JPH03115951A - Measuring device for adsorption amount - Google Patents

Measuring device for adsorption amount

Info

Publication number
JPH03115951A
JPH03115951A JP25615989A JP25615989A JPH03115951A JP H03115951 A JPH03115951 A JP H03115951A JP 25615989 A JP25615989 A JP 25615989A JP 25615989 A JP25615989 A JP 25615989A JP H03115951 A JPH03115951 A JP H03115951A
Authority
JP
Japan
Prior art keywords
value
adsorption
adsorption amount
data
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25615989A
Other languages
Japanese (ja)
Other versions
JPH0675031B2 (en
Inventor
Kazuhiro Washio
鷲尾 一裕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP25615989A priority Critical patent/JPH0675031B2/en
Publication of JPH03115951A publication Critical patent/JPH03115951A/en
Publication of JPH0675031B2 publication Critical patent/JPH0675031B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Sampling And Sample Adjustment (AREA)

Abstract

PURPOSE:To efficiently perform measurement by sampling the data of adsorption amount at a point of time when adsorption is equilibrated before sampling the data of the adsorption amount for the following target value when the rate of change in the calculated value of the adsorption amount in a sample cell exceeds the preset value. CONSTITUTION:The rate of change in adsorption amount is calculated at every charging or discharging of adsorptive gas into/from a sample cell 1. When this rate of change in the adsorption amount is value not larger than the rate DELTAV of change in the value calculated by an arithmetic means c at every opening of a preset stop valve 3, the data of the adsorption amount in the vicinity of the target value are sampled. When this rate of change exceeds DELTAV, the data of the adsorption amount are sampled at a point of time when adsorption reaches equilibrium at every introduction or discharge of adsorptive gas. Therefore the data of the part in which the rate of change in the adsorption amount is made large can be densely sampled. Even when the sample W is unknown, such possibility is eliminated that the data of the important part are missed.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、試料の吸着量を容量法により測定する装置に
関し、例えば粉体や多孔体の吸着特性、比表面積あるい
は細孔分布等を測定するための装置に利用することがで
きる。
[Detailed Description of the Invention] <Industrial Application Field> The present invention relates to an apparatus for measuring the adsorption amount of a sample by a capacitance method, for example, measuring the adsorption characteristics, specific surface area, pore distribution, etc. of powder or porous materials. It can be used as a device for

〈従来の技術〉 容量法は、吸脱着等温線を求めるのに最も信頼性の高い
方法とされている。これは、各測定点における吸着ある
いは脱着平衡を待つという点が、理にかなっているから
である。
<Prior Art> The capacitive method is considered to be the most reliable method for determining adsorption/desorption isotherms. This is because it makes sense to wait for adsorption or desorption equilibrium at each measurement point.

その容量法による吸着量測定装置の原理上のブロック図
を第5図に示し、この図を参照して吸脱着等混線の求め
方を説明する。
A block diagram of the principle of the adsorption amount measuring device using the capacitance method is shown in FIG. 5, and with reference to this figure, how to determine adsorption/desorption crosstalk will be explained.

まず、測定に先立ち、試料の脱ガス処理を行っておく。First, prior to measurement, the sample is degassed.

さて、吸着測定開始すると、まずは、開閉弁3および5
を開いてマニホールド30および試料セル1内の真空引
きを行った後、開閉弁3および5を閉じる。次に、開閉
弁9を開き不活性ガスであるHeガスをマニホールド3
0内に導入し開閉弁9を閉じた後、開閉弁3を開いてH
eガスを試料セル1に拡散させる。この開閉弁3の開放
前後のマニホールド30内の圧力値、およびマニホール
ド30の容積から、試料セル1内における試料容積を除
く部分の容積を求める。ただし、マニホールド30の容
積は装置定数として既知である。次いで、開閉弁5を開
いてマニホールド30および試料セル1内の真空引きを
行った後、試料セル1の一部をLN2中に浸す。
Now, when we start the adsorption measurement, we first start with the on-off valves 3 and 5.
is opened to evacuate the interior of the manifold 30 and sample cell 1, and then the on-off valves 3 and 5 are closed. Next, open the on-off valve 9 and supply He gas, which is an inert gas, to the manifold 3.
0 and close the on-off valve 9, then open the on-off valve 3 and
e gas is diffused into the sample cell 1. From the pressure values in the manifold 30 before and after opening of the on-off valve 3 and the volume of the manifold 30, the volume of the portion of the sample cell 1 excluding the sample volume is determined. However, the volume of the manifold 30 is known as a device constant. Next, the on-off valve 5 is opened to evacuate the interior of the manifold 30 and the sample cell 1, and then a portion of the sample cell 1 is immersed in LN2.

次に、■全ての開閉弁を閉じた後、開閉弁7を開きN2
ガスをマニホールド30内に導入し、その圧力を圧力セ
ンサ13で検出し、所定圧力に達した時点で開閉弁7を
閉じる。この開閉弁7閉鎖後、マニホールド30内の圧
力が安定となった時点で圧力センサ13による検出値P
、をコンピュータ15のメモリに格納する。次いで■開
閉弁3を開いてN2ガスを試料セル1内に拡散させると
ともに、試料表面に物理吸着させる。そして、■吸着平
衡に達した時点での圧力値P2をメモリに格納し、この
P2と先に格納したP、との差に基づいて吸着ガス量を
算出する。すなわち、P、は導入したN2ガスの分子数
に相当し、また、P2は導入したN2ガスのうち吸着し
なかった分子数に相当する。従ってその両者の差は、試
料に吸着した分子数つまりガス吸着量に相関した値とな
り、その圧力差から吸着量を得ることができる。ただし
、LNz下におけるガスの挙動に関する補正等を行う必
要がある。
Next, ■After closing all on-off valves, open on-off valve 7 and N2
Gas is introduced into the manifold 30, its pressure is detected by the pressure sensor 13, and the on-off valve 7 is closed when a predetermined pressure is reached. After the on-off valve 7 is closed, when the pressure inside the manifold 30 becomes stable, the detected value P by the pressure sensor 13
, are stored in the memory of the computer 15. Next, (2) the on-off valve 3 is opened to diffuse N2 gas into the sample cell 1 and physically adsorb it onto the sample surface. Then, (2) the pressure value P2 at the time when adsorption equilibrium is reached is stored in the memory, and the adsorbed gas amount is calculated based on the difference between this P2 and the previously stored P. That is, P corresponds to the number of molecules of the introduced N2 gas, and P2 corresponds to the number of molecules of the introduced N2 gas that are not adsorbed. Therefore, the difference between the two is a value that correlates with the number of molecules adsorbed on the sample, that is, the amount of gas adsorbed, and the amount of adsorption can be obtained from the pressure difference. However, it is necessary to make corrections regarding the behavior of the gas under LNz.

以上の■〜■の処理を順次繰り返すことによって吸着等
混線を得ることができる。そして、P2が飽和蒸気圧近
くに達した時点で、上述のガス導入プロセスを真空引き
プロセスに置き換えて■〜■と同様の処理を行うことに
より、脱着等混線を得ることができる。
By sequentially repeating the above-mentioned processes (1) to (2), crosstalk such as attraction can be obtained. Then, when P2 reaches near the saturated vapor pressure, crosstalk such as desorption can be obtained by replacing the above-mentioned gas introduction process with a vacuum drawing process and performing the same processes as ① to ②.

このような方法において、一つのP2を採取する際には
、例えば、試料セル1内に吸着ガスを導入あるいは排出
した後、所定の時間待ちを行い、その間での圧力変化が
「ζO」となった時点を吸脱着平衡状態と見做している
。ところが、このような処理を、1回の吸着ガスの導入
または排出するごとに行うと、所望の吸脱着等温線を得
るには膨大な時間を要する。
In such a method, when collecting one P2, for example, after introducing or discharging the adsorbed gas into the sample cell 1, wait for a predetermined time, and the pressure change during that time becomes "ζO". The point in time is considered to be the adsorption/desorption equilibrium state. However, if such a process is performed each time an adsorbed gas is introduced or discharged, it takes an enormous amount of time to obtain a desired adsorption/desorption isotherm.

そこで、従来では、オペレータらが、複数個の測定ポイ
ント(吸脱着平衡時の圧力値Pz(n))をあらかじめ
設定しておき、その測定ポイントに近づくまで、上述の
■および■の処理を何度も繰り返すようにしている。す
なわち、厳密な吸脱着平衡待ちの回数を少なくし、測定
時間の゛短縮化をはかっている。
Therefore, conventionally, operators set multiple measurement points (pressure value Pz(n) at adsorption/desorption equilibrium) in advance, and repeat the processes of I try to repeat it often. In other words, the number of times of waiting for strict adsorption/desorption equilibrium is reduced, thereby shortening the measurement time.

このような処理を行うだめのプログラムのフロ−チャー
トの例を第6図に示す。
An example of a flowchart of a program for performing such processing is shown in FIG.

まず、吸着量測定処理に先立ち、測定ポイントp2(n
)、並びに判断ステップにおける圧力許容差ΔP1およ
びΔp2をオペレータが設定しておく。
First, prior to the adsorption amount measurement process, measurement point p2(n
), and the pressure tolerances ΔP1 and Δp2 in the determination step are set by the operator.

但しΔpi>ΔP2とする。However, Δpi>ΔP2.

さて、測定処理を開始すると、まず、マニホールド30
に吸着ガスを導入し、その圧力が安定した後に圧力値P
1をメモリに格納する。次に、開閉弁3を開き試料セル
1内に吸着ガスを導入する。
Now, when we start the measurement process, first, the manifold 30
Adsorbed gas is introduced into the area, and after the pressure becomes stable, the pressure value P
Store 1 in memory. Next, the on-off valve 3 is opened and adsorbed gas is introduced into the sample cell 1.

このとき圧力センサ13による検出値をモニタし、その
圧力値が一つ目の測定ポイントP、(1)に対して充分
に低いか否かを判別し、低い場合には、ガス導入ステッ
プへと戻り、このループを繰り返す。
At this time, the detected value by the pressure sensor 13 is monitored, and it is determined whether the pressure value is sufficiently low for the first measurement point P, (1), and if it is low, the process proceeds to the gas introduction step. Go back and repeat this loop.

そして、圧力センサ13による検出値Pがpz(x)に
対しである程度の値に達した時点で、はじめて概略平衡
待ちチエツクを行い、このチエツク終了後の圧力検出値
PのP dDに対する差が、許容差621以内であるか
否かを判別し、許容差以内であれば、今度は厳密な平衡
待ちチエツクを行う。
Then, when the detected value P by the pressure sensor 13 reaches a certain value with respect to pz(x), a rough equilibrium wait check is performed for the first time, and the difference between the detected pressure value P and PdD after this check is It is determined whether or not the difference is within the tolerance 621, and if it is within the tolerance, a strict equilibrium wait check is performed this time.

このチエツク終了後の圧力検出値PとPg(1)との6 差が許容差622以内であるか否かを判別する。6 of the pressure detection value P and Pg(1) after this check is completed. It is determined whether the difference is within tolerance 622 or not.

すなわち、吸着平衡時の圧力が設定値P2(1)に近づ
いたことを確認して、その圧力値に基づいて吸着量を算
出し、その算出値■(1)をP2(1)に対応してメモ
リに格納する。以下同様にして、(V (2)PZ(2
)) ・(v(n)、  p2(n))を順次格納する
In other words, after confirming that the pressure at adsorption equilibrium approaches the set value P2 (1), calculate the adsorption amount based on that pressure value, and correspond the calculated value (1) to P2 (1). and store it in memory. Similarly, (V (2)PZ(2
)) - (v(n), p2(n)) are stored sequentially.

〈発明が解決しようとする課題〉 ところで、上述の複数個の測定ポイントを設定する従来
の方法によると、測定ポイントの間隔を粗くすればする
ほど、測定時間の短縮化をはかることができる反面、微
小区間でのデータが得られなくなる。ここで、吸着量測
定装置おいては、本来、密なデータが必要なのは、吸脱
着等混線における吸着ガス圧力に対する吸着ガス量の変
化量が大となる箇所であるが、未知試料の場合、その箇
所の予測がつかない。このため、未知試料の測定にあた
り、測定ポイントの間隔を粗くしてしまうと、本当に重
要な範囲のデータが疎になってしまう可能性がある。
<Problem to be Solved by the Invention> By the way, according to the conventional method of setting a plurality of measurement points described above, the coarser the interval between the measurement points, the shorter the measurement time can be. It becomes impossible to obtain data in minute intervals. In an adsorption amount measuring device, dense data is originally required for locations where the amount of adsorbed gas varies greatly with respect to the adsorbed gas pressure due to crosstalk such as adsorption/desorption, but in the case of unknown samples, The location is unpredictable. For this reason, when measuring an unknown sample, if the intervals between measurement points are made coarse, there is a possibility that data in a truly important range will become sparse.

〈課題を解決するための手段〉 本発明は、上記の問題点を解決すべくなされたもので、
その構成を第1図に示す基本概念図を参照しつつ説明す
ると、本発明は、試料Wを封入するための試料セル1と
、その試料セル1に対して開閉弁3で仕切られたマニホ
ールド30と、そのマニホールド30内に吸着ガスを導
入、もしくはマニホールド30内の吸着ガスを排出する
手段aと、マニホールド30内の圧力を測定するセンサ
bと、開閉弁3の開放前および開放後の圧力データの変
化に基づいて試料Wの吸着量を算出する演算部Cを備え
、開閉弁3の開閉操作を繰り返して試料セル1内に吸着
ガスを順次導入もしくは排出してゆくことによって、そ
の開閉弁3の開放前の圧力データP、および開放後の吸
着平衡時点での圧力データp2に基づいて、複数個の吸
着量データを得る装置において、圧力データP2が、あ
らかじめ設定した複数個の目標値近傍に達したか否かを
判定する手段dと、その判定手段dが達したと判定する
ごとに、演算部Cによる算出値を上記目標値に対応して
記憶手段eに格納する第1のサンプリング手段fと、開
閉弁3を開くごとに演算手段Cが算出する値の変化量へ
■とあらかじめ設定した値とを逐次比較する手段gと、
その変化量が設定値ΔVを超えたときには、次の上記目
標値に対する吸着量データを採取する前に、吸着平衡と
なる時点での演算部Cによる算出値をその吸着平衡圧力
に対応して記憶手段eに格納する第2のサンプリング手
段りを備えていることによって特徴づけられる。
<Means for Solving the Problems> The present invention has been made to solve the above problems.
The structure of the present invention will be explained with reference to the basic conceptual diagram shown in FIG. , means a for introducing adsorbed gas into the manifold 30 or discharging the adsorbed gas in the manifold 30 , a sensor b for measuring the pressure inside the manifold 30 , and pressure data before and after opening of the on-off valve 3 The on-off valve 3 is equipped with a calculation unit C that calculates the adsorption amount of the sample W based on the change in the on-off valve 3, and the on-off valve 3 is repeatedly opened and closed to sequentially introduce or discharge adsorbed gas into the sample cell 1. In an apparatus that obtains a plurality of pieces of adsorption amount data based on pressure data P before opening and pressure data p2 at the time of adsorption equilibrium after opening, the pressure data P2 is in the vicinity of a plurality of preset target values. means d for determining whether or not the target value has been reached; and a first sampling means for storing the calculated value by the calculation unit C in the storage means e in correspondence with the target value each time the determining means d determines that the target value has been reached. means g for successively comparing f and a preset value to the amount of change in the value calculated by the calculation means C each time the on-off valve 3 is opened;
When the amount of change exceeds the set value ΔV, before collecting the adsorption amount data for the next target value, the value calculated by the calculation unit C at the time when adsorption equilibrium is reached is stored in correspondence with the adsorption equilibrium pressure. It is characterized by comprising second sampling means for storing in the means e.

〈作用〉 試料セル1に吸着ガス導入もしくは排出するごとに算出
される吸着量の変化量があらかじめ設定したΔ■以下の
ときには、目標値付近の吸着量データがサンプリングさ
れるが、その変化量がΔ■を超えたときには、ガス導入
もしくは排出ごとに吸着平衡に達する時点での吸着量デ
ータがサンプリングされる。これにより、吸着量の変化
率が大となる部分のデータを密に採取でき、試料が未知
であっても、重要の部分のデータが欠落する虞れはなく
なる。
<Function> When the amount of change in adsorption amount calculated each time adsorbed gas is introduced into or discharged from sample cell 1 is less than the preset Δ■, adsorption amount data near the target value is sampled, but the amount of change is When Δ■ is exceeded, adsorption amount data at the time when adsorption equilibrium is reached each time gas is introduced or discharged is sampled. This makes it possible to collect data in areas where the rate of change in the amount of adsorption is large, and eliminates the risk of missing data in important areas even if the sample is unknown.

〈実施例〉 本発明実施例を、以下、図面に基づいて説明する。<Example> Embodiments of the present invention will be described below based on the drawings.

第2図は本発明実施例の配管系と制御回路のブロック図
を併記して示す全体構成図である。
FIG. 2 is an overall configuration diagram showing a block diagram of a piping system and a control circuit according to an embodiment of the present invention.

試料を収容した試料セル1は、セル装着部2においてマ
ニホールド30に接続される。
A sample cell 1 containing a sample is connected to a manifold 30 at a cell mounting section 2.

マニホールド30には、その適宜箇所に開閉弁3〜10
が配設されているとともに、吸着ガスたる窒素ガス源と
不活性ガスたるヘリウムガス源が接続され、さらにその
内部を真空排気するための真空ポンプ11が接続されて
いる。
The manifold 30 has on-off valves 3 to 10 at appropriate locations.
A nitrogen gas source as an adsorption gas and a helium gas source as an inert gas are connected, and a vacuum pump 11 for evacuating the inside thereof is also connected.

このマニホールド30内の圧力は真空計12と圧力計1
3によって計測され、A−D変換機14でデジタル化さ
れた後、コンピュータ15に採す込まれる。なお、16
.17は絞り、18は飽和蒸気圧測定用チューブ、19
は校正用容積である。
The pressure inside this manifold 30 is determined by the vacuum gauge 12 and the pressure gauge 1.
3, is digitized by an A-D converter 14, and then input to a computer 15. In addition, 16
.. 17 is a throttle, 18 is a tube for measuring saturated vapor pressure, 19
is the calibration volume.

マニホールド30の下方には、試料セル1を冷却するた
めのLN2等の冷媒を収容したデユワ−瓶20が設けら
れており、このデユワ−瓶20は、0 コンピュータ15からの指令に基づいてエレヘータ機構
21によって上下動される。また、上述した各開閉弁3
〜10はおなじくコンピュータ15からの指令に基づく
バルブドライバ22からの制御信号によって開閉駆動さ
れる。
A dewar bottle 20 containing a refrigerant such as LN2 for cooling the sample cell 1 is provided below the manifold 30. It is moved up and down by 21. In addition, each on-off valve 3 mentioned above
10 are driven to open and close by control signals from the valve driver 22 based on commands from the computer 15.

以上のハードウェア上における構成は、従来の吸着量測
定装置と同様である。
The above hardware configuration is the same as that of a conventional adsorption amount measuring device.

第3図はコンピュータ15に書き込まれた吸着量測定処
理用プログラムの内容を示すフローチャートで、以下、
この図を参照しつつ本発明実施例の作用を述べる。
FIG. 3 is a flowchart showing the contents of the adsorption amount measurement processing program written in the computer 15.
The operation of the embodiment of the present invention will be described with reference to this figure.

この吸着量測定処理に先立ち、従来と同様に、測定ポイ
ントp2(n)、並びに判断ステップにおける圧力許容
差△P1およびΔp2をオペレータがあらかしめ設定し
ておく。また、吸着量変化量の許容値△■を設定してお
く。
Prior to this adsorption amount measurement process, the operator previously sets the measurement point p2(n) and the pressure tolerances ΔP1 and Δp2 in the determination step. In addition, a permissible value △■ for the amount of change in adsorption amount is set.

まず、吸着量測定処理のプログラムを実行する前に、コ
ンピュータ15は、従来と同様に、開閉弁3および5を
開いてマニホールド30および試料セル1内の真空引き
を行った後、開閉弁3および5を閉じる。次に、開閉弁
9を開き不活性ガスであるH eガスをマニホールド3
0内に導入し開閉弁9を閉じた後、開閉弁3を開いてH
eガスを試料セル1に拡散させる。この開閉弁3の開放
前後のマニホールド30内の圧力値、およびマニホール
ド30の容積から、試料セル1内における試料容積を除
く部分の容積を求める。次いで、開閉弁5を開いてマニ
ホールド30および試料セル1内の真空引きを行った後
、試料セル1の一部をLN2中に浸す処理を行う。
First, before executing the adsorption amount measurement process program, the computer 15 opens the on-off valves 3 and 5 to evacuate the inside of the manifold 30 and the sample cell 1, and then opens the on-off valves 3 and Close 5. Next, open the on-off valve 9 and supply He gas, which is an inert gas, to the manifold 3.
0 and close the on-off valve 9, then open the on-off valve 3 and
e gas is diffused into the sample cell 1. From the pressure values in the manifold 30 before and after opening of the on-off valve 3 and the volume of the manifold 30, the volume of the portion of the sample cell 1 excluding the sample volume is determined. Next, the on-off valve 5 is opened to evacuate the interior of the manifold 30 and the sample cell 1, and then a portion of the sample cell 1 is immersed in LN2.

さて、測定処理を開始すると、まず、マニホールド30
に吸着ガスを導入し、その圧力が安定した後に圧力値P
1をメモリに格納する。次に、開閉弁3を開き試料セル
1内に吸着ガスを導入する。
Now, when we start the measurement process, first, the manifold 30
Adsorbed gas is introduced into the area, and after the pressure becomes stable, the pressure value P
Store 1 in memory. Next, the on-off valve 3 is opened and adsorbed gas is introduced into the sample cell 1.

このとき圧力センサ13による検出値をモニタし、その
圧力値Pおよび先の圧力値P、に基づいて吸着量の概算
値を算出する。この吸着量ΣVが67以上であるか否か
を判別し、以下のときには、この時点での圧力モニタ値
が、一つ目の測定ポイントp、(+)に対して充分に小
さいか否かを判別して「ガス導入Jステップへと戻る。
At this time, the detected value by the pressure sensor 13 is monitored, and an approximate value of the adsorption amount is calculated based on the detected pressure value P and the previous pressure value P. It is determined whether this adsorption amount ΣV is 67 or more, and in the following cases, it is determined whether the pressure monitor value at this point is sufficiently small with respect to the first measurement point p, (+). After determining, “Return to gas introduction J step.

すなわち、試料セル1内に吸着ガスを導入するごとの吸
着量の概算値をモニタし、その概算値の変化量が常に設
定値Δ■以下のときには、圧力センサ13による検出値
Pがpz(1)に対しである程度の値に達するまで、ガ
ス導入を繰り返す。そして、以後、従来と同様に、「概
略平衡待ちチエツクJおよび「平衡待ちチエ・ツク」ス
テップ等を経て、吸着平衡時の圧力が設定値pJに近づ
いたことを確認した時点で、その圧力値に基づいて吸着
量を算出し、その算出値■(1)をp2(i)に対応し
てメモリに格納する。
That is, the estimated value of the amount of adsorption is monitored each time adsorbed gas is introduced into the sample cell 1, and when the amount of change in the estimated value is always less than the set value Δ■, the detected value P by the pressure sensor 13 becomes pz(1 ) until a certain value is reached. Thereafter, as in the past, after going through steps such as "Rough Equilibration Wait Check J" and "Equilibration Wait Check", etc., when it is confirmed that the pressure at adsorption equilibrium approaches the set value pJ, the pressure value The adsorption amount is calculated based on , and the calculated value (1) is stored in the memory in correspondence with p2(i).

一方、試料セル1内にガスを導入したときの吸着量の概
算値Σ■が設定値Δ■を超えたときには、圧力センサ1
3による検出値の変化率をモニタし、その変化率が一定
となった時点、つまり、吸着平衡に達した時点での圧力
値Pに基づいて吸着量Vを計算し、その圧力値Pをpg
(Dとして、また、吸着量■を■(1)として格納する
。この処理は、試料セル1内に吸着ガスを導入するごと
の吸着量の3 概算値ΣVが設定値Δ■以下となるまで繰り返され、そ
の都度のデータV (k)をpz(k)に対応して順次
格納する。
On the other hand, when the approximate value Σ■ of the amount of adsorption when gas is introduced into the sample cell 1 exceeds the set value Δ■, the pressure sensor 1
3. Monitor the rate of change of the detected value in step 3, calculate the adsorption amount V based on the pressure value P at the time when the rate of change becomes constant, that is, the time when adsorption equilibrium is reached, and calculate the adsorption amount V based on the pressure value P in pg.
(The adsorption amount ■ is stored as D and the adsorption amount ■ is stored as ■ (1). This process continues until the estimated adsorption amount ΣV becomes less than the set value Δ■ each time the adsorbed gas is introduced into the sample cell 1. This is repeated, and the data V (k) each time is sequentially stored corresponding to pz(k).

そして、測定ポイントPg(1)からpz(n)それぞ
れに対応する全てのデータを採取した時点で、そのP 
2 Q)−p 2 (n)に対応するデータ群V (1
)−V (n)およびP’2(])・・・p’Jc)に
対応するデータ群V’(1)・・・V’(n)を、平衡
圧力順に並べてプログラムを終了する。
Then, when all the data corresponding to each measurement point Pg(1) to pz(n) is collected, that P
2 Q)-p 2 (n) corresponding to the data group V (1
)-V(n) and P'2(])...p'Jc) are arranged in the order of equilibrium pressure, and the program ends.

以上の本発明実施例によると、例えば第4図に示すよう
な等温線データをもつ試料の測定を行うにあたり、測定
ポイントを単に設定する従来の方法では、得ることがで
きない可能性のあるデータ、すなわち、図中○印を付し
た箇所のデータを得ることが可能となる。なお、グラフ
の横軸は、吸着ガスの飽和蒸気圧P。に対する吸着平衡
圧Pの比を示している。
According to the above embodiments of the present invention, when measuring a sample having isotherm data as shown in FIG. 4, for example, data that may not be obtained by the conventional method of simply setting measurement points, In other words, it is possible to obtain data at the locations marked with a circle in the figure. Note that the horizontal axis of the graph is the saturated vapor pressure P of the adsorbed gas. The ratio of the adsorption equilibrium pressure P to the adsorption equilibrium pressure P is shown.

以上のフローチャートにおいて、P、の決定方法につい
ては触れていなか、その決定方法としては、各測定プロ
セスに対応した種々の方法を採用=14 すればよく、このフローチャー1−では、図に示ずAお
よびA′の箇所に、種々のP1決定方法に応じたPlの
設定処理用のルーチンを追加すればよい また、以上のフローチャートは吸着量測定処理のみにつ
いて示したが、肌着測定処理についてはガス導入プロセ
スを真空引きプロセスに置き換えればよい。
In the above flowchart, the method for determining P is not mentioned, and various methods corresponding to each measurement process may be adopted as a method for determining P. Routines for Pl setting processing according to various P1 determination methods can be added to locations A and A'.Furthermore, although the above flowchart has been shown only for adsorption amount measurement processing, gas The introduction process may be replaced with a vacuum drawing process.

さらに、本発明実施例では、吸着ガスとして、最も一般
的なN2ガスを使用しているが、例えばArあるいはK
r等の他のガスを使用してもよいことは勿論である。
Furthermore, in the embodiments of the present invention, the most common N2 gas is used as the adsorption gas, but for example, Ar or K gas is used.
Of course, other gases such as r may also be used.

〈発明の効果〉 以上説明したように、本発明によれば、基本的には、あ
らかしめ設定した複数個の目標値付近での吸着データを
採取するが、試料セル内に吸着ガス導入もしくは排出す
るごとの吸着量算出値の変化量が、あらかじめ設定した
値を超えたときには、次の目標値に対する吸着量データ
を採取する前に、吸着平衡となる時点での吸着量データ
を採取するよう構成したので、l」標値を粗い間隔で設
定しても、吸着量の変化率が大となる部分のデータ個数
を密とするごとができる。これにより、試料が未知であ
っても、重要な部分のデータが欠落する虞れがなくなる
。さらに、データ採取個数を、重要な部分は密に、あま
り重要でない部分は疎とすることができので、測定を効
率的に行うことが可能となる。さらには、従来と同じハ
ードウェアで、上記の効果を達成できるという点の効果
も大きい。
<Effects of the Invention> As explained above, according to the present invention, adsorption data is basically collected near a plurality of predetermined target values, but adsorption data is not introduced into or discharged from the sample cell. When the amount of change in the adsorption amount calculation value for each step exceeds a preset value, the adsorption amount data at the time when adsorption equilibrium is reached is collected before collecting adsorption amount data for the next target value. Therefore, even if the l'' target value is set at coarse intervals, the number of data in the portion where the rate of change in adsorption amount is large can be made dense. This eliminates the risk of missing important data even if the sample is unknown. Furthermore, since the number of data samples can be set densely for important parts and sparsely for less important parts, it is possible to perform measurements efficiently. Furthermore, the advantage is that the above effects can be achieved with the same hardware as in the past.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の構成を示す基本概念図、第2図は本発
明実施例の構成を示すブロック図、第3図はそのコンピ
ュータ15に書き込まれた吸着量測定処理用プログラム
の内容を示すフローチャート、 第4図はその作用説明図である。 第5図は、容量法による吸着量測定装置の原理を説明す
るための図である。 第6図は、従来の吸着量測定処理用プログラムの内容を
示すフローチャート例である。 1 ・ 3 ・ 12 ・ 13 ・ 15 ・ 30 ・ W ・ ・試料セル ・開閉弁 ・真空針 ・圧力計 ・コンピュータ ・マニホールド ・試料
FIG. 1 is a basic conceptual diagram showing the configuration of the present invention, FIG. 2 is a block diagram showing the configuration of an embodiment of the present invention, and FIG. 3 shows the contents of the adsorption amount measurement processing program written in the computer 15. The flowchart, FIG. 4, is an explanatory diagram of its operation. FIG. 5 is a diagram for explaining the principle of an adsorption amount measuring device using a capacitance method. FIG. 6 is an example of a flowchart showing the contents of a conventional adsorption amount measurement processing program. 1 ・ 3 ・ 12 ・ 13 ・ 15 ・ 30 ・ W ・ Sample cell, on-off valve, vacuum needle, pressure gauge, computer, manifold, sample

Claims (1)

【特許請求の範囲】[Claims]  試料を封入するための試料セルと、その試料セルに対
して開閉弁で仕切られたマニホールドと、そのマニホー
ルド内に吸着ガスを導入、もしくはマニホールド内の吸
着ガスを排出する手段と、上記マニホールド内の圧力を
測定するセンサと、上記開閉弁の開放前および開放後の
圧力データの変化に基づいて試料の吸着量を算出する演
算部を備え、上記開閉弁の開閉操作を繰り返して、上記
試料セル内に吸着ガスを順次導入もしくは排出してゆく
ことによって、その開閉弁の開放前の圧力データp_1
および開放後の吸着平衡時点での圧力データp_2に基
づいて、複数個の吸着量データを得る装置において、上
記圧力データp_2が、あらかじめ設定した複数個の目
標値近傍に達したか否かを判定する手段と、その判定手
段が達したと判定するごとに、上記演算部による算出値
を上記目標値に対応して記憶手段に格納する第1のサン
プリング手段と、上記開閉弁を開くごとに、上記演算手
段が算出する値の変化量とあらかじめ設定した値とを逐
次比較する手段と、その変化量が上記設定値を超えたと
きには、次の上記目標値に対する吸着量データを採取す
る前に、吸着平衡となる時点での上記演算部による算出
値をその吸着平衡圧力に対応して上記記憶手段に格納す
る第2のサンプリング手段を備えていることを特徴とす
る、吸着量測定装置。
A sample cell for enclosing a sample, a manifold separated from the sample cell by an on-off valve, a means for introducing adsorbed gas into the manifold or discharging the adsorbed gas in the manifold, and It is equipped with a sensor that measures pressure and a calculation unit that calculates the amount of sample adsorbed based on changes in pressure data before and after opening the on-off valve. By sequentially introducing or discharging adsorbed gas into or out of the valve, the pressure data p_1 before the opening/closing valve is
In a device that obtains a plurality of pieces of adsorption amount data based on the pressure data p_2 at the time of adsorption equilibrium after opening, it is determined whether the pressure data p_2 has reached the vicinity of a plurality of preset target values. a first sampling means for storing the calculated value by the arithmetic unit in the storage means in correspondence with the target value each time the determination means determines that the target value has been reached; and each time the on-off valve is opened, means for successively comparing the amount of change in the value calculated by the calculation means with a preset value, and when the amount of change exceeds the set value, before collecting adsorption amount data for the next target value; An adsorption amount measuring device comprising second sampling means for storing a value calculated by the arithmetic unit at the time when adsorption equilibrium is reached in the storage means in correspondence with the adsorption equilibrium pressure.
JP25615989A 1989-09-29 1989-09-29 Adsorption amount measuring device Expired - Fee Related JPH0675031B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25615989A JPH0675031B2 (en) 1989-09-29 1989-09-29 Adsorption amount measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25615989A JPH0675031B2 (en) 1989-09-29 1989-09-29 Adsorption amount measuring device

Publications (2)

Publication Number Publication Date
JPH03115951A true JPH03115951A (en) 1991-05-16
JPH0675031B2 JPH0675031B2 (en) 1994-09-21

Family

ID=17288724

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25615989A Expired - Fee Related JPH0675031B2 (en) 1989-09-29 1989-09-29 Adsorption amount measuring device

Country Status (1)

Country Link
JP (1) JPH0675031B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007064731A (en) * 2005-08-30 2007-03-15 Shinshu Univ Device and method for measuring porous material characteristics
JP2014081250A (en) * 2012-10-16 2014-05-08 Nippon Bell Kk Adsorption characteristic measurement instrument
JP2016080634A (en) * 2014-10-21 2016-05-16 国立研究開発法人産業技術総合研究所 Adsorption characteristics measuring apparatus
JP2017096811A (en) * 2015-11-25 2017-06-01 国立大学法人京都大学 Gas adsorption amount measuring method of porous material
CN114681726A (en) * 2022-03-23 2022-07-01 浙江宜格企业管理集团有限公司 Control method, system and equipment for pressure-stabilizing gas-liquid mass ratio for beauty instrument

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007064731A (en) * 2005-08-30 2007-03-15 Shinshu Univ Device and method for measuring porous material characteristics
JP2014081250A (en) * 2012-10-16 2014-05-08 Nippon Bell Kk Adsorption characteristic measurement instrument
JP2016080634A (en) * 2014-10-21 2016-05-16 国立研究開発法人産業技術総合研究所 Adsorption characteristics measuring apparatus
JP2017096811A (en) * 2015-11-25 2017-06-01 国立大学法人京都大学 Gas adsorption amount measuring method of porous material
CN114681726A (en) * 2022-03-23 2022-07-01 浙江宜格企业管理集团有限公司 Control method, system and equipment for pressure-stabilizing gas-liquid mass ratio for beauty instrument
CN114681726B (en) * 2022-03-23 2024-02-09 杭州时光机智能电子科技有限公司 Control method, system and equipment for pressure-stabilizing gas-liquid mass ratio for beauty instrument

Also Published As

Publication number Publication date
JPH0675031B2 (en) 1994-09-21

Similar Documents

Publication Publication Date Title
US4566326A (en) Automatic volumetric sorption analyzer
US3850040A (en) Sorption analysis apparatus and method
US5665902A (en) Method to analyze particle contaminants in compressed gases
US20060099718A1 (en) System and method for extracting headspace vapor
US5637810A (en) Apparatus and method for efficient determination of equilibrium adsorption isotherms at low pressures
US9518904B2 (en) System and method of quantifying impurities mixed within a sample of hydrogen gas
JP3454701B2 (en) Gas sample collection device and method of using the same
US4928537A (en) System for airborne particle measurement in a vacuum
JPH03115951A (en) Measuring device for adsorption amount
US4972730A (en) System for dosing and determining saturation pressure in a volumetric sorption analyzer
US6629043B1 (en) Multiple port leak detection system
JP6037760B2 (en) Adsorption characteristic measuring device
CN111638263A (en) Gas sampling and analyzing device and method
US5895841A (en) Method and apparatus for performing adsorption and desorption analysis of samples
US5122745A (en) Method and apparatus for determining molecular dynamics of materials
US5714678A (en) Method for rapidly determining an impurity level in a gas source or a gas distribution system
CN210803224U (en) Volumetric method isobaric adsorption tester
KR100210652B1 (en) Method and apparatus for measuring specific surface area in porous material sample
US5496393A (en) Gas purification capability measuring method for gas purification apparatus and gas purification apparatus
JPS6179130A (en) Measuring device for amount of suction
JPH03277942A (en) Adsorbed amount measuring apparatus
CN118032580B (en) High-precision solid material surface equilibrium state net desorption gas measurement method
JP2817498B2 (en) Leak inspection device
JPH03277943A (en) Adsorbed amount measuring apparatus
Fukui et al. A measurement technique for organic nitrates and halocarbons in ambient air

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees