JPH03116121A - Optical logic arithmetic unit - Google Patents

Optical logic arithmetic unit

Info

Publication number
JPH03116121A
JPH03116121A JP25645189A JP25645189A JPH03116121A JP H03116121 A JPH03116121 A JP H03116121A JP 25645189 A JP25645189 A JP 25645189A JP 25645189 A JP25645189 A JP 25645189A JP H03116121 A JPH03116121 A JP H03116121A
Authority
JP
Japan
Prior art keywords
optical
laser
input
output
amplifier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25645189A
Other languages
Japanese (ja)
Other versions
JP2733506B2 (en
Inventor
Yukio Toyoda
幸雄 豊田
Toru Tsuruta
徹 鶴田
Shinichi Wakabayashi
信一 若林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Optoelectronics Technology Research Laboratory
Original Assignee
Optoelectronics Technology Research Laboratory
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Optoelectronics Technology Research Laboratory filed Critical Optoelectronics Technology Research Laboratory
Priority to JP25645189A priority Critical patent/JP2733506B2/en
Publication of JPH03116121A publication Critical patent/JPH03116121A/en
Application granted granted Critical
Publication of JP2733506B2 publication Critical patent/JP2733506B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To obtain a threshold value characteristic which varies in the characteristics of a light output to a light input stepwise with a small input by providing an element, which includes a laser providing the attenuation effect of oscillation by flank injection as basic structure and has an optical logic arithmetic function, with an optical amplification area or semiconductor optical amplifier which is coupled with the element. CONSTITUTION:The element which includes the laser 1 which provides the attenuation effect of oscillation by flank injection as the basic structure and also has the optical logic arithmetic function is equipped with the optical amplification area or semiconductor optical amplifier 2 which is coupled with the element. Namely, the laser 1 and an optical waveguide which is the active layer of the semiconductor optical amplifier 2 are arranged coaxially and input light P0 is made incident on the flank of the laser 1 at right angles to the optical waveguide as the active layer so as to perform optical logic arithmetic by the laser 1. Consequently, a phenomenon wherein the amplification factor is saturated when the input of the amplification area or amplifier 2 is increased is used to improve the stepwise threshold value characteristic of the output required for the optical logic arithmetic operation to the input, so that the optical logic arithmetic which does not generate malfunction becomes possible.

Description

【発明の詳細な説明】 産業上の利用分野 本発明(よ 光情報処理等の分野に広く利用される光論
理演算装置に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to an optical logic operation device widely used in fields such as optical information processing.

従来の技術 より高度な光情報処理のためへ 新しい論理演算方式の
発姐 高速化および集積化の努力がなされている。この
代表例として、W、J、Grancle andC,L
、Tang、(ア7°ライス′ビ・フィシゝアクス・レ
ター)Appl、Phys、L−ett、肘(22)1
780(1987)がある。これCよ 半導体レーザに
側面か収 即ち当該半導体レーザの活性層光導波路に対
して直角の方向か収 レーザ光を注入した時に生ずる発
振光の消衰現象を用いて、N○T、NANDおよびNO
Rの光論理演算を実現したものである。原理は次の如く
である。第4図(a)に示すように レーザ発振してい
る半導体レーザの活性層たる光導波路40に 発振モー
ドに独立なレーザ光(強度Pφ)を当該光導波路40に
対して、直角方向から注入すると、 レーザの発振が消
衰し停止に至るため第4図(b)に示すように出力P1
が変化する。Po11の入力で完全に発振が停止する力
(自然発光の部分Pspが残も このような効果を用い
て、論理演算素子を作成した従来例力丈 前述の文献に
記載されている。第4図(C)(↓ 素子の構成を示す
ものである。論理演算出力用の主レーザ41とこれに光
導波路が互に直交すム 2ケのサイトレーザ42.43
が重なり部分47.48をもつ構造である。 2つのサ
イトレーザ42.43へ電流による入力をそれぞれ加え
ると、電流注入により発振状態にある主レーザ41の出
力PI3上 前述の効果により変化する。電流注入条件
を適当に設定することにより、NOR、NANDの動作
が実現されていも 発明が解決しようとする課題 従来技術においても論理演算が可能である力丈素子のバ
イア入 信号の強度等の設定・調整を厳密に行う必要が
あり、動作範囲が限定されも さらく これらの原因に
より演算結果のSNも十分なものがとれない等の欠点が
あり、実用化に対する大きな課題がある。何故、従来技
術では前述のような欠点が存在するかについての詳細な
説明を以下に述べる。半導体レーザへの側面注入による
発振の消衰効果の大きさ(よ 発振状態にある当該半導
体レーザの活性層内にもともと存在する発振モード光子
の密度と、側面注入による当該半導体レーザの発振モー
ドを誘発しない発振モードに無関係な光子の密度との相
対的比率で決り、後者の光子密度と前者のそれとの比に
比例する。即板この消衰効果は第4図(b)に示すよう
に側面注入光の強度Psにほぼ比例する。従って消衰効
果を得るに(よ レーザの駆動電流を発振しきい値より
わずかに大きく設定し わずかにレーザ発振している状
態にしておくことが有利であるた八 レーザ出力P1は
小さb〜 然るく レーザ発振光の他に自然発光Psp
が存在するたぬ レーザ出力P1はこの自然発光psp
に比べて十分大きくする必要があるので、Plを小さく
するには限界がある。従って、駆動電流の設定をしきい
値よりある程度大きくして、Plを大きくする必要があ
るので、このレーザ発振状態を停止に至らしめるのに必
要な側面注入の入力光も大きくする必要がある。また従
来例においては入力に対する出力の依存性が第4図(b
)の如く比例関係であり、論理演算に望ましい階段状の
微分特性にならない。以上のように前記事例にもあるよ
うへ 直接レーザへ側面注入せずく このレーザ44(
注入される出力用レーザを以下主レーザと云う)と導波
路が直交している注入用レーザ(これは入力信号用であ
り以下副レーザと云う)を用いているので、この一方の
副レーザ(例えば42)の電流に対する主レーザの光出
力P1は第4図(d)のように副レーザのしきい値電流
Ithoまでは主レーザに光が注入されないので、It
hoの電流までは主レーザの光出力P1は減少しな(〜
 従って図に示すような微分特性となり、不十分ながら
いわゆるしきい値特性を有すム まな この副レーザを
しきい値電流より少ない適当な電流でバイアスしておい
て、この副レーザへ入力信号光を入れてやる場合でL 
人力信号光強度力丈 副レーザを発振に至らしめるに必
要なものとなるまで(よ 主レーザの光出力P1は減少
しないので、同様のしきい値特性が期待される。しかし
ながぺ しきい値特性としては十分ではな(−いずれに
せよ、発振消衰効果を十分に生じさせ発振停止に至らし
め良好な光論理演算を行うに(よ 大きな光入力が必要
になってしまうこと、論理演算に望しい階段状のしきい
値特性が得られないこと、およびレーザの自然発光の影
響で消光比を劣化させることが問題点である。
Efforts are being made to develop new logical operation methods and increase speed and integration for optical information processing that is more advanced than conventional technology. As a representative example of this, W, J., Grancle and C, L.
,Tang,(A7°Rice'BiPhysical Ax Letter)Appl,Phys,L-ett,Elbow(22)1
780 (1987). This is C. Focusing on the side of the semiconductor laser, that is, focusing on the direction perpendicular to the active layer optical waveguide of the semiconductor laser.Using the extinction phenomenon of oscillation light that occurs when laser light is injected, N○T, NAND and NO
This is an implementation of R's optical logic operation. The principle is as follows. As shown in FIG. 4(a), when a laser beam (intensity Pφ) independent of the oscillation mode is injected into the optical waveguide 40, which is the active layer of a semiconductor laser that is oscillating, from a direction perpendicular to the optical waveguide 40. , as the laser oscillation decays and comes to a stop, the output P1 is reduced as shown in Fig. 4(b).
changes. A force that completely stops oscillation upon input of Po11 (with only the spontaneous light emitting part Psp remaining) A conventional example of creating a logic operation element using this effect is described in the above-mentioned document. Fig. 4 (C) (↓ This shows the configuration of the device. A main laser 41 for logic operation output and two sight lasers 42 and 43 with optical waveguides orthogonal to each other.
is a structure with overlapping portions 47 and 48. When current input is applied to the two site lasers 42 and 43, the output PI3 of the main laser 41 in the oscillation state changes due to the above-mentioned effect due to the current injection. By appropriately setting the current injection conditions, NOR and NAND operations can be achieved.The problem to be solved by the invention is the via input of the power supply element, which allows logical operations even in the conventional technology.Setting the strength of the signal, etc.・There are drawbacks such as the need to perform precise adjustment, the operating range is limited, and the SN of the calculation result cannot be obtained sufficiently due to these reasons, which poses a major problem for practical use. A detailed explanation of why the above-mentioned drawbacks exist in the prior art will be provided below. The magnitude of the oscillation extinction effect due to side injection into a semiconductor laser (i.e., the density of oscillation mode photons originally existing in the active layer of the semiconductor laser in the oscillating state and the oscillation mode induced in the semiconductor laser by side injection) It is determined by the relative ratio of the density of photons unrelated to the oscillation mode, and is proportional to the ratio of the latter photon density to that of the former. It is approximately proportional to the light intensity Ps. Therefore, in order to obtain the extinction effect, it is advantageous to set the laser drive current slightly larger than the oscillation threshold and keep the laser in a state where it oscillates slightly. 8 Laser output P1 is small b ~ Natural light emission Psp in addition to laser oscillation light
The laser output P1 is this spontaneous luminescence psp
There is a limit to how small Pl can be made, since it needs to be sufficiently larger than Pl. Therefore, it is necessary to set the drive current to a certain degree higher than the threshold value and to increase Pl, and therefore it is also necessary to increase the side-injected input light necessary to stop this laser oscillation state. In addition, in the conventional example, the dependence of the output on the input is shown in Figure 4 (b
), which is a proportional relationship, and does not provide a step-like differential characteristic that is desirable for logical operations. As mentioned above, this laser 44 (
Since we use an injection laser whose waveguide is orthogonal to the injected output laser (hereinafter referred to as the main laser) and the injection laser (which is for input signals and is hereinafter referred to as the sub-laser), one of the sub-lasers (hereinafter referred to as the sub-laser) is used. For example, the optical output P1 of the main laser with respect to the current shown in 42) is It
The optical output P1 of the main laser does not decrease until the current reaches ho (~
Therefore, it has a differential characteristic as shown in the figure, and has a so-called threshold characteristic, although it is insufficient. By biasing this sub-laser with an appropriate current less than the threshold current, the input signal light to this sub-laser is If you put
Since the optical output P1 of the main laser does not decrease, similar threshold characteristics are expected. The value characteristics are not sufficient (-in any case, in order to sufficiently produce the oscillation extinction effect and stop the oscillation and perform good optical logic operations (a larger optical input is required, the logic operation The problem is that the desired stepped threshold characteristic cannot be obtained, and that the extinction ratio deteriorates due to the influence of spontaneous light emission of the laser.

即板 発振停止に必要な最小入力の低減 出力の入力に
対するしきい値特性を明確な階段状の特性とすること、
および、レーザの自然発光の影響を抑制することが重要
な課題である。
Immediately Reduce the minimum input required to stop oscillation Make the threshold characteristic of the output with respect to the input a clear step-like characteristic,
Another important issue is to suppress the influence of spontaneous laser emission.

課題を解決するための手段 本発明(よ 光論理演算を行うことを目的とした装置に
おいて、光出力の光入力に対する特性が小人力で階段状
に変化するしきい値特性を有するようにするた八 側面
注入により発振の消衰効果を生ずるレーザを基本構造と
する光論理演算機能を有する素子にこれと結合せる光増
幅領域もしくは半導体光増幅器を備えたものである。ま
た 光論理演算機能を有する素子の光出力に対する自然
発光の影響を抑制するため艮 前記素子と結合せる光増
幅領域もしくは半導体増幅器との間の結合空間間 スリ
ットを備えたものである。さらに 前記半導体増幅器と
して進行波光増幅器もしくは疑似進行波光増幅器を用い
たものである。
Means for Solving the Problems The present invention provides an apparatus for performing optical logic operations in which the characteristics of the optical output with respect to the optical input have a threshold characteristic that changes in a stepwise manner by a small person's power. 8. An element having an optical logic operation function whose basic structure is a laser that produces an oscillation extinction effect through side injection, and is equipped with an optical amplification region or a semiconductor optical amplifier coupled to the element.It also has an optical logic operation function. In order to suppress the influence of spontaneous light emission on the optical output of the element, a slit is provided between the coupling space between the element and the optical amplification region or semiconductor amplifier to be coupled.Furthermore, the semiconductor amplifier may be a traveling wave optical amplifier or a pseudo-optical amplifier. It uses a traveling wave optical amplifier.

作用 本発明(友 側面注入により発振の消衰効果を生ずるレ
ーザを基本構造とする光論理演算機能を有する素子番ヘ
  これと結合せる光増幅領域もしくは半導体光増幅器
を備える構成により、増幅領域もしくは増幅器の入力を
増加した隊 増幅率が飽和する現象を用いて、光論理演
算動作に必要な出力の人力に対する特性を階段状のしき
い値特性の向上がはかられ 誤動作の起らない光論理演
算が可能となる。また 前記光論理演算機能を有する素
子と前記光増幅領域もしくは半導体増幅器との結合せる
空間にスリットを備えた構成により、前者より出射する
出力光のうち自然発光成分の後者への化合入射を抑制す
るか収 光論理演算動作における消光比の大巾な改善が
はかられる。さらに前記半導体増幅器として進行波増幅
器を用いる構成により、増幅率の増九 飽和特性の急峻
化がはかられるので、出力の入力に対する階段状しきい
値特性を改善できる。
Effects of the present invention (friend) An element number having an optical logic operation function whose basic structure is a laser that produces an oscillation extinction effect by side injection. Using the phenomenon of saturation of the amplification factor, the threshold characteristics of the output required for optical logic operation can be improved in a stepwise manner with respect to the human power required for optical logic operation without malfunctions. In addition, by the configuration in which a slit is provided in the space where the element having the optical logic operation function and the optical amplification region or the semiconductor amplifier are coupled, the spontaneous luminescence component of the output light emitted from the former is transferred to the latter. By suppressing or converging the combined incidence, a significant improvement in the extinction ratio in optical logic operation can be achieved.Furthermore, by using a traveling wave amplifier as the semiconductor amplifier, the amplification factor can be increased by 9, and the saturation characteristic can be steepened. Therefore, it is possible to improve the stepped threshold characteristic of the output with respect to the input.

実施例 具体的実施例を述べる前艮 本発明による課題解決手段
を用いた装置の構成原理を、第1図により説明する。(
a)は構成を表わすブロック図である。
Embodiments Before describing specific embodiments, the principle of construction of an apparatus using the problem-solving means of the present invention will be explained with reference to FIG. (
a) is a block diagram showing the configuration;

レーザlと半導体光増幅器2の活性層たる光導波路は同
一軸上に配置されており、 レーザ1により光論理演算
を行うためく 活性層たる光導波路と直角の方向か収 
入力光P@をレーザlへ側面注入する。勿JL  次に
述べる実施例1のようにレーザlに対し 光導波路が直
交ぜる別のレーザを導入することにより、このような側
面注入を行うことは原理において同じであ4  (b)
に示すように入力光P@に対してレーザ出力P1が消衰
効果により減少し 入力光の強度がPosになると発振
が停止してレーザ出力Pti&  自然発光のみとなる
。一方、半導体光増幅器2の光入力P1に対する光出力
hl&  (c)に示すよう艮 適当な電流バイアスの
もとて(瓜入力がP+”に達した時利得が飽和し 以後
はP+を増加させてもP2はほぼ一定となも 従って、
装置の先出力 即ち半導体光増幅器2の出力P2の入力
Paに対する依存性は(d)に示す点線の通りとなも 
側面注入の入力P−が小さい時は発振消衰効果は小さく
、光増幅器2への入力は十分大きくなるので、光増幅器
2は飽和しており、入力P@に対してほぼ一定である力
丈 入力りを増加させ、発振消衰を大きくしてPlを減
少させると、光増幅器2は飽和点以下の状態となるので
出力P2は急速に小さくなる。
The laser 1 and the optical waveguide, which is the active layer of the semiconductor optical amplifier 2, are arranged on the same axis.
Input light P@ is side-injected into laser l. Of course, the principle is the same as in Example 1, which will be described below, by introducing another laser whose optical waveguide is orthogonal to the laser I and performing such side injection.4 (b)
As shown in the figure, the laser output P1 decreases with respect to the input light P@ due to the extinction effect, and when the intensity of the input light reaches Pos, the oscillation stops and only the laser output Pti & spontaneous emission occurs. On the other hand, the optical output hl for the optical input P1 of the semiconductor optical amplifier 2 is as shown in (c). Under an appropriate current bias (when the input reaches P+", the gain is saturated, Also, P2 is almost constant. Therefore,
The dependence of the first output of the device, that is, the output P2 of the semiconductor optical amplifier 2, on the input Pa is as shown by the dotted line in (d).
When the side injection input P- is small, the oscillation extinction effect is small and the input to the optical amplifier 2 is sufficiently large, so the optical amplifier 2 is saturated and the power is almost constant with respect to the input P@. If the input voltage is increased, the oscillation extinction is increased, and Pl is decreased, the optical amplifier 2 will be in a state below the saturation point, and the output P2 will rapidly decrease.

光増幅器2は単に共振器長の長い半導体レーザでも良い
力(両端面の反射率を下げて、進行波増幅器(もしくは
疑似進行波増幅器)とすれt′L 波長に対して増幅率
が平坦になることや高速応答が可能であるなどの特性向
上ができる。さら置 レーザ1と光増幅器2との結合空
間に適当な光学スリットを設けると、レーザの発振光の
遠視野像 即ち拡がり角が自然発光のそれより小さいた
八 レーザの自然発光成分が光増幅器2へ入射するのを
抑制できる。これにより(d)に示す実線のように特性
が改善される。以下に具体的な実施例を述べる。
The optical amplifier 2 can be simply a semiconductor laser with a long cavity length (by lowering the reflectance of both end faces, it can be used as a traveling wave amplifier (or pseudo traveling wave amplifier), so that the amplification factor becomes flat with respect to the wavelength t'L). Furthermore, by providing an appropriate optical slit in the coupling space between the laser 1 and the optical amplifier 2, the far-field pattern, that is, the divergence angle, of the laser oscillation light can be improved by spontaneous emission. It is possible to suppress the spontaneous emission component of the laser from entering the optical amplifier 2. This improves the characteristics as shown by the solid line in (d).Specific examples will be described below.

(実施例1) 第2図(a)は作成した素子の完成図である。但し分り
易くするた八 主要部分のみを示し 細部については省
略してあも 第2図を用いてこの素子の作成手順につい
て述ベアh  (100)n型InP基板21上にn型
InPバッファー層22を3μ亀 バンドギャップの波
長表現(2g)で1.3μmの組成のアンドープInG
aAsP4元層23を0.2.ua  P型1nP24
を2.5μmλg−1,1μm組成のP型InGaAs
P層25を0.5μ気順次成長した後通常のホトリソを
用いて、ピッチ400μへ 巾2.5μmの第1のスト
ライプ61及びこれと直交しているピッチ400μ亀中
10μmの第2のストライプ71をパターニングにより
形成し エツチングによりこの互いに直交するリッチ状
ストライプを得る。エツチングは基板21まで達するよ
うに行う。然る後へ 埋込み成長によりストライプ以外
を高抵抗InP層31、P型■nGaAsP層(2g−
1,1μ)51を順次形成し 表面を平坦にすも 第2
図(b)はこのようにして作製した直交レーザ用ウェー
ハを示すものである。図により第1の巾2.5μ0の活
性層たる導波路6及び第2の巾10μmの活性層たる導
波路7が互いに直交して高抵抗InP層31により埋込
まれていることが分も 埋込みが平坦ではある力丈 こ
れらの導波路6.7の直上の部分は 図に示すように若
干凹んでいるので、特に目印を付けなくてもウェーハ表
面上よりその位置即ち第1.第2の導波路6,7が埋込
まれている第1.第2のストライプ位置61.71が分
る。次いで、ホトリソにより第2のストライプ71方向
と平行へ このストライプ71の中心線より100μm
ずらして、その中心が第1のストライプ61の中心上に
位置するようにバターニングして、反応性イオンビーム
エツチングにより一辺が50μmの正方形の穴8を形成
すも この穴8は基板21表面まで達する深さにすも 
この穴8の側面(よ レーザの共振器端面とするので垂
直かつ滑らかな鏡面になるようく エツチング条件を精
度よく制御して行う。次いでこの穴8の2つの側面のう
ち第2のストライプ71に近い側面とは反対側の側面の
みに シリコン(Si)とシリコンモノオキサイド(S
iO)多層膜111をコーティングして波長が1.3μ
mの光に対してこの側面の反射率を0.1%にする。然
る後置へ 各部のP電極パターンを第2図(C)に示す
ように形成する。最初く 主レーザ用P電極パターン9
1、光増幅器用のP電極パターン92(主レーザ用91
と光増幅器用92がこの時点では接続している)を形成
する。次いで、(c)に示すようく 第1、第2のスト
ライプ61.71が交差する位置にSiO2膜を約30
00人の厚さで長方形状のパターン(主レーザと副レー
ザのP電極絶縁用SiO2膜)93で形成する。
(Example 1) FIG. 2(a) is a completed diagram of the created device. However, in order to make it easier to understand, only the main parts are shown and the details are omitted. Undoped InG with a composition of 1.3μm in bandgap wavelength expression (2g)
The aAsP quaternary layer 23 is set to 0.2. ua P type 1nP24
P-type InGaAs with a composition of 2.5μmλg-1,1μm
After sequentially growing the P layer 25 by 0.5 μm, a pitch of 400 μm is formed using normal photolithography. A first stripe 61 with a width of 2.5 μm and a second stripe 71 with a pitch of 400 μm and 10 μm perpendicular thereto. are formed by patterning and etched to obtain rich stripes that are orthogonal to each other. Etching is performed to reach the substrate 21. Afterwards, by buried growth, a high resistance InP layer 31, a P-type nGaAsP layer (2g-
1, 1μ) 51 are formed one after another to make the surface flat. 2nd
Figure (b) shows the wafer for orthogonal laser produced in this manner. The figure shows that the first waveguide 6, which is an active layer with a width of 2.5 μm, and the waveguide 7, which is an active layer with a second width of 10 μm, are buried at right angles to each other by the high-resistance InP layer 31. As shown in the figure, the portion directly above the waveguides 6 and 7 is slightly concave, so even if no particular mark is placed, it is possible to locate that position from the wafer surface, that is, the first waveguide. The first waveguide in which the second waveguides 6, 7 are embedded. The second stripe position 61.71 is found. Next, by photolithography, the second stripe 71 direction is parallel to the center line of this stripe 71 by 100 μm.
Then, patterning is performed so that the center is located on the center of the first stripe 61, and a square hole 8 with a side of 50 μm is formed by reactive ion beam etching.This hole 8 extends to the surface of the substrate 21. It's too deep to reach
The side surface of this hole 8 (the end surface of the laser cavity) is etched by precisely controlling the etching conditions so that it becomes a vertical and smooth mirror surface. Silicon (Si) and silicon monooxide (S) are applied only to the side opposite to the near side.
iO) Coating the multilayer film 111 so that the wavelength is 1.3μ
The reflectance of this side surface for light of m is set to 0.1%. After that, the P electrode pattern of each part is formed as shown in FIG. 2(C). First P electrode pattern 9 for main laser
1. P electrode pattern 92 for optical amplifier (91 for main laser)
and the optical amplifier 92 are connected at this point). Next, as shown in FIG.
A rectangular pattern (SiO2 film for insulating the P electrodes of the main laser and the sub laser) 93 is formed with a thickness of 0.00 mm.

最後へ 副レーザ用電極パターンlOを形成する。To the end, form the sub-laser electrode pattern IO.

次に 基板裏面を研摩して厚さを約100μmにした徽
 基板裏面にn電極を形成後、第2のストライプ71と
平行く 巾50μmの穴8とは反対側Q 第2のストラ
イプ71の中心線より35μmの位置101の全てにお
いて襞間してバー状にする。この各々のバーの第2のス
トライプ71方向の2の羽間面のうち、第2のストラス
プ側とは反対側の襞開面に 前述の穴8の側面の場合と
同様に Si/SiO多層膜112をコーティングして
、この面の波長1.3μmの光に対する反射率を0.1
%にする。然る後置 第1のストライプ61方向と平行
へ この第1のストライプ61が中心に位置するように
第1ストライプ61間隔中心102の位置で400μm
毎に襞間してチップ化する。
Next, the back surface of the substrate was polished to a thickness of approximately 100 μm. After forming an n-electrode on the back surface of the substrate, the center of the second stripe 71 was parallel to the second stripe 71 and opposite to the hole 8 with a width of 50 μm. All positions 101 35 μm from the line are pleated to form a bar shape. Of the two interwing surfaces in the direction of the second stripe 71 of each bar, a Si/SiO multilayer film is applied to the folded surface on the opposite side from the second strap side in the same manner as in the case of the side surface of the hole 8 described above. 112, and the reflectance of this surface for light with a wavelength of 1.3 μm is 0.1.
%. The distance between the first stripes 61 is 400 μm parallel to the direction of the first stripe 61 so that the first stripe 61 is located at the center.
Make a chip by folding between each fold.

このようにして、出来たの力(第2図(d)に示すよう
に穴8により分離され互に光軸が一致して結合した共振
器が直交している直交レーザと半導体進行波増幅器を合
わせ有する素子である。即板 図において副レーザの光
導波路7と主レーザの光導波路62により直交レーザを
構成し 光増幅器の光導波路63により半導体進行波増
幅器を構成していも 次に このようにして作製した素
子の特性を第2図(e)、 (f)に示す。主レーザの
しきい値電流は約20mA、  副レーザでは〜80m
Aである。(e)は主レーザにバイアス電流を流して出
力Pe2を約0.15mWにした時の副レーザの電流I
oに対する変動を測定したものであり、主レーザの直接
の出力であるP+2は8OmAを超えるとほぼ比例的に
減少し約3000人度で主レーザの発振が停止していも
 この上 レーザと結合している光増幅器の出力P2a
l;L  最初あまり出力が低下せずIoが〜180m
A以上で急激に低下する。
In this way, the resulting force (as shown in Fig. 2(d), the orthogonal laser and the semiconductor traveling wave amplifier, in which the resonators are separated by the hole 8 and coupled with their optical axes aligned, are orthogonal to each other). In the figure, the optical waveguide 7 of the sub laser and the optical waveguide 62 of the main laser constitute an orthogonal laser, and the optical waveguide 63 of the optical amplifier constitutes a semiconductor traveling wave amplifier. Figures 2(e) and 2(f) show the characteristics of the device fabricated using this method.The threshold current of the main laser is approximately 20 mA, and the threshold current of the sub laser is ~80 mA.
It is A. (e) is the current I of the sub laser when a bias current is applied to the main laser and the output Pe2 is approximately 0.15 mW.
P+2, which is the direct output of the main laser, decreases almost proportionally when it exceeds 80mA, and even if the main laser oscillation stops at about 3000mA, the direct output of the main laser, P+2, decreases almost proportionally when it exceeds 80mA. The output P2a of the optical amplifier
l;L At first, the output did not decrease much and Io was ~180m
It rapidly decreases above A.

さらに(f)では副レーザにバイアス電流として75m
Aを印加しておき、この副レーザの端面ヘシングルファ
イバ(SMF)モジュールを用いて、副レーザの発振波
長にほぼ等しい波長の光を注入し この入力光強度依存
性を調べへ(e)と同様 主レーザ出力及び光増幅器の
出力を測定したところ約8 mW人力で出力が0に近い
値となる力交 光増幅器の出力で(よ しきい値特性に
大巾な改善がみられる。(f)のデータからしきい値特
性を定量的に求めるたべ出力が20%から80%に変化
するのに必要な入力変化量△P11を算出する。出力と
して主レーザの直接出力PI2である場合、△P@は5
mW光増幅器出力P22の場合△hは2mWであり、 
しきい値特性として150%の改善が見られる。
Furthermore, in (f), the bias current is 75m for the sub laser.
A is applied, and a single fiber (SMF) module is used to inject light with a wavelength almost equal to the oscillation wavelength of the sub laser to the end face of the sub laser, and the dependence of this input light intensity is investigated (e). Similarly, when we measured the output of the main laser and the output of the optical amplifier, we found that the output was close to 0 with approximately 8 mW of manual power. ) to quantitatively determine the threshold characteristic and calculate the amount of input change △P11 required for the output to change from 20% to 80%.If the output is the direct output PI2 of the main laser, △ P@ is 5
In the case of mW optical amplifier output P22, △h is 2 mW,
An improvement of 150% can be seen in the threshold characteristic.

(実施例2) 第一3図により説明する。実施例1で示したチップをそ
のまま用い440μm角の石英80に金を1μm以上蒸
着した後、エツチングにより一面のみ金薄膜84を残す
。然る後、その辺りに5μm径のピンホール82を形成
LS102膜85をコートし作製したのが第3図(a)
に示すスリット用部品81である。これを、実施例1に
示したチップの50A1m正方形穴8に挿入する。その
拡大図を(b)に示す。このようにして、主レーザと光
増幅器の結合空間にスリットを挿入した素子の特性を第
3図(C)に示す。副レーザ出力が0で主レーザへの光
出力がない時の光増幅器からの光出力は約175に減少
している力(副レーザ出力を上げて光注入行い発振停止
に至らしめた時の光増幅器の光出力(よ これ以上に減
少している。埋板 消光比の改善が見られる。これはレ
ーザの発振光の放射角が自然発光の放射角より小さいこ
とによも NANDやNOR等の論理演算に適用する場
合、この消光比が重要であることは云うまでもないこと
であり、主レーザと光増幅器の間の結合空間に自然発光
を阻止するためのスリットを入れることは大きな特性改
善への効果がある。
(Example 2) This will be explained with reference to FIG. Using the chip shown in Example 1 as it is, gold is deposited to a thickness of 1 μm or more on a 440 μm square quartz 80, and then etched to leave a gold thin film 84 on only one surface. After that, a pinhole 82 with a diameter of 5 μm was formed in that area, and a LS102 film 85 was coated to produce the fabrication shown in FIG. 3(a).
This is a slit component 81 shown in FIG. This is inserted into the 50A1m square hole 8 of the chip shown in Example 1. An enlarged view is shown in (b). The characteristics of the device in which a slit is inserted in the coupling space between the main laser and the optical amplifier in this manner are shown in FIG. 3(C). When the sub laser output is 0 and there is no optical output to the main laser, the optical output from the optical amplifier is reduced to about 175. The optical output of the amplifier (the optical output of the amplifier has decreased further than this). The extinction ratio of the buried plate has improved. This is also due to the fact that the radiation angle of the laser oscillation light is smaller than that of natural light emission. It goes without saying that this extinction ratio is important when applied to logical operations, and inserting a slit in the coupling space between the main laser and the optical amplifier to prevent spontaneous light emission can greatly improve the characteristics. There is an effect on

発明の効果 本発明(よ レーザの側面より光注入を行った時に生ず
る発振消衰効果を用いて行われるNANDやNOR等の
光論理演算において必要な入力信号に対する出力信号の
強度依存性におけるしきい値特性の大幅な改善を持たら
す効果がある。更らE。
Effects of the Invention The present invention (as shown in Fig. 2) is a threshold for the intensity dependence of the output signal on the input signal, which is necessary in optical logic operations such as NAND and NOR, which are performed using the oscillation extinction effect that occurs when light is injected from the side of the laser. It has the effect of significantly improving the value characteristics.More E.

しきい値特性における消光比の改善する効果を生ずるも
のであも また 光増幅器とし 単に半導体レーザを用
いてもよい力(実施例の如く、両端面の反射率を低くし
て、進行波増幅器として用いる方が効果が太きし)。
It is also possible to simply use a semiconductor laser as an optical amplifier, even if it produces the effect of improving the extinction ratio in the threshold characteristic. It is more effective if you use it).

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)、 (b)、 (c)、 (d)はそれぞ
れ(a)本発明による光論理演算装置の構成El  (
b)レーザの側面注入によ出力変化を示す特性図(c)
光増幅器の入出力依存性を示す特性EC((1)光論理
演算装置の入出力特性は 第2図(a)〜(d)は実施
例1における光論理演算装置の作製方法を示す工程諷 
第2図(e)、(f)はそれぞれ主レーザの光出力をO
’、15mWとした時の副レーザ電流に対する主レーザ
出力の変化及び光増幅器の光出力の変化を示す特性は 
主レーザ出力及び光増幅器の副レーザへの入力信号光強
度依存性を示す特性図 第3図(a)、 (b)はそれ
ぞれ第1の実施例の素子に付加するスリットの断面及び
側面の医 それを第1の実施例の素子に挿着した様子を
示す皿 第3図(c)はスリットを挿着した素子及び第
1の実施例の素子の副レーザへ入力信号光を入れた時の
光増幅器出力変化を示す特性諷第4図(a)、 (b)
、 (c)、 (d)はそれぞれ(a)従来技術が用い
ている原理を説明する諷(b)人力−出力特性@(C)
従来技術による素子の一例を示す平面医(d)従来技術
による素子の特性図である。 l・・・・光論理演算用レーザ、 2・・・・光増幅器
6・・・・第1の光導汲取 7・・・・第2の光導波電
8・・・・正方形の穴、61・・・・第1のストライプ
、71・・・・第2のストライブ、81・・・・スリッ
ト用部昆82・・・・ピンホー/k  62・・・・主
レーザの光導汲取63・・・・光増幅器の光導波電11
1,112・・・・Si/SiO多層風
FIGS. 1(a), (b), (c), and (d) respectively show (a) the configuration El (
b) Characteristic diagram showing output change due to side injection of laser (c)
Characteristics EC (1) Input/output characteristics of the optical logic operation device showing the input/output dependence of the optical amplifier are as follows.
Figures 2(e) and (f) show the optical output of the main laser at O
', the characteristics showing the change in the main laser output and the change in the optical output of the optical amplifier with respect to the sub laser current when 15 mW are
Characteristic diagrams showing the dependence of the main laser output and the input signal light intensity on the sub-laser of the optical amplifier. A plate showing how it is inserted into the element of the first embodiment. Figure 3(c) shows the state when the input signal light is input to the element with the slit inserted and the sub laser of the element of the first embodiment. Figure 4 (a), (b) Characteristics showing optical amplifier output changes
, (c), and (d) are respectively (a) a synonym for explaining the principle used in the prior art (b) human power-output characteristics @ (C)
FIG. 3D is a characteristic diagram of a conventional device; FIG. 1... Laser for optical logic operation, 2... Optical amplifier 6... First light guide pickup 7... Second optical waveguide 8... Square hole, 61... ...First stripe, 71...Second stripe, 81...Slit section 82...Pinho/k 62...Main laser light guide extraction 63...・Optical waveguide of optical amplifier 11
1,112...Si/SiO multilayer wind

Claims (3)

【特許請求の範囲】[Claims] (1)半導体レーザの活性層たる光導波路にその光導波
路の軸方向に対し直角の方向から光を入射させることが
できる構造を有する光半導体装置において、前記レーザ
と結合せる光増幅機能を有する領域を少なくとも1個有
することを特徴とする光論理演算装置。
(1) In an optical semiconductor device having a structure that allows light to enter an optical waveguide, which is an active layer of a semiconductor laser, from a direction perpendicular to the axial direction of the optical waveguide, a region having an optical amplification function to be coupled with the laser. An optical logic operation device characterized by having at least one.
(2)特許請求の範囲第1項記載の光半導体装置におい
て、前記レーザとこれと結合せる光増幅機能を有する領
域との結合空間の光軸上にスリットを具備することを特
徴とした光論理演算装置。
(2) An optical semiconductor device according to claim 1, characterized in that a slit is provided on the optical axis of a coupling space between the laser and a region having an optical amplification function coupled thereto. Computing device.
(3)光増幅機能を有する領域の入力側端面の反射率を
低減せしめるための絶縁体多層膜をその端面に付着させ
たことを特徴とする特許請求の範囲第1項記載の光論理
演算装置。(4)光増幅機能を有する領域として進行波
光増幅器もしくは疑似進行波光増幅器を用いることを特
徴とした特許請求の範囲第1項記載の光論理演算装置。
(3) An optical logic operation device according to claim 1, characterized in that an insulating multilayer film is attached to the end face of the input side end face of the region having an optical amplification function in order to reduce the reflectance of the end face. . (4) The optical logic operation device according to claim 1, wherein a traveling wave optical amplifier or a pseudo traveling wave optical amplifier is used as the region having an optical amplification function.
JP25645189A 1989-09-29 1989-09-29 Optical logic operation device Expired - Lifetime JP2733506B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25645189A JP2733506B2 (en) 1989-09-29 1989-09-29 Optical logic operation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25645189A JP2733506B2 (en) 1989-09-29 1989-09-29 Optical logic operation device

Publications (2)

Publication Number Publication Date
JPH03116121A true JPH03116121A (en) 1991-05-17
JP2733506B2 JP2733506B2 (en) 1998-03-30

Family

ID=17292833

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25645189A Expired - Lifetime JP2733506B2 (en) 1989-09-29 1989-09-29 Optical logic operation device

Country Status (1)

Country Link
JP (1) JP2733506B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7899100B2 (en) 2002-03-01 2011-03-01 Sharp Kabushiki Kaisha GaN laser element
US9066118B2 (en) 2004-07-30 2015-06-23 Broadband Itv, Inc. System and method for managing, converting and displaying video content on a video-on-demand platform, including ads used for drill-down navigation and consumer-generated classified ads
US9113228B2 (en) 2004-07-30 2015-08-18 Broadband Itv, Inc. Method of addressing on-demand TV program content on TV services platform of a digital TV services provider
KR20150102509A (en) * 2014-02-28 2015-09-07 이진성 Attached electric hot air device
US9635429B2 (en) 2004-07-30 2017-04-25 Broadband Itv, Inc. Dynamic adjustment of electronic program guide displays based on viewer preferences for minimizing navigation in VOD program selection
US9648390B2 (en) 2007-06-26 2017-05-09 Broadband Itv, Inc. Dynamic adjustment of electronic program guide displays based on view preferences for minimizing navigation in VOD program selection
US11252459B2 (en) 2004-07-30 2022-02-15 Broadband Itv, Inc. System for addressing on-demand TV program content on TV services platform of a digital TV services provider
US11570521B2 (en) 2007-06-26 2023-01-31 Broadband Itv, Inc. Dynamic adjustment of electronic program guide displays based on viewer preferences for minimizing navigation in VOD program selection

Cited By (73)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7899100B2 (en) 2002-03-01 2011-03-01 Sharp Kabushiki Kaisha GaN laser element
US8170076B2 (en) 2002-03-01 2012-05-01 Sharp Kabushiki Kaisha GaN laser element
US8548019B2 (en) 2002-03-01 2013-10-01 Sharp Kabushiki Kaisha GaN laser element
US8824516B2 (en) 2002-03-01 2014-09-02 Sharp Kabushiki Kaisha GaN-based laser device
US10341730B2 (en) 2004-07-30 2019-07-02 Broadband Itv, Inc. Video-on-demand content delivery system for providing video-on-demand services to TV service subscribers
US10028027B2 (en) 2004-07-30 2018-07-17 Broadband Itv, Inc. System for addressing on-demand TV program content on TV services platform of a digital TV services provider
US9106959B2 (en) 2004-07-30 2015-08-11 Broadband Itv, Inc. Method for adding or updating video content from internet sources to existing video-on-demand application of digital TV services provider system
US9113228B2 (en) 2004-07-30 2015-08-18 Broadband Itv, Inc. Method of addressing on-demand TV program content on TV services platform of a digital TV services provider
US11601697B2 (en) 2004-07-30 2023-03-07 Broadband Itv, Inc. System for addressing on-demand TV program content on TV services platform of a digital TV services provider
US10349101B2 (en) 2004-07-30 2019-07-09 Broadband Itv, Inc. System for addressing on-demand TV program content on TV services platform of a digital TV services provider
US9635395B2 (en) 2004-07-30 2017-04-25 Broadband Itv, Inc. System for addressing on-demand TV program content on TV services platform of a digital TV services provider
US9635429B2 (en) 2004-07-30 2017-04-25 Broadband Itv, Inc. Dynamic adjustment of electronic program guide displays based on viewer preferences for minimizing navigation in VOD program selection
US9641896B2 (en) 2004-07-30 2017-05-02 Broadband Itv, Inc. Video-on-demand content delivery method for providing video-on-demand services to TV service subscribers
US10349100B2 (en) 2004-07-30 2019-07-09 Broadband Itv, Inc. Method for addressing on-demand TV program content on TV services platform of a digital TV services provider
US9648388B2 (en) 2004-07-30 2017-05-09 Broadband Itv, Inc. Video-on-demand content delivery system for providing video-on-demand services to TV services subscribers
US10791351B2 (en) 2004-07-30 2020-09-29 Broadband Itv, Inc. System for addressing on-demand TV program content on TV services platform of a digital TV services provider
US10341699B2 (en) 2004-07-30 2019-07-02 Broadband Itv, Inc. System for addressing on-demand TV program content on TV services platform of a digital TV services provider
US9866910B2 (en) 2004-07-30 2018-01-09 Broadband Itv, Inc. Video-on-demand content delivery system for providing video-on-demand services to TV service subscribers
US9866909B2 (en) 2004-07-30 2018-01-09 Broadband Itv, Inc. Video-on-demand content delivery system for providing video-on-demand services to TV service subscribers
US9888287B2 (en) 2004-07-30 2018-02-06 Broadband Itv, Inc. Video-on-demand content delivery system for providing video-on-demand services to TV services subscribers
US11516525B2 (en) 2004-07-30 2022-11-29 Broadband Itv, Inc. System for addressing on-demand TV program content on TV services platform of a digital TV services provider
US9078016B2 (en) 2004-07-30 2015-07-07 Broadband Itv, Inc. System for adding or updating video content from internet sources to existing video-on-demand application of a digital TV services provider system
US11272233B2 (en) 2004-07-30 2022-03-08 Broadband Itv, Inc. System for addressing on-demand TV program content on TV services platform of a digital TV services provider
US9936240B2 (en) 2004-07-30 2018-04-03 Broadband Itv, Inc. Dynamic adjustment of electronic program guide displays based on viewer preferences for minimizing navigation in VOD program selection
US11259089B2 (en) 2004-07-30 2022-02-22 Broadband Itv, Inc. Video-on-demand content delivery method for providing video-on-demand services to TV service subscribers
US9998791B2 (en) 2004-07-30 2018-06-12 Broadband Itv, Inc. Video-on-demand content delivery method for providing video-on-demand services to TV service subscribers
US10028026B2 (en) 2004-07-30 2018-07-17 Broadband Itv, Inc. System for addressing on-demand TV program content on TV services platform of a digital TV services provider
US10785517B2 (en) 2004-07-30 2020-09-22 Broadband Itv, Inc. Method for addressing on-demand TV program content on TV services platform of a digital TV services provider
US10045084B2 (en) 2004-07-30 2018-08-07 Broadband Itv, Inc. Video-on-demand content delivery system for providing video-on-demand services to TV service subscribers
US10057649B2 (en) 2004-07-30 2018-08-21 Broadband Itv, Inc. Video-on-demand content delivery system for providing video-on-demand services to TV service subscribers
US10129597B2 (en) 2004-07-30 2018-11-13 Broadband Itv, Inc. Video-on-demand content delivery method for providing video-on-demand services to TV service subscribers
US10129598B2 (en) 2004-07-30 2018-11-13 Broadband Itv, Inc. Video-on-demand content delivery system for providing video-on-demand services to TV services subscribers
US11259060B2 (en) 2004-07-30 2022-02-22 Broadband Itv, Inc. System for addressing on-demand TV program content on TV services platform of a digital TV services provider
US11259059B2 (en) 2004-07-30 2022-02-22 Broadband Itv, Inc. System for addressing on-demand TV program content on TV services platform of a digital TV services provider
US11252476B2 (en) 2004-07-30 2022-02-15 Broadband Itv, Inc. Video-on-demand content delivery system for providing video-on-demand services to TV service subscribers
US11252459B2 (en) 2004-07-30 2022-02-15 Broadband Itv, Inc. System for addressing on-demand TV program content on TV services platform of a digital TV services provider
US10306321B2 (en) 2004-07-30 2019-05-28 Broadband Itv, Inc. Video-on-demand content delivery system for providing video-on-demand services to TV service subscribers
US9066118B2 (en) 2004-07-30 2015-06-23 Broadband Itv, Inc. System and method for managing, converting and displaying video content on a video-on-demand platform, including ads used for drill-down navigation and consumer-generated classified ads
US10555014B2 (en) 2004-07-30 2020-02-04 Broadband Itv, Inc. System for addressing on-demand TV program content on TV services platform of a digital TV services provider
US9635423B2 (en) 2004-07-30 2017-04-25 Broadband Itv, Inc. Video-on-demand content delivery method for providing video-on-demand services to TV services subscribers
US10893334B2 (en) 2004-07-30 2021-01-12 Broadband Itv, Inc. Video-on-demand content delivery method for providing video-on-demand services to TV service subscribers
US10375428B2 (en) 2004-07-30 2019-08-06 Broadband Itv, Inc. System for addressing on-demand TV program content on TV services platform of a digital TV services provider
US10491954B2 (en) 2004-07-30 2019-11-26 Broadband Itv, Inc. Video-on-demand content delivery method for providing video-on-demand services to TV service subscribers
US10491955B2 (en) 2004-07-30 2019-11-26 Broadband Itv, Inc. Video-on-demand content delivery system for providing video-on-demand services to TV services subscribers
US10506269B2 (en) 2004-07-30 2019-12-10 Broadband Itv, Inc. System for addressing on-demand TV program content on TV services platform of a digital TV services provider
US10536751B2 (en) 2004-07-30 2020-01-14 Broadband Itv, Inc. Video-on-demand content delivery system for providing video-on-demand services to TV service subscribers
US10536750B2 (en) 2004-07-30 2020-01-14 Broadband Itv, Inc. Video-on-demand content delivery system for providing video-on-demand services to TV service subscribers
US11245942B2 (en) 2007-03-12 2022-02-08 Broadband Itv, Inc. Method for addressing on-demand TV program content on TV services platform of a digital TV services provider
US11589093B2 (en) 2007-03-12 2023-02-21 Broadband Itv, Inc. System for addressing on-demand TV program content on TV services platform of a digital TV services provider
US9894417B2 (en) 2007-06-26 2018-02-13 Broadband Itv, Inc. Dynamic adjustment of electronic program guide displays based on viewer preferences for minimizing navigation in VOD program selection
US9973825B2 (en) 2007-06-26 2018-05-15 Broadband Itv, Inc. Dynamic adjustment of electronic program guide displays based on viewer preferences for minimizing navigation in VOD program selection
US10623793B2 (en) 2007-06-26 2020-04-14 Broadband Itv, Inc. Dynamic adjustment of electronic program guide displays based on viewer preferences for minimizing navigation in VOD program selection
US10567846B2 (en) 2007-06-26 2020-02-18 Broadband Itv, Inc. Dynamic adjustment of electronic program guide displays based on viewer preferences for minimizing navigation in VOD program selection
US10560733B2 (en) 2007-06-26 2020-02-11 Broadband Itv, Inc. Dynamic adjustment of electronic program guide displays based on viewer preferences for minimizing navigation in VOD program selection
US9641902B2 (en) 2007-06-26 2017-05-02 Broadband Itv, Inc. Dynamic adjustment of electronic program guide displays based on viewer preferences for minimizing navigation in VOD program selection
US11582498B2 (en) 2007-06-26 2023-02-14 Broadband Itv, Inc. Dynamic adjustment of electronic program guide displays based on viewer preferences for minimizing navigation in VOD program selection
US10277937B2 (en) 2007-06-26 2019-04-30 Broadband Itv, Inc. Dynamic adjustment of electronic program guide displays based on viewer preferences for minimizing navigation in VOD program selection
US10264303B2 (en) 2007-06-26 2019-04-16 Broadband Itv, Inc. Dynamic adjustment of electronic program guide displays based on viewer preferences for minimizing navigation in VOD program selection
US10154296B2 (en) 2007-06-26 2018-12-11 Broadband Itv, Inc. Dynamic adjustment of electronic program guide displays based on viewer preferences for minimizing navigation in VOD program selection
US10149015B2 (en) 2007-06-26 2018-12-04 Broadband Itv, Inc. Dynamic adjustment of electronic program guide displays based on viewer preferences for minimizing navigation in VOD program selection
US10582243B2 (en) 2007-06-26 2020-03-03 Broadband Itv, Inc. Dynamic adjustment of electronic program guide displays based on viewer preferences for minimizing navigation in VOD program selection
US11265589B2 (en) 2007-06-26 2022-03-01 Broadband Itv, Inc. Dynamic adjustment of electronic program guide displays based on viewer preferences for minimizing navigation in VOD program selection
US11272235B2 (en) 2007-06-26 2022-03-08 Broadband Itv, Inc. Dynamic adjustment of electronic program guide displays based on viewer preferences for minimizing navigation in VOD program selection
US9894419B2 (en) 2007-06-26 2018-02-13 Broadband Itv, Inc. Dynamic adjustment of electronic program guide displays based on viewer preferences for minimizing navigation in VOD program selection
US11277669B2 (en) 2007-06-26 2022-03-15 Broadband Itv, Inc. Dynamic adjustment of electronic program guide displays based on viewer preferences for minimizing navigation in VOD program selection
US11290763B2 (en) 2007-06-26 2022-03-29 Broadband Itv, Inc. Dynamic adjustment of electronic program guide displays based on viewer preferences for minimizing navigation in VOD program selection
US9888288B2 (en) 2007-06-26 2018-02-06 Broadband Itv, Inc. Dynamic adjustment of electronic program guide displays based on viewer preferences for minimizing navigation in VOD program selection
US11570500B2 (en) 2007-06-26 2023-01-31 Broadband Itv, Inc. Dynamic adjustment of electronic program guide displays based on viewer preferences for minimizing navigation in VOD program selection
US11570521B2 (en) 2007-06-26 2023-01-31 Broadband Itv, Inc. Dynamic adjustment of electronic program guide displays based on viewer preferences for minimizing navigation in VOD program selection
US9654833B2 (en) 2007-06-26 2017-05-16 Broadband Itv, Inc. Dynamic adjustment of electronic program guide displays based on viewer preferences for minimizing navigation in VOD program selection
US9648390B2 (en) 2007-06-26 2017-05-09 Broadband Itv, Inc. Dynamic adjustment of electronic program guide displays based on view preferences for minimizing navigation in VOD program selection
US11695976B2 (en) 2007-06-26 2023-07-04 Broadband Itv, Inc. Dynamic adjustment of electronic program guide displays based on viewer preferences for minimizing navigation in VOD program selection
KR20150102509A (en) * 2014-02-28 2015-09-07 이진성 Attached electric hot air device

Also Published As

Publication number Publication date
JP2733506B2 (en) 1998-03-30

Similar Documents

Publication Publication Date Title
US6459715B1 (en) Master-oscillator grating coupled power amplifier with angled amplifier section
JPH08116135A (en) Manufacture of waveguiding path integrated element and waveguiding path integrated element
JPH07503581A (en) Tapered semiconductor laser gain structure with cavity spoil groove
CN101106255A (en) Low optical feedback noise self-pulsating semiconductor laser
JPH0497206A (en) Semiconductor optical element
JPH03116121A (en) Optical logic arithmetic unit
JP3264369B2 (en) Optical modulator integrated semiconductor laser and method of manufacturing the same
JPS63199480A (en) Semiconductor laser scanning device
JP2003255164A (en) Optical coupling element and optical device
JPH1022577A (en) Light emitting semiconductor device
JPH0923036A (en) Semiconductor laser
JPS5861695A (en) Semiconductor laser element
JPH02166785A (en) Semiconductor laser
JPH0410582A (en) Semiconductor optical element
JP4488559B2 (en) Semiconductor laser device
US20230268714A1 (en) Single mode laser with large optical mode size
JP2841860B2 (en) Optical semiconductor device
JPH05190977A (en) Semiconductor laser
JP3120536B2 (en) Semiconductor light emitting device
JPH02159082A (en) Manufacture of semiconductor laser
JP2546366B2 (en) Semiconductor light emitting device
JPH04166919A (en) Travelling wave type semiconductor light amplification element
JPH05145192A (en) Semiconductor optical amplifier and manufacture thereof
JPS6130090A (en) Semiconductor laser
WO2000072450A2 (en) Master oscillator grating coupled power amplifier with angled amplifier section