JPH02159082A - Manufacture of semiconductor laser - Google Patents

Manufacture of semiconductor laser

Info

Publication number
JPH02159082A
JPH02159082A JP31420288A JP31420288A JPH02159082A JP H02159082 A JPH02159082 A JP H02159082A JP 31420288 A JP31420288 A JP 31420288A JP 31420288 A JP31420288 A JP 31420288A JP H02159082 A JPH02159082 A JP H02159082A
Authority
JP
Japan
Prior art keywords
layer
film
superlattice
region
mirror surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31420288A
Other languages
Japanese (ja)
Inventor
Yutaka Nagai
豊 永井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP31420288A priority Critical patent/JPH02159082A/en
Publication of JPH02159082A publication Critical patent/JPH02159082A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/16Window-type lasers, i.e. with a region of non-absorbing material between the active region and the reflecting surface
    • H01S5/162Window-type lasers, i.e. with a region of non-absorbing material between the active region and the reflecting surface with window regions made by diffusion or disordening of the active layer

Abstract

PURPOSE:To reduce astigmatism and threshold current value and shorten the time required to manufacture by controlling the lengths of disordered regions to be not larger than several mum's. CONSTITUTION:Successively formed on a substrate 1 consisting of an n-type GaAs are a first clad layer 2 consisting of an n-type AlxGa1-xAs, a superlattice layer 3 consisting of AlyGa1-yAs-GaAs, a second clad layer 4 consisting of p-type AlxGa1-xAs, and a contact layer 5 consisting of p-type GaAs. A resist film 11 is formed on the contact layer 5, and a stripe-shaped opening 13 is provided. Then, dry etching out using the resist film 11 as a mask to form an etched mirror surface 10. A film 9 consisting of an impurity is formed on a wafer. Then, the resist film 11 is removed. At that time, the film 9 is also peeled off. The impurity is diffused through the etched mirror surface 10 into the element by thermal diffusion using the film 9 as a diffusion source. At that time, the superlattice layer 3 is disordered by the impurity and a region 6 having so called window structure is formed. The length of the region 6 is easily controlled by the condition during the thermal diffusion.

Description

【発明の詳細な説明】 〔産業上の利用分野] 乙の発明は、高性能化、高出力化をiiJ能にする窓構
造を有ずろ半導体レーザの製造方法に関するものである
[Detailed Description of the Invention] [Industrial Application Field] The invention of B relates to a method of manufacturing a semiconductor laser with a window structure that enables higher performance and higher output.

(従来の技術〕 第2図は、例えば特開昭60−101989号公報に示
された従来の半導体レーザの構造を示す断1rii図で
ある。この図において、1はn形GaAsからなる基板
、2はn形A I XG a l−11A Sからなる
第1クラッド層、3はA I yG a 、、A 5G
aAsで構成された超格子層、4はp形Aj。
(Prior Art) Fig. 2 is a cross-sectional view showing the structure of a conventional semiconductor laser disclosed in, for example, Japanese Unexamined Patent Publication No. 60-101989. In this figure, 1 is a substrate made of n-type GaAs; 2 is a first cladding layer made of n-type A I
A superlattice layer composed of aAs, 4 is a p-type Aj.

Go、□Asからなる第2クラッド層、5はp形GaA
sからなるコンタクト層、6は超格子が無秩序化された
領域、7は不純物拡散領域、8aはp電極、8bt、t
nfI極、15は襞間面である。
Second cladding layer made of Go, □As, 5 is p-type GaA
6 is a region in which the superlattice is disordered, 7 is an impurity diffusion region, 8a is a p electrode, 8bt, t
nfI pole, 15 is the interfold plane.

次に動作について説明する。Next, the operation will be explained.

ppn電eN+88,8b間に、pn接合に対シーc順
方向となる電圧を印加すると、超格子層3に電流が注入
されて発光する。レーザ光は超格子層3と第1クラッド
層2および第2クラッド層4との間の屈折率差によって
導波され、対向しているり開面15により構成される共
振器によってレーザ発振にいtこる。
When a voltage is applied to the pn junction between the ppn electric currents eN+88 and 8b in the forward direction relative to the C, a current is injected into the superlattice layer 3 and light is emitted. The laser beam is guided by the difference in refractive index between the superlattice layer 3 and the first cladding layer 2 and second cladding layer 4, and is oscillated by a resonator formed by opposing or apertured surfaces 15. Koru.

この構成では、不純物拡散によって無秩序化された領域
6の禁制帯幅が、超格子層3の実効的禁制帯幅よりも大
きくなっており、超格子層3から発光したレーザ光が、
無秩序化された領域6ではほとんど吸収されない、いオ
)ゆる窓構造を有している。このような窓構造を有した
At1GaAsを中心とする短波長帯の半導体レーザは
、最大光出力および寿命を決定しているり開面15にお
けろ劣化を防止でき、高出力動作が可能である。
In this configuration, the forbidden band width of the region 6 disordered by impurity diffusion is larger than the effective forbidden band width of the superlattice layer 3, and the laser beam emitted from the superlattice layer 3
The disordered region 6 has a so-called window structure in which almost no absorption occurs. A short wavelength band semiconductor laser mainly made of At1GaAs having such a window structure determines the maximum optical output and lifetime, prevents deterioration even at the aperture 15, and is capable of high output operation.

第3図(a)〜(e)は第2図に示しtコ従来の半導体
レーザの製造方法を説明するための断面図である。これ
らの図において、第2図と同一符号は同一のものを示し
、12はSi、N4膜、13はストライブ状の開口部で
ある。
3(a) to 3(e) are cross-sectional views for explaining a conventional method of manufacturing the semiconductor laser shown in FIG. 2. In these figures, the same reference numerals as in FIG. 2 indicate the same parts, 12 is a Si, N4 film, and 13 is a striped opening.

次にその製造工程について説明する。。Next, the manufacturing process will be explained. .

まず、第3図(a)に示すように、基板1上に、例えば
MO−CVD法等の気相成長法あるいはMBE法などで
第1クラッドN2からコンタクト層5までを順次形成す
る。次に第3図(b)に示すように、コンタクト層5上
にSi、N、膜12を形成し、フォトリソグラフィ技術
とエツチング技術によってストライブ状の囲1−1部1
3を形成する9、さらに、この開口部13よりZnを拡
散させて不純物拡散領域7を形成し、不純物拡散領域7
内の超格子jM3を均一に無秩序化された領域6とする
First, as shown in FIG. 3(a), layers from the first cladding N2 to the contact layer 5 are sequentially formed on the substrate 1 by, for example, a vapor phase growth method such as an MO-CVD method, or an MBE method. Next, as shown in FIG. 3(b), a Si, N, film 12 is formed on the contact layer 5, and a striped area 1-1 is etched using photolithography and etching techniques.
Further, Zn is diffused through this opening 13 to form an impurity diffusion region 7.
The superlattice jM3 within is assumed to be a uniformly disordered region 6.

次に、第3図(C)に示すようにSi、N、膜12を除
去した後、何間しやすいように基板1を研磨してウェハ
厚を100μm程度にし、さらに表裏にp、n電極8a
、8bを形成する。そして、す開によって共振器として
働く何間面15を形成した後、各チップに分離する。
Next, after removing the Si, N, and film 12 as shown in FIG. 8a
, 8b. Then, after forming a multilayer surface 15 that functions as a resonator by opening the chip, it is separated into each chip.

〔発明が解決し、Lうとする課題〕[Problems that the invention attempts to solve]

上記のような従来の半導体し・−ザは、何間によって共
振器が形成されるので、無秩序化された領域6の長さt
zBg開の機械的精度によって規定される1、このり開
による方法では、何間の精度上、無秩序化された領域6
の長さlを通常は10μm以上にする必要があり、これ
トドに制御するのは困難であった。このため、アスティ
グマ子イズムが大きくなる、発振しきい値電圧が増大す
る等の問題があった。また、製造工程において、表向か
ら活性層までの拡散距離が3μm以上と長いため、深さ
方向の制御性に問題があった1、そこで、これらの問題
を解決するために、特願昭61−315097号公報で
、コンタクト層から下クラッド層または活性層近傍まで
エツチングした後、このエツチング面から不純物拡散、
イオン?−F人等を行う方法も提案されている。しかし
、この方法は製造に要する時間が長くなるという問題が
あった。。
In the conventional semiconductor laser as described above, since a resonator is formed by a gap, the length t of the disordered region 6 is
1 defined by the mechanical precision of the zBg opening, whereas this method by opening the disordered region 6
It is usually necessary to set the length l to 10 μm or more, and it is difficult to precisely control this length. For this reason, there have been problems such as an increase in astigmatism and an increase in oscillation threshold voltage. In addition, in the manufacturing process, the diffusion distance from the surface to the active layer is long, 3 μm or more, so there was a problem with controllability in the depth direction1.Therefore, in order to solve these problems, a patent application filed in Sho 61 In Japanese Patent No. 315097, after etching from the contact layer to the lower cladding layer or the vicinity of the active layer, impurity diffusion is performed from this etched surface.
ion? - A method for performing F person etc. has also been proposed. However, this method has a problem in that it takes a long time to manufacture. .

この発明は、かかる問題点を解決するためになされたも
ので、無秩序化された領域の長さを数μmmトド制御す
ることにより、アステ、fグマティズムを小さくでき、
また、しきい値電圧を小さくできるほか、製造に要する
時間の短縮がiiJ能な半導体レーザの製造方法を得る
ことを目的とする。
This invention was made to solve this problem, and by controlling the length of the disordered region by several μmm, it is possible to reduce aste and fgmatism.
Another object of the present invention is to provide a method for manufacturing a semiconductor laser that can reduce the threshold voltage and shorten the time required for manufacturing.

〔課題を解決するtコめの手段〕[Top means to solve problems]

この発明に係る半導体レーザの製造方法は、半導体基板
上に、第1クラッド層、超格子層または址子井戸層、第
2クラッド層を成長させる工程と、この第2クラッド層
上から第1クラッド層までエツチングにより溝を形成し
、共振制端面となるエツチドミラー面を形成する工程と
、このエツチドミラー面に不純物からなる膜を形成し、
この膜を拡散源として超格子+1または量子井戸層の一
部を無秩序化する工程と、各チップ毎に分離するゴ[程
とを含むものである。。
A method for manufacturing a semiconductor laser according to the present invention includes the steps of growing a first cladding layer, a superlattice layer or a bulge well layer, and a second cladding layer on a semiconductor substrate, and growing a first cladding layer from above the second cladding layer. A step of forming a groove by etching up to the layer and forming an etched mirror surface that will serve as a resonance suppressing end surface, and forming a film made of impurities on this etched mirror surface.
This process includes a step of disordering a part of the superlattice +1 or quantum well layer using this film as a diffusion source, and a step of separating each chip. .

〔作用〕[Effect]

この発明においては、エツチドミラー面に形成された膜
から拡散される不純物により、超格子層または量子用p
層の一部が無秩序化されて窓構造の領域が形成され、窓
構造の領域の長さは、拡散湿度と時間等により制御され
る。1 〔実施例〕 第1図はこの発明の半導体レーザの製造方法の一実施例
を説明するための断面図である。
In this invention, impurities diffused from the film formed on the etched mirror surface form a superlattice layer or a quantum layer.
A portion of the layer is disordered to form a window structure region, and the length of the window structure region is controlled by diffusion humidity, time, etc. 1 [Example] FIG. 1 is a sectional view for explaining an example of the method for manufacturing a semiconductor laser of the present invention.

これらの図において、第2図と同一符号は同一のものを
示し、9は不純物からなる膜、10はエツチドミラー面
、11はレジスト膜、13はストライブ状の開口部、1
4は蒸着ビームである、。
In these figures, the same reference numerals as in FIG.
4 is a deposition beam.

次に製造工程について説明する。Next, the manufacturing process will be explained.

まず、第1図(a)に示すように、n形GaAsからな
る基板1上に、例えばMO−CVI)法等の気相成長法
、あるいはM u tε法で、n形A!、Gn+−As
からなる第1 ’/ ;77 F層2. At’Vにa
l−yAs−GaAsで構成されt、=超格子層3゜p
形A1wGa、  Asからなる第2クラ・ラド層4、
p形GaAsからなるコンタクト層5の各層を順次形成
する1、成長後、第1図(b)に示すように、コンタク
ト層5上にレジスト膜11 (または絶縁膜)を形成し
、このレジスl−欣11にストライブ状の開口部13を
設けろ、。
First, as shown in FIG. 1(a), an n-type A! , Gn+-As
The first '/;77 F layer 2. At'V a
Composed of l-yAs-GaAs, t = superlattice layer 3゜p
A second Cla-Rad layer 4 consisting of A1wGa, As,
Each layer of the contact layer 5 made of p-type GaAs is sequentially formed 1. After the growth, a resist film 11 (or an insulating film) is formed on the contact layer 5 as shown in FIG. - Provide a striped opening 13 in the shaft 11.

次に、第1図(e)に示す8Lうに、レジスl−fly
llをマスクとしてFtlE)去によりドライエッチン
グを行ッて、工・ソチンクミ:2−面10を形bt す
る、。
Next, register the 8L sea urchin shown in FIG.
Dry etching is performed using FtlE) as a mask to form the surface 10.

エッヂンゲ後、第1図(d)に示すようにAMに1つて
ウェハ上に不純物からなろ膜9を形成する3、この膜9
は次の拡散工程において不純物の拡散源となる1、なお
、y!A着の際、ウエノ)に対して垂直方向から焦合ビ
ーム14が当たると、膜9はウェハ曲、つまりレノスト
膜11の上部にのみ形成され、エツチドミラー面10に
ほとんど形成されない1.そこで、ウェハに対して斜め
方向から蒸着ビーム14を当てることにより、ストライ
ブ状のIjFJII部13 内の工・ツチドミラー面1
0上に膜9を形成する。
After the edging, as shown in FIG.
is 1, which becomes a diffusion source of impurities in the next diffusion process, and y! During A deposition, when the focused beam 14 hits the wafer from the vertical direction, the film 9 is formed only on the wafer curve, that is, on the top of the Renost film 11, and is hardly formed on the etched mirror surface 10. Therefore, by applying the vapor deposition beam 14 to the wafer from an oblique direction, the wafer-formed IjFJII portion 13 is coated with a wafer.
A film 9 is formed on 0.

この後、第1図(e)に示すように、レジスト膜11を
除去する。この時、レジスト膜11上に形成された膜9
もレジスト膜11とともに剥離される。。
Thereafter, as shown in FIG. 1(e), the resist film 11 is removed. At this time, the film 9 formed on the resist film 11
The resist film 11 is also peeled off together with the resist film 11. .

そして、第1図(f)に示すように、レジスト膜11の
はく曙後、熱拡散により膜9を拡散源として不純物をエ
ツチドミラー面10を通して素子内部に拡散させる。こ
の時、不純物による超格子層3の無秩序化が発生し、い
わゆる窓構造の領域6が形成される。この窓構造の領域
6の長さIは、熱拡散時の条件、すなわち拡散温度と拡
散時間によって容易に制御できる。不純物としては熱拡
散により容易に超格子層3を無秩序化させることができ
るSlやZn等が望ましい、。
As shown in FIG. 1(f), after the resist film 11 is peeled off, impurities are diffused into the device through the etched mirror surface 10 by thermal diffusion using the film 9 as a diffusion source. At this time, the superlattice layer 3 becomes disordered due to impurities, and a so-called window structure region 6 is formed. The length I of the region 6 of this window structure can be easily controlled by the conditions during heat diffusion, that is, the diffusion temperature and diffusion time. Desirable impurities include Sl, Zn, etc., which can easily disorder the superlattice layer 3 by thermal diffusion.

最後に、コンタクト層5上にp電極8a1基板1側にn
電極8ble蒸肴、スバ・ツタ等の手段により形成し、
ウエノ・をストライブ状の開口部13に沿って種間して
分離することにより第1図(g)に示すような素子が完
成する。
Finally, a p-electrode 8a1 is placed on the contact layer 5 on the substrate 1 side.
The electrode is formed by steaming, sorrel, ivy, etc.
By separating the wafer into seeds along the striped openings 13, a device as shown in FIG. 1(g) is completed.

この発明によって得られる半導体レーザの動作は従来の
ものと同様である。しかし、その製造工程において決定
さ、れる超格子の無秩序化された領域6の長さlは、工
、ソチドミラー向10からの不純物による拡散の深さに
よって決定でき、長さeを熱拡散時の条件によって容易
に1μm以下に制御できろ。
The operation of the semiconductor laser obtained by this invention is similar to that of the conventional one. However, the length l of the disordered region 6 of the superlattice, which is determined in the manufacturing process, can be determined by the depth of diffusion by the impurity from the sotido mirror direction 10, and the length e is It can be easily controlled to 1 μm or less depending on the conditions.

したがって、アステイグマテイズムが小さい、発振しき
い値′rti流が小さいといった特徴を有し、かつ窓構
造が設けられているため高出力動作が口J能な半導体レ
ーザが容易に得られる。
Therefore, it is possible to easily obtain a semiconductor laser which has characteristics such as low astigmatism and low oscillation threshold current, and which is capable of high output operation due to the window structure.

特に、ls5μmとずろと低アスティグマデフfズム、
低しきい一電流の半導体レーザが得られる。
In particular, the LS5μm and low astigma differential f-ism,
A semiconductor laser with a low threshold current can be obtained.

また、従来の半導体L・−ザのように、表面から精度よ
く数μmの領域に拡散するという技術を要しないので、
素子歩留りも飛躍的に向上する。。
In addition, unlike conventional semiconductor L/-Zers, it does not require technology to accurately diffuse into an area of several μm from the surface.
The device yield will also be dramatically improved. .

特に、蒸着させた膜9を、拡散源としていることから、
この膜9をそのまま端面保護膜としても用いろことが「
り能になり、端面保護膜形成工程を簡略化できる。
In particular, since the vapor-deposited film 9 is used as a diffusion source,
It is suggested that this film 9 can also be used as an end face protection film as it is.
The end face protection film forming process can be simplified.

なお、上記実施例ではA I G a A s −G 
a A sで構成された超格子層のみについて説明した
が、A e 、G a、−XAs−AJlyG al−
yAs (x′f−y)超格子層で構成された超格子層
についても同様に適用できろ、。
In addition, in the above example, A I G a A s -G
Although only the superlattice layer composed of aAs has been explained, Ae, Ga, -XAs-AJlyGal-
The same can be applied to a superlattice layer composed of yAs (x'f-y) superlattice layers.

また、上記以外の他の材料で構成される超格子層や多重
量子井戸層を備えた半導体レーザについても同様に適用
できろことはいうまでもない。
It goes without saying that the present invention can also be applied to semiconductor lasers having superlattice layers or multiple quantum well layers made of materials other than those mentioned above.

〔発明の効果〕〔Effect of the invention〕

乙の発明は以上説明したとおり、半導体基板上に、第1
クラッド層、超格子層または量子井戸層。
As explained above, Party B's invention includes a first semiconductor substrate on a semiconductor substrate.
cladding layer, superlattice layer or quantum well layer.

第2クラッド層を成長させる工程と、この第2クラッド
層−ヒから第1クラ・ラド層までエツチングにより溝を
形成し、共振器端面となるエツチドミラー面を形成する
工程と、このエツチドミラー面に不純物からなる膜を形
成し、乙の膜を拡散源として超1各子層または量子井戸
層の一部を無秩序化する工程と、各千・ツブ毎に分離す
る工程とを含むので、窓構造の領域の長さを熱拡散時の
条件によって容易に制御できるほか、不純物からなる膜
を端面保護膜として用いることができ、製造工程の短縮
が図れるという効果がある。
A step of growing a second cladding layer, a step of forming a groove by etching from the second cladding layer A to the first cladding layer to form an etched mirror surface that will become a resonator end face, and a step of forming an etched mirror surface on the etched mirror surface. The process includes forming a film consisting of a film of In addition to being able to easily control the length of the region depending on the conditions during thermal diffusion, a film made of impurities can be used as an end face protection film, which has the effect of shortening the manufacturing process.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の半導体レーザの製造方法の一実施例
を示す断面図、第2図は従来の半導体し・−ザの構造を
示す断面図、第3図は従来の半導体L・−ザの製造方法
を示す断面図である。 図において、1はn形GaAs基板、2はII形At)
、Gn、−xAs第1クラッド層、3はAIIVGa、
−As−GaAsで構成された超格子層、4ばρ形A/
、Ga、−、As第2クラッド層、5ばp形GaAsコ
ン々り1・層、6は超格子が無秩序化された領域、7は
不純物拡散領域、8aはp形電極、8bはn形電極、9
は不純物からなる膜、10はエツチドミラー面、11は
レジスl−膜、13はストライブ状の間口部、14は蒸
着ビームである。 なお、各図中の同一符号は同一または相当部分を示す。
FIG. 1 is a cross-sectional view showing an embodiment of the semiconductor laser manufacturing method of the present invention, FIG. 2 is a cross-sectional view showing the structure of a conventional semiconductor laser, and FIG. 3 is a cross-sectional view showing the structure of a conventional semiconductor laser. FIG. 2 is a cross-sectional view showing a manufacturing method. In the figure, 1 is an n-type GaAs substrate, 2 is a II-type At)
, Gn, -xAs first cladding layer, 3 is AIIVGa,
-Superlattice layer composed of As-GaAs, 4-bar ρ type A/
, Ga, -, As second cladding layer, 5 p-type GaAs concrete layer 1, 6 is a region in which the superlattice is disordered, 7 is an impurity diffusion region, 8a is a p-type electrode, 8b is an n-type electrode, 9
10 is a film made of impurities, 10 is an etched mirror surface, 11 is a resist l-film, 13 is a striped opening, and 14 is a vapor deposition beam. Note that the same reference numerals in each figure indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】[Claims] 半導体基板上に、第1クラッド層、超格子層または量子
井戸層、第2クラッド層を成長させる工程と、この第2
クラッド層上から前記第1クラッド層までエッチングに
より溝を形成し、共振器端面となるエッチドミラー面を
形成する工程と、このエッチドミラー面に不純物からな
る膜を形成し、この膜を拡散源として前記超格子層また
は量子井戸層の一部を無秩序化する工程と、各チップ毎
に分離する工程とを含むことを特徴とする半導体レーザ
の製造方法。
a step of growing a first cladding layer, a superlattice layer or a quantum well layer, and a second cladding layer on the semiconductor substrate;
A step of forming a groove by etching from the top of the cladding layer to the first cladding layer to form an etched mirror surface that will become the end face of the cavity, and forming a film made of impurities on this etched mirror surface and diffusing this film. 1. A method for manufacturing a semiconductor laser, comprising the steps of: disordering part of the superlattice layer or quantum well layer as a source; and separating each chip.
JP31420288A 1988-12-12 1988-12-12 Manufacture of semiconductor laser Pending JPH02159082A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31420288A JPH02159082A (en) 1988-12-12 1988-12-12 Manufacture of semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31420288A JPH02159082A (en) 1988-12-12 1988-12-12 Manufacture of semiconductor laser

Publications (1)

Publication Number Publication Date
JPH02159082A true JPH02159082A (en) 1990-06-19

Family

ID=18050500

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31420288A Pending JPH02159082A (en) 1988-12-12 1988-12-12 Manufacture of semiconductor laser

Country Status (1)

Country Link
JP (1) JPH02159082A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0475618A2 (en) * 1990-09-13 1992-03-18 Mitsubishi Denki Kabushiki Kaisha Method of fabricating semiconductor laser device
EP0742617A1 (en) * 1995-05-08 1996-11-13 Mitsubishi Denki Kabushiki Kaisha Semiconductor laser and method of manufacturing the semiconductor laser
US5608750A (en) * 1993-07-29 1997-03-04 Hitachi, Ltd. Semiconductor laser device and a method for the manufacture thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0475618A2 (en) * 1990-09-13 1992-03-18 Mitsubishi Denki Kabushiki Kaisha Method of fabricating semiconductor laser device
EP0475618A3 (en) * 1990-09-13 1992-05-06 Mitsubishi Denki Kabushiki Kaisha Method of fabricating semiconductor laser device
US5171707A (en) * 1990-09-13 1992-12-15 Mitsubishi Denki Kabushiki Kaisha Method of fabricating semiconductor laser device using the light generated by the laser to disorder its active layer at the end surfaces thereby forming window regions
US5608750A (en) * 1993-07-29 1997-03-04 Hitachi, Ltd. Semiconductor laser device and a method for the manufacture thereof
EP0742617A1 (en) * 1995-05-08 1996-11-13 Mitsubishi Denki Kabushiki Kaisha Semiconductor laser and method of manufacturing the semiconductor laser
US5677922A (en) * 1995-05-08 1997-10-14 Mitsubishi Denki Kabushiki Kaisha Semiconductor laser with crystalline window layer

Similar Documents

Publication Publication Date Title
US5737351A (en) Semiconductor laser including ridge structure extending between window regions
JP3682336B2 (en) Manufacturing method of semiconductor laser device
JPH10233556A (en) Ridge-type semiconductor laser diode and its manufacturing method
JP2815769B2 (en) Manufacturing method of semiconductor laser
JPH08148752A (en) Manufacture of semiconductor laser device and semiconductor laser device
JP4011640B2 (en) Semiconductor laser and method for manufacturing semiconductor laser
JPH02159082A (en) Manufacture of semiconductor laser
JPH04162689A (en) Manufacture of semiconductor light emitting device
JPH10261835A (en) Semiconductor laser device and its manufacture
JP2532449B2 (en) Semiconductor laser device
JPH073908B2 (en) Method for manufacturing semiconductor light emitting device
JPH0634426B2 (en) Method for manufacturing semiconductor laser device
JPH09246652A (en) Semiconductor laser and manufacturing method thereof
JP3075512B2 (en) Semiconductor laser device
JP4581205B2 (en) Manufacturing method of semiconductor laser
JP2000101186A (en) Semiconductor optical element
JP3028641B2 (en) Semiconductor laser and manufacturing method thereof
JP2563994B2 (en) Semiconductor laser device and manufacturing method thereof
KR100674822B1 (en) Method of producing semiconductor laser device
JPS63250886A (en) Manufacture of semiconductor laser element
JP2855887B2 (en) Semiconductor laser and method of manufacturing the same
KR100244239B1 (en) Laser diode and its manufacture method
JPH05235471A (en) Semiconductor laser with window
KR20040050598A (en) A semiconductor laser device and a method of producing the same
JPH06125147A (en) Semiconductor laser and manufacture thereof