si rapidly decreases in the wavelength range of thermal radiation between 1.0 and 2.0 μm at a temperature of about 800 ° K or less, and further decreases by about 15 μm.
The emissivity gradually increases over the wavelength range of m.

【0083】逆に、熱放射の波長が約0.8〜1.0μ
mの波長域では約1100°K以下の温度における放射
率はほぼ一定である。
On the contrary, the wavelength of the heat radiation is about 0.8 to 1.0 μm.
In the wavelength range of m, the emissivity at a temperature of about 1100 ° K or less is almost constant.

【0084】そのため、前述の半透過波長λ1、全透過
波長λ2を1.0〜2.0μmの波長域に設定すると両
波長におけるシリコン基板の放射率が異なるものとな
り、そのような波長の半透過放射強度Iおよび無反射放
射強度I0に基づいて求められた基板Wの温度T0および
膜厚dは信頼できる値ではなく、そのような値に基づく
ランプ20の温度制御およびランプパワーの制御も正確
なものではなくなってしまう。
Therefore, when the above-mentioned semi-transmission wavelength λ 1 and total transmission wavelength λ 2 are set in the wavelength range of 1.0 to 2.0 μm, the emissivity of the silicon substrate at both wavelengths becomes different, and the semi-transmission wavelength of such a wavelength becomes different. The temperature T0 and the film thickness d of the substrate W obtained based on the radiation intensity I and the non-reflection radiation intensity I0 are not reliable values, and the temperature control of the lamp 20 and the control of the lamp power based on such values are also accurate. It is no longer a thing.

【0085】そこで第2の実施の形態の基板熱処理装置
2では半透過波長λ1および全透過波長λ2を放射率の安
定した約0.8〜1.0μmの波長域内の前述のような
値に設定しているのである。
Therefore, in the substrate heat treatment apparatus 2 of the second embodiment, the semi-transmission wavelength λ1 and the total transmission wavelength λ2 are set to the above-mentioned values within a wavelength range of about 0.8 to 1.0 μm where the emissivity is stable. It is doing.

【0086】なお、半透過波長λ1と全透過波長λ2はで
きるだけ近い波長に設定する方がSiの放射率が等しく
なるという面では望ましいが、あまり近すぎると逆に半
透鏡611の反射率rや透過率tの安定しない波長域
(図8では0.95μm付近)に両波長が含まれること
になり、その場合も制御上望ましくない。そのため、第
2の実施の形態の基板熱処理装置2では半透過波長λ1
および全透過波長λ2を前述のような値としている。
It is desirable to set the semi-transmission wavelength λ 1 and the total transmission wavelength λ 2 as close as possible in terms of the emissivity of Si being equal. Both wavelengths are included in a wavelength range where the transmittance t is not stable (around 0.95 μm in FIG. 8), which is also undesirable for control. Therefore, in the substrate heat treatment apparatus 2 of the second embodiment, the semi-transmission wavelength λ1
And the total transmission wavelength λ2 is set to the value described above.

【0087】また、半透鏡611の反射率rと透過率t
はいずれも「0.5」程度が望ましい。なぜなら、反射
率rが大きすぎると熱放射の多くが反射されてしまい半
透過放射強度Iが小さくなり、逆に透過率tが大きすぎ
ると半透過放射強度Iと無反射放射強度I0とが同程度
の大きさとなるためいずれも得られる結果の精度が落ち
るためである。
The reflectance r and the transmittance t of the semi-transmissive mirror 611
Is desirably about 0.5. This is because if the reflectance r is too large, much of the heat radiation will be reflected and the transflective radiation intensity I will be small. Conversely, if the transmissivity t is too large, the transflective radiation intensity I and the non-reflected radiation intensity I0 will be the same. This is because the accuracy of the obtained results is reduced due to the large size.

【0088】以上のような構成となっているので、第2
の実施の形態の基板熱処理装置2およびその温度・膜厚
測定部60でも、基板Wの回転による効果以外の第1の
実施の形態の基板熱処理装置1の効果と同様の効果を備
える。
With the above configuration, the second
The substrate heat treatment apparatus 2 and the temperature / thickness measurement unit 60 of the second embodiment also have the same effects as those of the substrate heat treatment apparatus 1 of the first embodiment except for the effects of the rotation of the substrate W.

【0089】さらに、第2の実施の形態の基板熱処理装
置2およびその温度・膜厚測定部60では、半透過波長
λ1および全透過波長λ2のいずれもが基板Wの放射率の
ほぼ温度に依存しない波長域に含まれる構成であるた
め、基板W上の同一の測定対象位置における同一時点の
半透過放射強度Iと無反射放射強度I0とを測定するこ
とができるので、より信頼性の高い温度測定および膜厚
測定を行うことができる。
Further, in the substrate heat treatment apparatus 2 and the temperature / thickness measuring section 60 of the second embodiment, both the semi-transmission wavelength λ1 and the total transmission wavelength λ2 are substantially dependent on the temperature of the emissivity of the substrate W. Since the configuration is included in a wavelength range that is not included, the semi-transmitted radiation intensity I and the non-reflected radiation intensity I 0 at the same time at the same measurement target position on the substrate W can be measured, so that a more reliable temperature Measurement and film thickness measurement can be performed.

【0090】[0090]

【4.その他の実施の形態】図10は、その他の実施の
形態の基板熱処理装置における半透鏡611の性質を示
す図である。この装置は第2の実施の形態の基板熱処理
装置2と半透鏡611の性質以外はまったく同一の構成
となっている。そして、半透鏡611が図10に示すよ
うに、第2の実施の形態の基板熱処理装置2の半透過波
長λ1と全透過波長λ2の波長が入れ替わっていて、全透
過波長λ2=0.9μmと半透過波長λ1=1.0μmと
の間の、0.95μm付近の波長域で半透鏡611の透
過率tが急激に増加しており、逆に反射率rは波長が
0.95μm付近で急激に減少している。
[4. Other Embodiments FIG. 10 is a view showing the properties of a semi-transparent mirror 611 in a substrate heat treatment apparatus according to another embodiment. This apparatus has exactly the same configuration as the substrate heat treatment apparatus 2 of the second embodiment except for the properties of the semitransparent mirror 611. Then, as shown in FIG. 10, the semi-transmissive mirror 611 switches the semi-transmission wavelength λ1 and the total transmission wavelength λ2 of the substrate heat treatment apparatus 2 of the second embodiment, and the total transmission wavelength λ2 = 0.9 μm. The transmittance t of the semi-transmissive mirror 611 sharply increases in the wavelength range around 0.95 μm between the semi-transmission wavelength λ 1 = 1.0 μm, and the reflectance r sharply increases when the wavelength is around 0.95 μm. Has decreased.

【0091】そして、それより高い波長域では透過率t
および反射率rが「0.5」付近になっている。すなわ
ち、この半透鏡611は約0.95μm以上の波長域で
は半透鏡の性質を示すが、それより低い波長域では透明
な性質を示すものである。半透鏡611にこのような性
質を持たすためにこの基板熱処理装置ではその鏡面を例
えば、SiO2とTiO2の多層薄膜を積層したものとし
ている。
In the higher wavelength range, the transmittance t
And the reflectance r is near “0.5”. That is, the semi-transmissive mirror 611 exhibits the properties of a semi-transparent mirror in a wavelength range of about 0.95 μm or more, but exhibits a transparent property in a wavelength range lower than that. In order to impart such properties to the semi-transparent mirror 611, the substrate heat treatment apparatus has a mirror surface formed by laminating, for example, a multilayer thin film of SiO2 and TiO2.

【0092】このような構成によりこの基板熱処理装置
およびその温度・膜厚測定部でも第2の実施の形態の基
板熱処理装置2と同様の効果を有する。
With such a configuration, this substrate heat treatment apparatus and its temperature / thickness measurement unit have the same effects as the substrate heat treatment apparatus 2 of the second embodiment.

【0093】また、上記の各実施の形態の装置におい
て、基板支持部40により基板Wをそのデバイス面を下
にして支持して加熱・成膜処理を施している。これに対
して他の実施の形態として基板Wをそのデバイス面を上
にして加熱・成膜処理を施す構成とする。すなわち、装
置構成としてはほぼ第1の実施の形態の装置および第2
の実施の形態の装置と同様にして、ただし基板Wの膜厚
dの測定は行わないものとするのである。
Further, in the apparatus of each of the above embodiments, the substrate W is supported by the substrate support portion 40 with its device surface down, and the heating and film forming process is performed. On the other hand, as another embodiment, a configuration is adopted in which the substrate W is subjected to a heating and film forming process with its device surface facing upward. That is, the device configuration is substantially the same as that of the first embodiment and the second device.
In the same manner as in the apparatus of the first embodiment, the measurement of the film thickness d of the substrate W is not performed.

【0094】そして温度制御は基板Wを上記各実施の形
態の装置において行ったと同様に半透過放射強度Iおよ
び無反射放射強度I0の測定結果に基づいた温度制御に
より基板Wを所定温度に保ちつつ、従来装置のように所
定時間だけ加熱・成膜処理を行い、その処理の終了後に
オペレータが基板Wを取り出して膜厚dを直接測定し、
所定の膜厚に達していなければ再度別の基板で加熱・成
膜処理を施すといった作業を繰返して最終的に所定の膜
厚の成膜を行うというものである。
The temperature control is performed while maintaining the substrate W at a predetermined temperature by the temperature control based on the measurement results of the semi-transmissive radiation intensity I and the non-reflection radiation intensity I 0, as in the case of performing the substrate W in the apparatus of each of the above embodiments. The heating and film forming process is performed only for a predetermined time as in the conventional apparatus, and after the process, the operator takes out the substrate W and directly measures the film thickness d.
If the film thickness has not reached the predetermined value, the operation of heating and forming a film on another substrate again is repeated to finally form a film having a predetermined thickness.

【0095】このような構成であるのでこれらの実施の
形態の基板熱処理装置でも第1および第2の実施の形態
の装置と同様の温度制御により、精度の高い加熱・成膜
処理を行うことができる。
With such a configuration, even in the substrate heat treatment apparatuses of these embodiments, highly accurate heating and film forming processing can be performed by the same temperature control as the apparatuses of the first and second embodiments. it can.

【0096】[0096]

【5.変形例】上記の第1の実施の形態の基板熱処理装
置1では無反射放射強度I0を透明部材612によって
透過された熱放射をプローブ620bに入射させて求め
る構成としたが、この発明はこれに限られず、透明部材
612を設けないで直接プローブ620bに入射させて
捉える構成としてもよい。
[5. Modification In the substrate heat treatment apparatus 1 according to the first embodiment, the non-reflection radiation intensity I0 is obtained by making the thermal radiation transmitted by the transparent member 612 incident on the probe 620b. The present invention is not limited to this, and a configuration may be adopted in which the light is directly incident on the probe 620b and captured without providing the transparent member 612.

【0097】また、第1の実施の形態の基板熱処理装置
1ではプローブ620aとプローブ620bのX−Y面
内での位置を透過板610の1つの直径上の中心を挟ん
で反対側に位置するように構成したが、この発明はこれ
に限られず、半透鏡に隣接し、透過板610の中心から
等距離の位置にプローブ620bが位置していてもよ
い。
Further, in the substrate heat treatment apparatus 1 of the first embodiment, the positions of the probes 620a and 620b in the XY plane are located on the opposite sides of the center on one diameter of the transmission plate 610. However, the present invention is not limited to this, and the probe 620b may be located at a position adjacent to the semi-transparent mirror and equidistant from the center of the transmission plate 610.

【0098】また、第1の実施の形態の基板熱処理装置
1ではプローブ620a、620bを1つずつ、第2の
実施の形態の基板熱処理装置2では透過板610の中心
にプローブ620を1つ備える構成としたが、この発明
はこれに限られず、たとえば第1の実施の形態の装置に
おいて透過板610に複数の半透鏡611とその下方に
複数のプローブ620aを設けるとともに、透明部材6
12の下方に複数のプローブ620bを設けて、プロー
ブ620aのそれぞれに入射する熱放射を集めて放射高
温計630aに、プローブ620bのそれぞれに入射す
る熱放射を集めて放射高温計630bに送り、それらで
求められた放射強度を基に加熱・成膜制御を行う構成等
とすることもできる。
In the substrate heat treatment apparatus 1 of the first embodiment, one probe 620a and one probe 620b are provided, and in the substrate heat treatment apparatus 2 of the second embodiment, one probe 620 is provided at the center of the transmission plate 610. However, the present invention is not limited to this. For example, in the apparatus of the first embodiment, a plurality of semi-transparent mirrors 611 and a plurality of probes 620a are provided below the transmission plate 610 in the transmission plate 610, and the transparent member 6
A plurality of probes 620b are provided below 12, and the thermal radiation incident on each of the probes 620a is collected and transmitted to the radiation pyrometer 630a, and the thermal radiation incident on each of the probes 620b is collected and transmitted to the radiation pyrometer 630b. It is also possible to adopt a configuration or the like in which heating and film formation are controlled based on the radiation intensity obtained in (1).

【0099】さらに、第2の実施の形態の装置において
基板Wをその温度が約850〜1100°Kでのみ処理
する場合には半透過波長λ1、全透過波長λ2を0.8〜
15μmとしてもよい。
Further, when the substrate W is processed only at a temperature of about 850 to 1100 ° K in the apparatus of the second embodiment, the semi-transmission wavelength λ 1 and the total transmission wavelength λ 2 are 0.8 to 0.8.
It may be 15 μm.

【0100】[0100]

【発明の効果】以上説明したように、請求項1ないし請
求項4の発明は、半透鏡を透過した被測定体からの熱放
射の強度である半透過放射強度、および、いずれの物体
によってもほぼ反射されていない状態の被測定体からの
熱放射の強度である無反射放射強度を基に温度算出手段
により被測定体の温度を求める構成であり、請求項5な
いし請求項8の発明は、半透鏡により不完全に透過され
る被測定体からの第1波長の熱放射の強度である半透過
放射強度、および半透鏡によりほぼ完全に透過される被
測定体からの第2波長の熱放射の強度である無反射放射
強度を基に温度算出手段により被測定体の温度を求める
構成であるため、半透鏡の反射率および透過率を考慮し
て被測定体の温度を求めることができるので、精度の高
い温度測定を行うことができる。
As described above, according to the first to fourth aspects of the present invention, the semi-transmissive radiation intensity, which is the intensity of the heat radiation from the object to be measured transmitted through the semi-transparent mirror, and the effect of any object The temperature of the object to be measured is obtained by the temperature calculating means based on the non-reflection radiation intensity which is the intensity of the heat radiation from the object to be measured which is not substantially reflected. Semi-transmissive radiation intensity, which is the intensity of the first-wavelength thermal radiation from the test object that is incompletely transmitted by the semi-transparent mirror, and heat of the second wavelength that is almost completely transmitted by the semi-transparent mirror from the test object. Since the temperature of the object to be measured is obtained by the temperature calculating means based on the non-reflected radiation intensity, which is the intensity of the radiation, the temperature of the object to be measured can be obtained in consideration of the reflectance and transmittance of the semi-transparent mirror. Perform accurate temperature measurement Door can be.

【0101】また、請求項2の発明では請求項1の発明
において半透鏡が第1放射強度測定手段に対向する位置
を中心とした円盤状であり、請求項6の発明では請求項
5の発明において半透鏡が放射強度測定手段に対向する
位置を中心とした円盤状であるため、第1放射強度測定
手段および放射強度測定手段に入射する熱放射がその周
りの半透鏡と基板との間で多重反射した熱放射の影響を
均等に受けたものであるので、いずれも、より精度の高
い温度測定を行うことができる。
According to a second aspect of the present invention, in the first aspect of the present invention, the semi-transparent mirror has a disk shape centered on a position opposed to the first radiation intensity measuring means. Since the semi-transparent mirror has a disk shape centered on the position facing the radiation intensity measuring means, the heat radiation incident on the first radiation intensity measuring means and the radiation intensity measuring means is transmitted between the semi-transparent mirror and the substrate therearound. Since the effects of the multiple-reflected heat radiation are equally affected, more accurate temperature measurement can be performed in each case.

【0102】また、請求項3の発明では請求項1および
請求項2のうちのいずれかの発明において、半透鏡の第
1放射強度測定手段側の面の第1放射強度測定手段に対
向する部分以外の部分が黒化処理されており、請求項7
の発明では請求項5および請求項6のうちのいずれかの
発明において、半透鏡の放射強度測定手段側の面の放射
強度測定手段に対向する部分以外の部分が黒化処理され
ているため、いずれも半透鏡内部で多重反射が生じない
ので、より精度の高い温度測定を行うことができる。
According to a third aspect of the present invention, in any one of the first and second aspects of the present invention, a portion of the surface of the semi-transparent mirror on the first radiation intensity measurement means side facing the first radiation intensity measurement means. 8. A portion other than the blackened portion is blackened.
In the invention according to any one of claims 5 and 6, since the portion of the surface of the semi-transparent mirror on the side of the radiation intensity measuring means other than the portion facing the radiation intensity measuring means is blackened, In any case, since multiple reflection does not occur inside the semi-transparent mirror, more accurate temperature measurement can be performed.

【0103】また、請求項4の発明では請求項1ないし
請求項3のうちのいずれかの発明において、第1放射強
度測定手段および第2放射強度測定手段のそれぞれの被
測定体に対する相対的位置が互いに入れ替わる構成であ
るため、第1放射強度測定手段と第2放射強度測定手段
とが被測定体の同一部分からの熱放射を捉えることがで
きるのでより精度の高い温度測定を行うことができる。
According to a fourth aspect of the present invention, in any one of the first to third aspects, the relative positions of the first radiation intensity measuring means and the second radiation intensity measuring means with respect to the measured object. Are replaced with each other, the first radiation intensity measuring means and the second radiation intensity measuring means can capture the heat radiation from the same part of the object to be measured, so that more accurate temperature measurement can be performed. .

【0104】また、請求項8の発明では請求項5ないし
請求項7のうちのいずれかの発明において、第1波長お
よび第2波長のいずれもが被測定体の放射率のほぼ温度
に依存しない波長域に含まれる構成であるので、基板上
の同一の測定対象位置における同一時点の半透過放射強
度と無反射放射強度とを測定することができるので、よ
り信頼性の高い温度測定を行うことができる。
According to the eighth aspect of the present invention, in any one of the fifth to seventh aspects, neither the first wavelength nor the second wavelength substantially depends on the temperature of the emissivity of the measured object. Since the configuration is included in the wavelength range, it is possible to measure the transflective radiation intensity and the non-reflective radiation intensity at the same time at the same measurement target position on the substrate, so that a more reliable temperature measurement can be performed. Can be.

【0105】さらに、請求項9の発明は請求項1ないし
請求項8のうちのいずれかの温度測定装置を温度測定手
段として備えるとともに、加熱制御手段が温度測定手段
によって求められた基板の温度をもとに加熱手段の動作
制御を行う基板熱処理装置であるため、温度測定手段に
よる精度の高い温度測定に基づいて加熱制御が行えるの
で良好な基板の熱処理を行うことができる。
Further, a ninth aspect of the present invention includes the temperature measuring device according to any one of the first to eighth aspects as a temperature measuring means, and the heating control means measures the temperature of the substrate obtained by the temperature measuring means. Since the substrate heat treatment apparatus performs the operation control of the heating means, the heating control can be performed based on the highly accurate temperature measurement by the temperature measurement means, so that good heat treatment of the substrate can be performed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この基板と半透鏡との間の熱放射の多重反射の
説明図である。
FIG. 1 is an explanatory diagram of multiple reflection of thermal radiation between a substrate and a semi-transparent mirror.

【図2】黒体の温度に対する放射強度を示すグラフであ
る。
FIG. 2 is a graph showing radiation intensity with respect to temperature of a black body.

【図3】第1の実施の形態の基板熱処理装置の断面図で
ある。
FIG. 3 is a cross-sectional view of the substrate heat treatment apparatus according to the first embodiment.

【図4】第1の実施の形態の透過板の平面図である。FIG. 4 is a plan view of the transmission plate according to the first embodiment.

【図5】第1の実施の形態の基板熱処理装置の制御の流
れを示す図である。
FIG. 5 is a diagram showing a control flow of the substrate heat treatment apparatus of the first embodiment.

【図6】第2の実施の形態の基板熱処理装置の断面図で
ある。
FIG. 6 is a cross-sectional view of a substrate heat treatment apparatus according to a second embodiment.

【図7】第2の実施の形態の透過板の平面図である。FIG. 7 is a plan view of a transmission plate according to a second embodiment.

【図8】第2の実施の形態の半透鏡の性質を示す図であ
る。
FIG. 8 is a diagram illustrating properties of a semi-transparent mirror according to the second embodiment.

【図9】Siの放射率の温度依存性を示す図である。FIG. 9 is a diagram showing the temperature dependence of the emissivity of Si.

【図10】その他の実施の形態の半透鏡の性質を示す図
である。
FIG. 10 is a diagram illustrating properties of a semi-transparent mirror according to another embodiment.

【符号の説明】[Explanation of symbols]

1,2 基板熱処理装置 20 ランプ 50 リニアモータ 60 温度・膜厚測定部 70 制御部 611 半透鏡 620,620a,620b プローブ 630a,630b 放射高温計 640 演算部 I0 無反射放射強度 I 半透過放射強度 T0 基板の温度 W 基板 d 膜厚 r 半透鏡の反射率 t 半透鏡の透過率 λ1 半透過波長 λ2 全透過波長 Reference Signs List 1, 2 substrate heat treatment apparatus 20 lamp 50 linear motor 60 temperature / thickness measurement unit 70 control unit 611 semi-transparent mirror 620, 620a, 620b probe 630a, 630b radiation pyrometer 640 operation unit I0 non-reflective radiation intensity I semi-transmissive radiation intensity T0 Substrate temperature W Substrate d Film thickness r Reflectance of semi-transmissive mirror t Transmittance of semi-transparent mirror λ1 Semi-transmission wavelength λ2 Total transmission wavelength

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 被測定体からの熱放射を基に当該被測定
体の温度を測定する温度測定装置において、 前記熱放射を不完全に透過する半透鏡と、 前記半透鏡を透過した前記熱放射の強度である半透過放
射強度を求める第1放射強度測定手段と、 いずれの物体によってもほぼ反射されていない状態の前
記熱放射の強度である無反射放射強度を求める第2放射
強度測定手段と、 前記半透過放射強度および前記無反射放射強度を基に前
記被測定体の温度を求める温度算出手段と、を備えるこ
とを特徴とする温度測定装置。
1. A temperature measuring device for measuring the temperature of an object to be measured based on heat radiation from the object to be measured, wherein: a semi-transparent mirror that incompletely transmits the heat radiation; First radiation intensity measuring means for obtaining a semi-transmissive radiation intensity which is the intensity of radiation; and second radiation intensity measuring means for obtaining a non-reflection radiation intensity which is the intensity of the heat radiation substantially not reflected by any object. And a temperature calculating means for calculating a temperature of the object to be measured based on the transflective radiation intensity and the non-reflection radiation intensity.
【請求項2】 請求項1の温度測定装置であって、 前記半透鏡が前記第1放射強度測定手段に対向する位置
を中心とした円盤状であることを特徴とする温度測定装
置。
2. The temperature measuring apparatus according to claim 1, wherein the semi-transparent mirror is formed in a disk shape centered on a position facing the first radiation intensity measuring means.
【請求項3】 請求項1および請求項2のうちのいずれ
かの温度測定装置であって、 前記半透鏡の前記第1放射強度測定手段側の面の前記第
1放射強度測定手段に対向する部分以外の部分が黒化処
理されていることを特徴とする温度測定装置。
3. The temperature measuring device according to claim 1, wherein a surface of said semi-transparent mirror on a side of said first radiation intensity measuring means faces said first radiation intensity measuring means. A temperature measuring device characterized in that a portion other than the portion is blackened.
【請求項4】 請求項1ないし請求項3のうちのいずれ
かの温度測定装置であって、 前記第1放射強度測定手段および前記第2放射強度測定
手段または前記被測定体のうちのいずれかを回転させる
回転手段をさらに備え、前記回転手段により前記第1放
射強度測定手段および前記第2放射強度測定手段のそれ
ぞれの前記被測定体に対する相対的位置が互いに入れ替
わることを特徴とする温度測定装置。
4. The temperature measuring device according to claim 1, wherein the first radiation intensity measuring means, the second radiation intensity measuring means, or the object to be measured is provided. A temperature measuring device, further comprising: rotating means for rotating the first radiation intensity measuring means and the second radiation intensity measuring means relative to the object to be measured by the rotating means. .
【請求項5】 被測定体からの熱放射を基に当該被測定
体の温度を測定する温度測定装置において、 第1波長および第2波長の前記熱放射を含む熱放射群の
うち、前記第1波長の熱放射を不完全に透過するととも
に、前記第2波長の前記熱放射をほぼ完全に透過する半
透鏡と、 前記半透鏡を透過した前記熱放射群のうち前記第1波長
の熱放射の強度である半透過放射強度および前記第2波
長の熱放射の強度である無反射放射強度を求める放射強
度測定手段と、 前記半透過放射強度および前記無反射放射強度を基に前
記被測定体の温度を求める温度算出手段と、を備えるこ
とを特徴とする温度測定装置。
5. A temperature measuring device for measuring the temperature of a device under test based on the heat radiation from the device under test, wherein the heat radiation group includes the heat radiation of a first wavelength and a second wavelength. A semi-transmissive mirror that imperfectly transmits the heat radiation of one wavelength and transmits the heat radiation of the second wavelength almost completely; heat radiation of the first wavelength in the group of heat radiation that has transmitted through the semi-transparent mirror A radiation intensity measuring means for calculating a semi-transmissive radiation intensity which is an intensity of the non-reflective radiation intensity which is an intensity of the thermal radiation of the second wavelength; and And a temperature calculating means for determining the temperature of the temperature.
【請求項6】 請求項5の温度測定装置であって、 前記半透鏡が前記放射強度測定手段に対向する位置を中
心とした円盤状であることを特徴とする温度測定装置。
6. The temperature measuring apparatus according to claim 5, wherein said semi-transparent mirror is formed in a disk shape centered on a position facing said radiation intensity measuring means.
【請求項7】 請求項5および請求項6のうちのいずれ
かの温度測定装置であって、 前記半透鏡の前記放射強度測定手段側の面の前記放射強
度測定手段に対向する部分以外の部分が黒化処理されて
いることを特徴とする温度測定装置。
7. The temperature measuring device according to claim 5, wherein a portion of the surface of the semi-transparent mirror on the side of the radiation intensity measuring means other than a portion facing the radiation intensity measuring means. A temperature measuring device characterized in that a blackening process is performed.
【請求項8】 請求項5ないし請求項7のうちのいずれ
かの温度測定装置であって、 前記第1波長および前記第2波長のいずれもが前記被測
定体の放射率のほぼ温度に依存しない波長域に含まれる
ことを特徴とする温度測定装置。
8. The temperature measuring device according to claim 5, wherein each of the first wavelength and the second wavelength substantially depends on the temperature of the emissivity of the measured object. A temperature measuring device characterized in that the temperature measuring device is included in a wavelength range not to be used.
【請求項9】 請求項1ないし請求項8のうちのいずれ
かの温度測定装置を温度測定手段として備え、前記被測
定体を基板とするとともに加熱手段によって前記基板を
加熱する基板熱処理装置であって、 前記温度測定手段によって求められた前記基板の温度を
もとに前記加熱手段の動作制御を行う加熱制御手段を備
えることを特徴とする基板熱処理装置。
9. A substrate heat treatment apparatus comprising: the temperature measurement device according to claim 1 as temperature measurement means, wherein the object to be measured is a substrate and the substrate is heated by heating means. And a heating control unit for controlling the operation of the heating unit based on the temperature of the substrate obtained by the temperature measurement unit.
JP31901296A 1996-11-29 1996-11-29 Temperature measuring apparatus and substrate heat treatment apparatus using the same Expired - Fee Related JP3366538B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31901296A JP3366538B2 (en) 1996-11-29 1996-11-29 Temperature measuring apparatus and substrate heat treatment apparatus using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31901296A JP3366538B2 (en) 1996-11-29 1996-11-29 Temperature measuring apparatus and substrate heat treatment apparatus using the same

Publications (2)

Publication Number Publication Date
JPH10160579A true JPH10160579A (en) 1998-06-19
JP3366538B2 JP3366538B2 (en) 2003-01-14

Family

ID=18105522

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31901296A Expired - Fee Related JP3366538B2 (en) 1996-11-29 1996-11-29 Temperature measuring apparatus and substrate heat treatment apparatus using the same

Country Status (1)

Country Link
JP (1) JP3366538B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002039864A (en) * 2000-05-01 2002-02-06 General Electric Co <Ge> Method of measuring temperature of combustion flame, and spectrometer
JP2007078394A (en) * 2005-09-12 2007-03-29 Sumitomo Metal Ind Ltd Apparatus and method for measuring surface temperature of metallic body, and method for manufacturing metallic body
WO2010064814A3 (en) * 2008-12-05 2010-08-05 에이피시스템 주식회사 Rapid heat treatment apparatus that enables extended pyrometer life
CN103649702A (en) * 2011-08-02 2014-03-19 瓦伊系统有限公司 Method and apparatus for measuring temperature of semiconductor layer

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002039864A (en) * 2000-05-01 2002-02-06 General Electric Co <Ge> Method of measuring temperature of combustion flame, and spectrometer
JP2007078394A (en) * 2005-09-12 2007-03-29 Sumitomo Metal Ind Ltd Apparatus and method for measuring surface temperature of metallic body, and method for manufacturing metallic body
WO2010064814A3 (en) * 2008-12-05 2010-08-05 에이피시스템 주식회사 Rapid heat treatment apparatus that enables extended pyrometer life
CN103649702A (en) * 2011-08-02 2014-03-19 瓦伊系统有限公司 Method and apparatus for measuring temperature of semiconductor layer
EP2741062A1 (en) * 2011-08-02 2014-06-11 Y Systems Ltd. Method and apparatus for measuring temperature of semiconductor layer
EP2741062A4 (en) * 2011-08-02 2014-12-10 Ysystems Ltd Method and apparatus for measuring temperature of semiconductor layer
TWI557399B (en) * 2011-08-02 2016-11-11 Ysystems Ltd Temperature measurement method and temperature measuring device for semiconductor layer
US9823132B2 (en) 2011-08-02 2017-11-21 Ysystems, Ltd. Method and apparatus for measuring temperature of semiconductor layer

Also Published As

Publication number Publication date
JP3366538B2 (en) 2003-01-14

Similar Documents

Publication Publication Date Title
US6479801B1 (en) Temperature measuring method, temperature control method and processing apparatus
US8696197B2 (en) Method and system for determining optical properties of semiconductor wafers
US5226732A (en) Emissivity independent temperature measurement systems
JP5361713B2 (en) Method for determining wafer temperature
US6056434A (en) Apparatus and method for determining the temperature of objects in thermal processing chambers
KR101047089B1 (en) Film forming apparatus and method comprising temperature and emissivity / pattern compensation
KR960013995B1 (en) Method for measuring surface temperature of semiconductor wafer substrate and heat-treating apparatus
JP2912157B2 (en) Object temperature measurement method
US5874711A (en) Apparatus and method for determining the temperature of a radiating surface
JP2009031294A (en) Method for optically inspecting progression of physical and/or chemical process proceeding on surface of member
JP2004157128A (en) Method for measuring wall thickness of high-temperature container
EP0536382A1 (en) Non-contact optical techniques for measuring surface conditions
JP6114762B2 (en) Equipment for measuring substrate temperature
WO2000008428A1 (en) Apparatus and methods for measuring substrate temperature
JP3366538B2 (en) Temperature measuring apparatus and substrate heat treatment apparatus using the same
JPH10163182A (en) Substrate heat treatment equipment and film thickness measuring equipment which can be used in substrate heat treatment equipment
JPH08184496A (en) Measurement of radiation luminance by angular wave filteringused in temperature measurement of heat radiating body
JP3554182B2 (en) Temperature measurement device and substrate heat treatment device
JP2001304971A (en) Temperature measuring method, method and device for heat treatment, and computer readable medium
JPH04130746A (en) Radiation thermometer and method for wafer temperature measurement
JP2006170616A (en) Method and device for measuring temperature, and semiconductor heat treating device
JP3594792B2 (en) Heat treatment equipment
JP2000036468A (en) Substrate processor and substrate processing method therefor
JPH0620938A (en) Quick thermal oxidizing apparatus for semiconductor substrate
JPH1140510A (en) Device and method of temperature measurement and wafer heat treatment equipment

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20071101

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20081101

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20091101

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091101

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20091101

LAPS Cancellation because of no payment of annual fees