JPH03117871A - Temperature controller for open display case - Google Patents

Temperature controller for open display case

Info

Publication number
JPH03117871A
JPH03117871A JP22635890A JP22635890A JPH03117871A JP H03117871 A JPH03117871 A JP H03117871A JP 22635890 A JP22635890 A JP 22635890A JP 22635890 A JP22635890 A JP 22635890A JP H03117871 A JPH03117871 A JP H03117871A
Authority
JP
Japan
Prior art keywords
temperature
comparator
output
amplifier
cold air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22635890A
Other languages
Japanese (ja)
Inventor
Hideaki Kodate
古立 秀明
Takashi Takizawa
滝沢 敬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP22635890A priority Critical patent/JPH03117871A/en
Publication of JPH03117871A publication Critical patent/JPH03117871A/en
Pending legal-status Critical Current

Links

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Freezers Or Refrigerated Showcases (AREA)

Abstract

PURPOSE:To maintain the temperature of food constant by varying signals to be output from a second amplifier and a comparator upon change of the atmospheric temperature, and controlling chilled gas temperature to be supplied inversely proportionally to the atmospheric temperature. CONSTITUTION:A low temperature open display case 1 is composed of an adiabatic box 3 having a commodity containing and removing opening 2 at its upper surface. A first temperature sensor 16 detects the temperature of supplied chilled gas heat-exchanged by a heat exchanger 8 or an evaporator, and a second temperature sensor 19 detects the atmospheric temperature. First, second amplifiers 18, 20 respectively amplify signals from both the sensors 16, 19. A controller 28 controls a comparator 27A which receives the outputs from the amplifiers 18, 20 and compares them, and the supply of liquid refrigerant to the exchanger 8 based on the output from the comparator 27A. As the atmospheric temperature changes, the signals from the amplifier 20 and the comparator 27A are varied, and the temperature of chilled gas to be supplied is controlled inversely proportionally to the atmospheric temperature based on the change of the output signal.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は低温ショーケース、特にオーブンショーケース
の温度制御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application The present invention relates to a temperature control device for a low temperature showcase, particularly an oven showcase.

(ロ)従来の技術 米国特許第2,148,643号明細書及び図面(以下
第1従来例という)、米国特許第2,186.984号
明細書及び図面(以下第2従来例という)、特公昭45
−23713号公報(以下第3従来例という)には、ガ
スを封入した温度感知装置が機械室等の庫外に、この温
度感知装置の感温部が蒸発器に設けられ、温度変化に伴
なう感温部内のガス圧力の変化に基づいて電気接点機構
を閉・開させ圧縮機の運転・停止を行なう所謂オン・オ
フ運転制御が行なわれている。
(b) Prior art U.S. Patent No. 2,148,643 specification and drawings (hereinafter referred to as 1st prior art example), U.S. Patent No. 2,186.984 specification and drawings (hereinafter referred to as 2nd prior art example), Special Public Service 1977
In Publication No. 23713 (hereinafter referred to as the 3rd conventional example), a temperature sensing device filled with gas is installed outside the warehouse such as a machine room, and a temperature sensing part of this temperature sensing device is installed in the evaporator, and the temperature sensing device is installed in the evaporator to detect changes in temperature. So-called on-off operation control is performed in which the electric contact mechanism is closed and opened to operate and stop the compressor based on changes in the gas pressure within the temperature sensing section.

又、米国特許第4.585.165号明細書及び図面(
以下第4従来例という)には、温水温度測定用のセンサ
と、外気温度センサとの双方でもって複数のラジエタの
温度制御を行なう構成が開示され、夫々検出した温度を
増幅、比較して最終的に比較器の出力によってトランジ
スタ及びリレーをオン・オフしてスイッチを開閉してい
る。
Also, U.S. Patent No. 4.585.165 and drawings (
(hereinafter referred to as the fourth conventional example) discloses a configuration in which the temperature of multiple radiators is controlled using both a hot water temperature measurement sensor and an outside air temperature sensor, and the temperatures detected by each are amplified and compared to finalize the final result. The output of the comparator is used to turn on and off transistors and relays to open and close switches.

(ハ)発明が解決しようとする課題 上記第1乃至第3従来例において、温度感知装置が機械
式であり又、外気に晒される位置に配置されている関係
上、外気温度の変化を受けるとその動作に時間遅れ(動
作ずれ)が生じるために、この動作ずれを補正するよう
にしているが、かへる制御は密閉された冷蔵庫の温度制
御であって輻射熱の影響がなく、貯蔵食品そのものに対
する外気の影響を考慮しない制御であるために、か〜る
温度感知装置をオーブンタイプのショーケースに用いた
場合には、冷気温度と貯蔵食品との温度差が大きく貯蔵
食品の品質低下を招く課題があった。
(c) Problems to be Solved by the Invention In the first to third conventional examples described above, since the temperature sensing device is mechanical and is placed in a position exposed to the outside air, it is difficult to detect changes in the outside temperature. Since there is a time delay (operation lag) in the operation, we try to compensate for this operation lag, but heating control is a temperature control of a sealed refrigerator, so it is not affected by radiant heat, and the stored food itself Since the control does not take into account the influence of outside air on the temperature, if such a temperature sensing device is used in an oven-type showcase, there will be a large temperature difference between the cold air temperature and the stored food, leading to a decline in the quality of the stored food. There was an issue.

又、上記第4従来例では、2ケ所の温度を検出し、その
検出値を増幅、比較した後、スイッチングトランジスタ
、リレーを用いて制御対象となる回路を動作させている
が、か〜る技術をオーブンタイプのショーケースに用い
た場合には、上記第1乃至第3従来例と同じ課題を生じ
ることになる。
Furthermore, in the fourth conventional example, the temperature at two locations is detected, the detected values are amplified and compared, and then the circuit to be controlled is operated using a switching transistor and a relay. When used in an oven-type showcase, the same problems as the first to third conventional examples described above will occur.

本発明は上記課題を解決することを目的とするもので、
詳しくは、開口を通って貯蔵室に侵入する輻射熱の増減
に対応してエアカーテンを形成する供給冷気温度を変化
させて食品の温度を一定に維持することを目的とする。
The present invention aims to solve the above problems,
Specifically, the purpose is to maintain the temperature of the food constant by changing the temperature of the supplied cold air that forms the air curtain in response to the increase or decrease in radiant heat that enters the storage chamber through the opening.

〈二)課題を解決するための手段 上記課題点を解決する手段として、本発明では、一側面
に形成した商品収納及び取出用の開口に冷気によるエア
カーテンを形成してなるオープンショーケースにおいて
、蒸発器となる熱交換器で熱交換された供給冷気の温度
を検出する第1温度センサと、外気温度を検出する第2
温度センサと、この第1、第2両温度センサからの信号
を夫々増幅する第1、第2増幅回路と、これら第1、第
2両増幅回路夫々の出力を入力して比較する比較回路と
、この比較回路の出力に基づいて蒸発器となる前記熱交
換器への液冷媒の供給を制御する制御回路とを備え、外
気温度の変化に伴ない前記第2増幅回路及び比較回路か
ら出力される信号を変化させ、この出力信号の変化に基
づき、外気温度に対して供給冷気温度を反比例制御させ
る構成を採用した。
(2) Means for Solving the Problems As a means for solving the above problems, the present invention provides an open showcase in which an air curtain of cold air is formed in an opening for storing and taking out products formed on one side. A first temperature sensor detects the temperature of the supplied cold air heat exchanged with the heat exchanger serving as the evaporator, and a second temperature sensor detects the outside air temperature.
A temperature sensor, first and second amplifier circuits that amplify signals from the first and second temperature sensors, respectively, and a comparison circuit that receives and compares the outputs of the first and second amplifier circuits. , and a control circuit that controls the supply of liquid refrigerant to the heat exchanger serving as an evaporator based on the output of the comparison circuit, and the control circuit that controls the supply of liquid refrigerant to the heat exchanger serving as an evaporator based on the output of the comparison circuit, A configuration was adopted in which the supplied cold air temperature is controlled in inverse proportion to the outside air temperature based on the change in the output signal.

(ホ)作用 上記手段によれば、冷却運転時、外気温度の変化に伴な
い、第2増幅回路から比較回路へ出力される信号を変化
させ、この出力信号の変化に反比例させ供給冷気の温度
を変化させ、外気温度が低下したとき又は上昇したとき
は自動的に供給冷気温度を上昇又は低下させ庫内を所定
温度幅に維持する。
(E) Effect According to the above means, during cooling operation, the signal output from the second amplifier circuit to the comparison circuit is changed in accordance with the change in outside air temperature, and the temperature of the supplied cold air is made inversely proportional to the change in this output signal. When the outside air temperature drops or rises, the supplied cold air temperature is automatically raised or lowered to maintain the inside of the refrigerator within a predetermined temperature range.

(へ)実施例 以下、本発明の一実施例を第1図乃至第3図に基づいて
詳細に説明する。
(F) Example Hereinafter, an example of the present invention will be described in detail based on FIGS. 1 to 3.

第2図の(1)は低温オープンショーケースで、上面に
商品収納及び取出用の開口(2)を有する断熱箱(3)
にて本体は構成され、前記断熱箱(3)にて画成された
庫内(4)には区画板(5)を配設して該庫内を貯蔵室
(6)と通路(7)とに仕切り、この通路(7)の相対
向した垂直区域にはプレートフィン形の第1、第2熱交
換器(8) 、 (9)、底部区域には正逆回転可能な
軸流形の送風機(10)が夫々配設されている。又、断
熱箱(3)の下方には、圧縮機(11)及び凝縮器(1
2)等が設置された機械室(13)が形成されている。
Figure 2 (1) is a low-temperature open showcase with an insulating box (3) that has an opening (2) on the top for storing and taking out products.
A partition plate (5) is arranged in the refrigerator interior (4) defined by the insulation box (3), and the interior is divided into a storage room (6) and a passage (7). The opposite vertical areas of this passage (7) are provided with plate-fin type first and second heat exchangers (8) and (9), and the bottom area is provided with an axial flow type heat exchanger that can be rotated forward and backward. A blower (10) is provided respectively. Further, below the insulation box (3), a compressor (11) and a condenser (1
A machine room (13) is formed in which equipment such as 2) is installed.

又、(15A) 、 (15B)は夫々第1、第2熱交
換器(8) 、 (9)上方の第1、第2通路間口で、
第1通路間口(15A>は冷却運転時に吹出口として作
用して第1熱交換器(8)にて冷却された冷気を吹き出
し、このとき吸込口となる第2通路間口(15B)へ向
い実線矢印の如く冷気は流れ、開口(2)には冷たいエ
アカーテンが形成される。又、第1熱交換器(8)の体
重運転時、第2熱交換器(9)へ冷媒が流れ冷却運転が
行なわれ、第2通路間口(15B)は吹出口として作用
して冷気を吹き出し、吸込口となる第1通路間口(15
A)へ向い鎖線矢印の如く冷気は流れ、開口(2〉には
冷たいエアカーテンが形成される。
Further, (15A) and (15B) are the first and second passage frontages above the first and second heat exchangers (8) and (9), respectively,
The first passageway frontage (15A> acts as a blowout port during cooling operation and blows out the cold air cooled by the first heat exchanger (8), and at this time, the solid line points towards the second passageway frontage (15B) which becomes the suction port. Cold air flows as shown by the arrow, and a cold air curtain is formed in the opening (2).Furthermore, when the first heat exchanger (8) is in heavy duty operation, the refrigerant flows to the second heat exchanger (9) to perform cooling operation. The second passageway frontage (15B) acts as a blow-off port and blows out cold air, and the first passageway frontage (15B) serves as a suction port.
The cold air flows toward A) as indicated by the chain arrow, and a cold air curtain is formed at the opening (2>).

第1図は上記低温オープンショーケースの概略温度制御
回路を示し、(16)は、第1、第2電源ライン(Ll
)、 (t、、)間に接続された第1温度センサで、こ
の第1温度センサは、第1通路間口(15A)の貯蔵室
(6)側近傍に配設され、第1熱交換器(8)にて熱交
換され第1開口(15A)から吹き出された冷気の温度
を検出する負特性のものである。又、(R1)〜(R6
)は第1アンプ(17)と共に第1増幅回路(18)を
構成する第1〜第5バイアス抵抗である。
FIG. 1 shows a schematic temperature control circuit of the low-temperature open showcase, and (16) indicates the first and second power supply lines (Ll
), (t,,), the first temperature sensor is disposed near the storage chamber (6) side of the first passage frontage (15A), and is connected between the first heat exchanger (8) It has a negative characteristic that detects the temperature of the cool air that has undergone heat exchange and is blown out from the first opening (15A). Also, (R1) to (R6
) are first to fifth bias resistors that constitute the first amplifier circuit (18) together with the first amplifier (17).

ここで、第2熱交換器(9)を使用して冷却運転が行な
われるときのために第2通路間口(15B>側にも第1
温度センサ(16)を設けている。(19〉は例えば凝
縮器(12)の外気吸込口側近傍に配設された外気温度
を検出する負特性の第2温度センサ、(20)は第2増
幅回路で(R6)〜(R1,)は第2アンプ(21)の
ための第6〜第10バイアス抵抗、(R,、)〜(R。
Here, in case cooling operation is performed using the second heat exchanger (9), a first
A temperature sensor (16) is provided. (19> is, for example, a second temperature sensor with a negative characteristic that detects the outside air temperature, which is disposed near the outside air inlet side of the condenser (12); (20) is a second amplifier circuit; (R6) to (R1, ) are the 6th to 10th bias resistors for the second amplifier (21), (R, , ) to (R.

4)は第2アンプ(21)の出力をさらに増幅する第3
アンプ(22)のための第11〜第14バイアス抵抗で
ある。又、(23)は第3アンプ(22)の出力端子に
接続された第1ダイオードで、庫内温度設定用の可変抵
抗(24)の両端の電位差を一定にする定電流用素子と
して用いられる。さらに(25)は可変抵抗(24)の
電位を微調整する微調整用抵抗、(26)は第1ダイオ
ード(23)のバイアス抵抗である。
4) is a third amplifier that further amplifies the output of the second amplifier (21).
These are the 11th to 14th bias resistors for the amplifier (22). Further, (23) is the first diode connected to the output terminal of the third amplifier (22), and is used as a constant current element to keep the potential difference between both ends of the variable resistor (24) constant for setting the temperature inside the refrigerator. . Further, (25) is a fine adjustment resistor for finely adjusting the potential of the variable resistor (24), and (26) is a bias resistor of the first diode (23).

又、(27)は第1アンプ(17)の出力を入力すると
共に、第3アンプ(24)の出力を可変抵抗(24)を
介して入力する比較器で、(Rts) 、 (R11)
は比較器(27)と共に比較回路(27A)を構成し、
比較回路(27A)の出力にヒステリシスを持たせるた
めの第15、第16抵抗、(Rxt)は比較器(27)
の出力端子と前記圧縮機(11)の運転制御回路(28
)との間に接続された第17抵抗である。前記運転制御
回路(28)は、第17抵抗(R,?)がベースに接続
されたNPN型トランジスタ(29)と、このトランジ
スタ(29)に接続された圧縮機運転制御用のリレー(
30)の励磁フィル(30C)と、第2ダイオード(3
1)と、リレー(30)のリレースイッチ(305)と
から構成され、リレースイッチ(305)は常閉、常閉
接点(3QS+> 、 (305,)及び切換接片(3
05,)により構成され、切換接片(305,)が常閉
接点(305,)に閉じているとき圧縮機(11)は運
転される。
Further, (27) is a comparator which inputs the output of the first amplifier (17) and also inputs the output of the third amplifier (24) via a variable resistor (24), (Rts), (R11)
constitutes a comparison circuit (27A) together with a comparator (27),
The 15th and 16th resistors are used to provide hysteresis to the output of the comparator circuit (27A), and (Rxt) is the comparator (27).
and the operation control circuit (28) of the compressor (11).
) is the 17th resistor connected between the . The operation control circuit (28) includes an NPN transistor (29) to which a 17th resistor (R, ?) is connected to the base, and a compressor operation control relay (29) connected to this transistor (29).
30) excitation filter (30C) and the second diode (30C).
1) and a relay switch (305) of the relay (30), the relay switch (305) is normally closed, normally closed contact (3QS+>, (305,) and changeover contact (305,).
05,), and the compressor (11) is operated when the switching contact (305,) is closed to the normally closed contact (305,).

以下、上記温度制御装置の動作について説明する。The operation of the temperature control device will be explained below.

外気温度が殆んど変化していない常温状態(20″C)
である場合、供給冷気温度は略0°Cに維持されており
、このとき、第2温度センサ(19)の抵抗値及び第2
増幅回路(20)の出力も殆んど変化していない、そし
て可変抵抗(24)から比較器(27)が入力する電位
が略一定で、比較器(27)がH(ハイ)レベル信号を
出力し、トランジスタ(29)がオンで励磁コイル(3
0C)が通電でリレースイッチ(30S)のオフにて圧
縮機(11)が停止して蒸発器となる第1熱交換器(8
)に液冷媒が供給されていない時に、庫内温度が上昇し
て第1通路間口(15A)から吹き出た冷気の温度も上
昇し、第1温度センサ(16)の抵抗値が低下して第1
アンプ(17)の+(プラス)個入力端子の入力電位が
低下すると、第1アンプ〈17)の出力は低下して比較
器(27)の+側入力端子の入力も低下する。そして供
給冷気温度が上昇し、−(マイナス)個入力端子の電位
より+側入力端子の電位の低くなると、比較器(27)
はHレベル信号に代わりL(ロー)レベル信号を出力し
てトランジスタ(29)はオフし、リレーコイル(30
C)は非通電になりリレースイッチ(305)の切換接
片(305m)は常閉接点(305,)に閉じ、圧縮機
(11)は運転を開始し、蒸発器となる第1熱交換器(
8)に液冷媒が供給される。以後圧縮機(11)の運転
により庫内温度が低下し、第1温度センサ(16)の抵
抗値が上昇して第1アンプ(17)の出力が上昇すると
、比較器(27)の+側入力端子の入力も上昇する。゛
そして、供給冷気温度が低下し、比較器(27)の−個
入力端子より+側入力端子の電位が高くなると、比較器
(27)はHレベル信号を出力してトランジスタ(29
)はオンし、リレーフィル(30C)は通電され、リレ
ースイッチ(305)は切り換わり圧縮機の運転は停止
する。以後上記動作が繰り返され、圧縮機(11)は運
転及び停止を繰り返し、第3図(A)のように供給冷気
の温度は例えば−0,5°C〜0.5°Cの間にて変化
することにより庫内は設定された供給冷気温度に維持さ
れる。
Normal temperature condition (20″C) with almost no change in outside temperature
In this case, the supplied cold air temperature is maintained at approximately 0°C, and at this time, the resistance value of the second temperature sensor (19) and the second
The output of the amplifier circuit (20) also hardly changes, and the potential input from the variable resistor (24) to the comparator (27) is approximately constant, and the comparator (27) receives an H (high) level signal. When the transistor (29) is on and the excitation coil (3
When the relay switch (30S) is turned off, the compressor (11) stops and the first heat exchanger (8) becomes an evaporator.
), when liquid refrigerant is not being supplied to the refrigerator, the temperature inside the refrigerator rises and the temperature of the cold air blown out from the first passage opening (15A) also rises, the resistance value of the first temperature sensor (16) decreases, and the temperature of the first temperature sensor (16) decreases. 1
When the input potential of the + (plus) input terminals of the amplifier (17) decreases, the output of the first amplifier (17) decreases, and the input of the + side input terminal of the comparator (27) also decreases. When the temperature of the supplied cold air rises and the potential of the + side input terminal becomes lower than the potential of the - (minus) input terminals, the comparator (27)
outputs an L (low) level signal instead of an H level signal, turns off the transistor (29), and turns off the relay coil (30).
C) becomes de-energized, the switching contact (305m) of the relay switch (305) closes to the normally closed contact (305,), the compressor (11) starts operating, and the first heat exchanger that becomes the evaporator (
8) is supplied with liquid refrigerant. Thereafter, when the temperature inside the refrigerator decreases due to the operation of the compressor (11), the resistance value of the first temperature sensor (16) increases, and the output of the first amplifier (17) increases, the positive side of the comparator (27) increases. The input at the input terminal also increases.゛Then, when the supplied cold air temperature decreases and the potential of the + side input terminal of the comparator (27) becomes higher than the - input terminal, the comparator (27) outputs an H level signal and the transistor (29)
) is turned on, the relay fill (30C) is energized, the relay switch (305) is switched, and the compressor operation is stopped. Thereafter, the above operation is repeated, and the compressor (11) is repeatedly operated and stopped, and as shown in FIG. 3(A), the temperature of the supplied cold air is, for example, between -0.5°C and 0.5°C. By changing the temperature, the inside of the refrigerator is maintained at the set supply cold air temperature.

又、上記の如く冷却運転が行なわれているときに、外気
例えばオープンショーケース(1)が設置されているス
ーパーマーケット等の店内空気の温度が、1日の温度変
化、顧客の混み具合季節の変化等により変化したとき、
例えば外気温度が例えば25℃に上昇したときには、第
2温度センサ(19)の抵抗値は低下して第2アンプ(
21)の−個入力端子の入力電位は上昇し、第2アンプ
(21)の出力電位は低下して第3アンプ(22)の出
力電位は反転して上昇する。そして、可変抵抗(24)
の電位も上昇して比較器(27)の−個入力端子の入力
電位も上昇する。ここで、圧縮機(11)が停止状態で
供給冷気の温度が次第に上昇し、第1アンプ(17)の
出力が次第に低下したとき、外気温度が上昇する前の比
較器(27)がLレベル信号を出力する供給冷気の温度
より低い例えば−0,5℃の供給冷気温度にて比較器(
27)の−個入力端子より+側入力端子の入力電位は低
くなり、比較器(27)はLレベル信号を出力し、トラ
ンジスタ(29)はオフして励磁コイル(30C)は非
通電になり、リレースイッチ(30S)は切り換わり、
圧縮機(11)は運転を開始する。
In addition, when the cooling operation is being performed as described above, the temperature of the outside air, for example, the air inside the store such as a supermarket where the open showcase (1) is installed, changes during the day, the crowding of customers, and seasonal changes. When changed due to etc.,
For example, when the outside temperature rises to, for example, 25°C, the resistance value of the second temperature sensor (19) decreases and the second amplifier (
The input potential of the - input terminals of 21) increases, the output potential of the second amplifier (21) decreases, and the output potential of the third amplifier (22) reverses and increases. And variable resistor (24)
The potential of the comparator (27) also rises, and the input potential of the - input terminals of the comparator (27) also rises. Here, when the compressor (11) is in a stopped state and the temperature of the supplied cold air gradually rises and the output of the first amplifier (17) gradually decreases, the comparator (27) before the outside air temperature rises is at L level. The comparator (
The input potential of the + side input terminal becomes lower than the - input terminal of 27), the comparator (27) outputs an L level signal, the transistor (29) is turned off, and the excitation coil (30C) is de-energized. , the relay switch (30S) switches,
The compressor (11) starts operating.

圧縮機(11)の運転が継続して供給冷気温度が次第に
低下すると、第1温度センサ(16)の端子間電圧は次
第に上昇し、第1アンプ(17)の出力は上昇して比較
器(27)の+側入力端子の電位は上昇し、外気温度が
上昇する前に比較器(27)がHレベル信号を出力した
温度より供給冷気温度が低くなり、例えば−1,5℃に
て比較器(27)の−個入力端子より+側入力端子の電
位が高くなると、比較器(27)はHレベル信号を出力
し、リレースイッチ(30S)は切り換わり、圧縮機(
11)は運転を停止する。
When the compressor (11) continues to operate and the temperature of the supplied cold air gradually decreases, the voltage between the terminals of the first temperature sensor (16) gradually increases, the output of the first amplifier (17) increases, and the comparator ( The potential of the + side input terminal of 27) rises, and before the outside air temperature rises, the supplied cold air temperature becomes lower than the temperature at which the comparator (27) outputs an H level signal, and for example, the comparison is made at -1.5°C. When the potential of the positive input terminal of the device (27) becomes higher than the negative input terminal, the comparator (27) outputs an H level signal, the relay switch (30S) is switched, and the compressor (
11) stops operation.

以後、圧縮機(11)の運転、停止即ち蒸発器となる熱
交換器への液冷媒の供給、停止の繰り返しにより、供給
冷気の温度は第3図(B)に示したように、外気温度の
上昇前(A)より低く制御され、又、サーモサイクルは
短くなる。このため、庫内の貯蔵商品の温度は外気温度
の上昇する前と同じ所定温度幅に維持される。尚、供給
冷気温度は例えば外気温度が1℃上昇すると略0.2℃
低くなるように前記外気温度と反比例して制御される。
Thereafter, by repeatedly operating and stopping the compressor (11), that is, supplying and stopping the liquid refrigerant to the heat exchanger that serves as the evaporator, the temperature of the supplied cold air changes to the outside air temperature as shown in Figure 3 (B). is controlled lower than before (A), and the thermocycle becomes shorter. Therefore, the temperature of the stored products in the warehouse is maintained within the same predetermined temperature range as before the outside temperature rose. In addition, the supplied cold air temperature will be approximately 0.2°C when the outside air temperature increases by 1°C.
It is controlled in inverse proportion to the outside air temperature so that the outside temperature is lowered.

又、外気温度が例えば15°Cに低下したときには、第
2温度センサ(19)の端子間電圧は上昇して第2アン
プ(21)の−個入力端子の電位は低下し、第2アンプ
(21)の出力は上昇して第3アンプ(22)の出力は
低下する。そして、可変抵抗(26)から比較器(27
)の−個入力端子が入力する電位は低下する。ここで圧
縮機(11)が運転を停止していて供給冷気温度が上昇
しているとき、第1温度センサ(16)の端子間電圧は
次第に低下して第1アンプ(17)の出力は次第に低下
し、比較器(27)の+側入力端子の電位は次第に低下
する。そして、外気温度が低下する前の比較器(27)
がLレベル信号を出力する温度より供給冷気温度が上昇
して例えば+1゜5℃になると、比較器(27)の−個
入力端子より+側入力端子の電位は低くなり、比較器(
27)はHレベル信号に換わりLレベル信号を出力し、
リレースイッチ(305)は切り換わり圧縮機(11)
は運転を開始する。
Further, when the outside temperature drops to, for example, 15°C, the voltage between the terminals of the second temperature sensor (19) increases, the potential of the − input terminals of the second amplifier (21) decreases, and the voltage between the terminals of the second amplifier (21) decreases. 21) increases, and the output of the third amplifier (22) decreases. Then, from the variable resistor (26) to the comparator (27
) decreases. Here, when the compressor (11) is not operating and the supplied cold air temperature is rising, the voltage between the terminals of the first temperature sensor (16) gradually decreases, and the output of the first amplifier (17) gradually decreases. The potential of the + side input terminal of the comparator (27) gradually decreases. And the comparator (27) before the outside temperature drops
When the supplied cold air temperature rises above the temperature at which outputs an L level signal, for example, +1°5°C, the potential of the + side input terminal of the comparator (27) becomes lower than that of the - input terminal, and the comparator (27) outputs an L level signal.
27) outputs an L level signal instead of an H level signal,
The relay switch (305) switches the compressor (11)
starts driving.

圧縮機(11)の運転が継続して供給冷気温度が次第に
低下すると、第1温度センサ(16)の端子間電圧は次
第に上昇し、第1アンプ(17)の出力は上昇して比較
器(27)の+側入力端子の電位は上昇し、外気温度が
低下する前の比較器(27)がHレベル信号を出力する
温度まで供給冷気温度が低下する前に、例えば+0.5
°Cで比較器(27)の−個入力端子より+側入力端子
の電位が高くなり、比較器(27)はLレベル信号に換
わりHレベル信号を出力し、リレースイッチ(305)
は切り換わり圧縮機(11〉は運転を停止する。以後、
圧縮機(11)の運転、停止の繰り返しにより、供給冷
気の温度は第3図(C)に示したように、外気温度上昇
前の(A)より高く制御され、又、サーモサイクルは長
くなる。このため、庫内の貯蔵商品の温度は外気温度が
低下する前と同じ所定温度幅に維持される。尚、供給冷
気温度は例えば外気温度が1°C低下すると略0.2°
C高くなるように前記外気温度と反比例して制御される
When the compressor (11) continues to operate and the temperature of the supplied cold air gradually decreases, the voltage between the terminals of the first temperature sensor (16) gradually increases, the output of the first amplifier (17) increases, and the comparator ( The potential of the + side input terminal of 27) increases, and before the temperature of the supplied cold air decreases to the temperature at which the comparator (27) outputs an H level signal before the outside air temperature decreases, for example, +0.5
°C, the potential of the + side input terminal of the comparator (27) becomes higher than the - input terminal, the comparator (27) outputs an H level signal instead of an L level signal, and the relay switch (305)
is switched and the compressor (11) stops operating. From now on,
By repeatedly starting and stopping the compressor (11), the temperature of the supplied cold air is controlled to be higher than that shown in (A) before the outside air temperature rises, as shown in Figure 3 (C), and the thermocycle becomes longer. . Therefore, the temperature of the stored products in the warehouse is maintained within the same predetermined temperature range as before the outside air temperature decreased. In addition, the supplied cold air temperature decreases by approximately 0.2° when the outside air temperature decreases by 1°C, for example.
It is controlled in inverse proportion to the outside air temperature so that C becomes higher.

従って、外気温度の変化により、第2増幅回路(20)
の出力は変化して比較器(27)の−個入力端子の電位
は変化し、前記比較器(27)がHレベル信号及びLレ
ベル信号を切り換わり出力する供給冷気の温度は、前記
外気温度の変化により変わり、外気温度が上昇したとき
には圧縮機(11)が運転を開始する供給冷気温度すな
わち設定温度の上限値、又、圧縮機(11)が運転を停
止する供給冷気温度すなわち設定温度の下限値は共に自
動的に低下するため、庫内温度は外気温度が上昇する前
と略等しい温度幅にて制御されると共にサーモサイクル
は短くなり、この結果、外気温度が上昇し、エアカーテ
ンを通過して開口(2)から貯蔵室(6)内の貯蔵食品
へ達する輻射熱が増加しても、前記輻射熱の増加に対し
て、庫内温度に貯蔵食品の温度は追従して殆んど変化な
く、又、外気温度が低下したときには設定温度の上限値
、下限値は共に自動的に上昇するため、供給冷気温度は
外気温度が低下する前より高く制御され、この結果、外
気温度が低下して開口(2)から貯蔵室(6)内の貯蔵
食品への輻射熱が減少しても、前記輻射熱の減少に対し
て、貯蔵食品の温度は庫内温度に追従して温度変化は殆
んどなく、このため、外気温度の季節又は1日の店内温
度の変化等による変化に関係なく、貯蔵食品の温度を殆
んど一定に保つことができ、この結果、貯蔵温度範囲の
狭い前記貯蔵食品の品質を長期にわたり良好な状態に保
つことができる。
Therefore, due to a change in the outside temperature, the second amplifier circuit (20)
The output of the comparator (27) changes, and the potential of the − input terminals of the comparator (27) changes, and the temperature of the supplied cold air that the comparator (27) outputs by switching between an H level signal and an L level signal is equal to the outside air temperature. The supply cold air temperature, that is, the upper limit of the set temperature, at which the compressor (11) starts operating when the outside air temperature rises, and the supply cold air temperature, that is, the set temperature, at which the compressor (11) stops operating. Since both lower limit values are automatically lowered, the temperature inside the refrigerator is controlled within a temperature range that is approximately the same as before the outside air temperature rises, and the thermocycle is shortened. As a result, the outside air temperature rises and the air curtain is closed. Even if the radiant heat that passes through and reaches the stored food in the storage room (6) from the opening (2) increases, the temperature of the stored food follows the internal temperature and hardly changes with respect to the increase in radiant heat. Moreover, when the outside air temperature drops, both the upper and lower limits of the set temperature automatically rise, so the supplied cold air temperature is controlled to be higher than before the outside air temperature dropped, and as a result, the outside air temperature decreases. Even if the radiant heat from the opening (2) to the stored food in the storage room (6) decreases, the temperature of the stored food follows the internal temperature and there is almost no temperature change in response to the decrease in radiant heat. Therefore, the temperature of the stored food can be kept almost constant regardless of seasonal changes in the outside temperature or changes in the temperature inside the store during the day. can maintain good quality over a long period of time.

(ト)発明の効果 本発明は上記の如く構成されたオープンショーケースの
運転制御装置であるから、第1、第2温度センサにより
供給冷気の温度及び外気温度を検出して、夫々の温度セ
ンサからの信号を増幅して比較器にて比較して圧縮機の
運転を制御しているため、外気温度の変化及び輻射熱に
よる庫内の貯蔵商品の温度即ち品温の変化に伴ない、こ
の変化と反比例する温度制御信号を比較回路から出力し
て、自動的に供給冷気の設定温度を変え、品温を所定温
度幅に維持、即ち外気温度変化に対する食品の品温の追
従性を向上することができ、この結果、例えば氷温食品
の如く貯蔵温度範囲の狭い食品等の温度管理を良好に行
なえる効果を奏する。
(G) Effects of the Invention Since the present invention is an operation control device for an open showcase configured as described above, the temperature of the supplied cold air and the outside air temperature are detected by the first and second temperature sensors, and the respective temperature sensors Since the compressor operation is controlled by amplifying the signals from the outside and comparing them with a comparator, this change is caused by changes in the outside temperature and the temperature of the stored products inside the warehouse due to radiant heat. A temperature control signal that is inversely proportional to the outside air temperature is output from the comparison circuit to automatically change the set temperature of the supplied cold air to maintain the food temperature within a predetermined temperature range, that is, to improve the followability of the food product temperature to changes in outside air temperature. As a result, it is possible to effectively control the temperature of foods that have a narrow storage temperature range, such as ice-cold foods.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図乃至第3図は本発明の一実施例を示し、第1図は
温度制御装置の概略回路図、第2図はオープンショーケ
ースの概略縦断面図、第3図は、外気温度別に示した供
給冷気温度の特性図である。 (1)・・・オープンショーケース、(2)・・・開口
、(8) 、 (9)・・・第1、第2熱交換器、 (
11)・・・圧縮機、 (16)・・・第1温度センサ
、 (18)・・・第1増幅回路、 (19)・・・第
2温度センサ、 (20)・・・第2増幅回路、 (2
7A)・・・比較回路、 (28)・・・運転制御回路
1 to 3 show one embodiment of the present invention, FIG. 1 is a schematic circuit diagram of a temperature control device, FIG. 2 is a schematic vertical cross-sectional view of an open showcase, and FIG. It is a characteristic diagram of the supplied cold air temperature shown. (1)...Open showcase, (2)...Opening, (8), (9)...First and second heat exchangers, (
11)...Compressor, (16)...First temperature sensor, (18)...First amplifier circuit, (19)...Second temperature sensor, (20)... Second amplification circuit, (2
7A)... Comparison circuit, (28)... Operation control circuit.

Claims (1)

【特許請求の範囲】[Claims] 1、一側面に形成した商品収納及び取出用の開口に冷気
によるエアカーテンを形成してなるオープンショーケー
スにおいて、蒸発器となる熱交換器で熱交換された供給
冷気の温度を検出する第1温度センサと、外気温度を検
出する第2温度センサと、この第1、第2両温度センサ
からの信号を夫々増幅する第1、第2増幅回路と、これ
ら第1第2両増幅回路夫々の出力を入力して比較する比
較回路と、この比較回路の出力に基づいて蒸発器となる
前記熱交換器への液冷媒の供給を制御する制御回路とを
備え、外気温度の変化に伴ない前記第2増幅回路及び比
較回路から出力される信号を変化させ、この出力信号の
変化に基づき外気温度に対して供給冷気温度を反比例制
御してなるオープンショーケースの温度制御装置。
1. In an open showcase in which an air curtain of cold air is formed in the opening for storing and taking out products formed on one side, the first step detects the temperature of the supplied cold air that has been heat exchanged with a heat exchanger serving as an evaporator. A temperature sensor, a second temperature sensor that detects outside temperature, first and second amplification circuits that amplify signals from both the first and second temperature sensors, and each of these first and second amplification circuits. A comparison circuit inputs and compares the output, and a control circuit that controls the supply of liquid refrigerant to the heat exchanger, which is an evaporator, based on the output of the comparison circuit. A temperature control device for an open showcase that changes signals output from a second amplifier circuit and a comparison circuit, and controls the temperature of supplied cool air in inverse proportion to the outside air temperature based on changes in the output signals.
JP22635890A 1990-08-27 1990-08-27 Temperature controller for open display case Pending JPH03117871A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22635890A JPH03117871A (en) 1990-08-27 1990-08-27 Temperature controller for open display case

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22635890A JPH03117871A (en) 1990-08-27 1990-08-27 Temperature controller for open display case

Publications (1)

Publication Number Publication Date
JPH03117871A true JPH03117871A (en) 1991-05-20

Family

ID=16843901

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22635890A Pending JPH03117871A (en) 1990-08-27 1990-08-27 Temperature controller for open display case

Country Status (1)

Country Link
JP (1) JPH03117871A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008164201A (en) * 2006-12-27 2008-07-17 Daikin Ind Ltd Refrigerating device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57112669A (en) * 1980-12-27 1982-07-13 Fuji Electric Co Ltd Temperature adjustor for open showcase

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57112669A (en) * 1980-12-27 1982-07-13 Fuji Electric Co Ltd Temperature adjustor for open showcase

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008164201A (en) * 2006-12-27 2008-07-17 Daikin Ind Ltd Refrigerating device

Similar Documents

Publication Publication Date Title
US9207001B1 (en) Retrofit device to improve vapor compression cooling system performance by dynamic blower speed modulation
US4813241A (en) Low-temperature showcase
JPH0533896Y2 (en)
JPH0518030B2 (en)
WO2017056212A1 (en) Refrigerator
JPS6157546B2 (en)
JPH03117871A (en) Temperature controller for open display case
US3383877A (en) Defrost control means for refrigerating systems
US3609989A (en) Control for refrigeration system centrifugal compressor
JP2007292427A (en) Refrigerator
JP2004308993A (en) Operation and control method for antisweating heater of refrigerating and freezing showcase
US2163744A (en) Refrigerator control
JPH0650646A (en) Refrigerator
JP3075891B2 (en) Cooling storage
GB2348947A (en) Defrost control method and apparatus
JPH04240373A (en) Temperature and humidity control device for refrigerator
CA1290580C (en) Low-temperature showcase
JPH10160313A (en) Cooler
JPH0338593Y2 (en)
JPH0228783B2 (en)
JPH0228785B2 (en)
JPS6130134Y2 (en)
JPH0524423B2 (en)
JPS60155874A (en) Thermostat for cooling device
JPH0228786B2 (en)