JPS6179130A - Measuring device for amount of suction - Google Patents
Measuring device for amount of suctionInfo
- Publication number
- JPS6179130A JPS6179130A JP20269984A JP20269984A JPS6179130A JP S6179130 A JPS6179130 A JP S6179130A JP 20269984 A JP20269984 A JP 20269984A JP 20269984 A JP20269984 A JP 20269984A JP S6179130 A JPS6179130 A JP S6179130A
- Authority
- JP
- Japan
- Prior art keywords
- valve
- pressure
- valves
- leak
- manifold
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
- G01M3/00—Investigating fluid-tightness of structures
- G01M3/02—Investigating fluid-tightness of structures by using fluid or vacuum
- G01M3/26—Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Examining Or Testing Airtightness (AREA)
Abstract
Description
【発明の詳細な説明】
(イ)産業上の利用分野
本発明は、試料の吸着量を容量法により測定する装置に
関する。DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application The present invention relates to an apparatus for measuring the amount of adsorption of a sample by a capacitance method.
(ロ)従来技術
一般に、被測定試料の例えば物理吸着量を測定する装置
のうち、容量法を用いた装置においては、気相吸着質源
、気相非吸着質源、真空ポンプ、試料セル等に対してそ
れぞれの開閉弁によって仕切られたマニホールドに、圧
力針および真空針を設け、所望の開閉弁を適宜に操作す
ることにより、マニホールド内および試料セル内を真空
排気と気相非吸着質又は気相吸着質の充填等を交互に行
い、気相非吸着質および気相吸着質充愼時の圧力差から
、試料セル内の試料の物理吸着量が求められる。(b) Prior art In general, among devices that measure, for example, the amount of physical adsorption of a sample to be measured, devices using a capacitance method include a gas phase adsorbate source, a gas phase non-adsorbate source, a vacuum pump, a sample cell, etc. A pressure needle and a vacuum needle are installed in a manifold separated by respective on-off valves, and by appropriately operating the desired on-off valves, the inside of the manifold and sample cell are evacuated and the gas phase non-adsorbable or The amount of physical adsorption of the sample in the sample cell is determined from the pressure difference between the gas phase non-adsorbate filling and the gas phase adsorbate filling, etc., by alternately filling the gas phase adsorbate.
このような容量法による吸着量測定装置では、マニホー
ルドと各部を仕切る開閉弁にリークがあれば、正しい測
定結果を得ることができないことは明らかである。It is clear that in such a capacitance-based adsorption amount measuring device, correct measurement results cannot be obtained if there is a leak in the manifold and the on-off valves that partition the various parts.
従来のこの種装置においては、マニホールドと各部を仕
切る開閉弁のうち、気相吸着質源や気相非吸着質源との
間に設けられた開閉弁等の、マニホールドに対し反対側
に圧力がかかっている弁については、真空排気操作時に
到達真空度を監視することにより、いずれかにリークが
あればその旨を検知することができるが、試料セルとマ
ニホールドを仕切る開閉弁等については、開閉弁を挟ん
でマニホールドと反対側が閉塞されているので、弁のリ
ークがあっても到達真空度の監視によってはこれを検知
することができない。ところが、往々にして、到達真空
度が満足な値を示しているが−故に、全ての弁にリーク
がないものと思い込み、測定作業を行ってしまうことが
あり、この場合、得られた測定結果には当然誤差が含ま
れているが、これを正しい値として信じてしまうという
問題があった。このような開閉弁のリークチェックは、
従来、各部の所定の操作により手作業で行う以外にない
が、極めて繁雑な手順を必要とし、熟練者でないとチェ
ックできないという問題があった。In conventional devices of this type, pressure is applied to the side opposite to the manifold, such as the on-off valves that separate the manifold and various parts, such as the on-off valves installed between the gas-phase adsorbate source and the gas-phase non-adsorbate source. If there is a leak in any of the valves, it can be detected by monitoring the degree of vacuum achieved during evacuation operation, but for on-off valves that separate the sample cell and manifold, etc. Since the opposite side of the valve from the manifold is closed, even if there is a leak from the valve, it cannot be detected by monitoring the ultimate vacuum level. However, in many cases, even though the ultimate vacuum level shows a satisfactory value, the measurement work is carried out assuming that there are no leaks in all valves, and in this case, the obtained measurement results are Naturally, there is an error in the value, but the problem is that it is believed to be the correct value. Leak checks of such on-off valves are
Conventionally, the only way to do this is to do it manually by performing predetermined operations on each part, but this requires an extremely complicated procedure and has the problem that only an expert can check it.
(ハ)目的
本発明は上記に鑑みてなされたもので、自動的に各開閉
弁のリークをチェックしてリークのある開閉弁を特定す
ることにより、リークチェック作業の削減を計るととも
に異常状態での誤った測定を行うことのない吸着量測定
装置の提供を目的としている。(c) Purpose The present invention has been made in view of the above, and by automatically checking the leakage of each on-off valve and identifying the on-off valve with a leak, it is possible to reduce the amount of leak checking work and to detect abnormal conditions. The purpose of the present invention is to provide an adsorption amount measuring device that does not perform erroneous measurements.
(ニ)構成
本発明の特徴とするところは、検査すべき開閉弁を閉じ
た状態でその弁を挟んでマニホールド側およびその反対
側に差圧を与える手段と、その状態でマニホールド内の
時間的圧力変化があらかじめ設定された許容値を越えて
いるか否かを判別する手段と、その判別結果に基づいて
その開閉弁のリークの有無を報知する手段とを備え、各
開閉弁のリークを自動的にチェックして、リークのある
弁を特定し得るよう構成したことにある。(d) Structure The present invention is characterized by a means for applying a differential pressure to the manifold side and the opposite side across the on-off valve to be inspected when the valve is closed, Equipped with a means for determining whether the pressure change exceeds a preset allowable value, and a means for notifying the presence or absence of a leak from each on-off valve based on the determination result, the system automatically detects leaks from each on-off valve. The reason is that the valve is configured so that it can be checked to identify the valve with the leak.
(ホ)実施例 本発明の実施例を、以下、図面に基づいて説明する。(e) Examples Embodiments of the present invention will be described below based on the drawings.
第1図は本発明実施例の構成図である。FIG. 1 is a block diagram of an embodiment of the present invention.
容積既知のマニホールド1は、圧力計2と真空計3に連
通しており、また、各電磁開閉弁VAC1H% N−、
ESPSSSt 、S2 、Saを介して、それぞれ真
空ポンプ4、気相非吸着質源たるヘリウムボンベ、気相
吸着質たるチッ素ボンベ、エキストラ容積器5、飽和蒸
気測定管6、および各セル接続部7・・・と連通してい
る。試料セル8は、セル接続部7に対して気密に取り付
けあるいは取り外しが自在で、試料セル8を取り外した
状態ではセル接続部7をプラグ9で密閉することができ
る。A manifold 1 with a known volume is connected to a pressure gauge 2 and a vacuum gauge 3, and each electromagnetic on-off valve VAC1H%N-,
Via ESPSSSt, S2, and Sa, a vacuum pump 4, a helium cylinder as a gas-phase non-adsorbate source, a nitrogen cylinder as a gas-phase adsorbate, an extra volumetric vessel 5, a saturated steam measuring tube 6, and each cell connection 7 It communicates with... The sample cell 8 can be airtightly attached to or removed from the cell connection part 7, and when the sample cell 8 is removed, the cell connection part 7 can be sealed with a plug 9.
なお、エキストラ容積器5は、その容積が既知であって
、電磁開閉弁Eの開放によりマニホールド1の容積を拡
大せしめる為のものである。また、試料セル8および飽
和蒸気圧測定管6は、下方のデユワ−瓶10内の液体チ
ッ素等の冷媒で、その一部を冷却し得るよう構成されて
いる。The extra volumetric capacity 5 has a known volume, and is used to expand the volume of the manifold 1 by opening the electromagnetic on-off valve E. Further, the sample cell 8 and the saturated vapor pressure measurement tube 6 are configured so that they can be partially cooled with a refrigerant such as liquid nitrogen in a dewar bottle 10 below.
電磁開閉弁VACを開いて真空ポンプ4を駆動し、電磁
開閉弁HおよびNを除く所望の電磁開閉弁を開放するこ
とにより、マニホールド1および所望の各部内を真空排
気することができる。また、電磁開閉弁VACを閉じ、
電磁開閉弁H又はNを開放し、所望の電磁開閉弁を開放
すれば、マニホールドlおよび所望の各部内にヘリウム
ガス又はチッ素ガスを導入することができる。By opening the electromagnetic on-off valve VAC, driving the vacuum pump 4, and opening desired electromagnetic on-off valves other than the electromagnetic on-off valves H and N, the interior of the manifold 1 and desired parts can be evacuated. Also, close the electromagnetic on-off valve VAC,
By opening the electromagnetic on-off valve H or N and opening the desired electromagnetic on-off valve, helium gas or nitrogen gas can be introduced into the manifold l and desired parts.
各電磁開閉弁の開閉指令信号および真空ポンプ4の駆動
指令信号は、それぞれパルプ用の入出力インターフェー
ス11およびポンプ用の入出力インターフェース12を
介して、制御部13から供給される。また、圧力計およ
び真空計3の出力は、マルチプレクサ14およびA−D
変換器15を介して制御部13に採り込まれる。An opening/closing command signal for each electromagnetic on-off valve and a drive command signal for the vacuum pump 4 are supplied from the control unit 13 via the pulp input/output interface 11 and the pump input/output interface 12, respectively. In addition, the outputs of the pressure gauge and vacuum gauge 3 are connected to the multiplexer 14 and A-D.
The signal is input to the control section 13 via the converter 15.
制御部13はマイクロコンピュータで構成され、各種プ
ログラムの実行や演算処理および各周辺機器の制御を行
うCPU13a、測定用プログラムや後述するリークチ
ェック用プログラムが書き込まれたROMI 3 b、
およびA−D変換器15からのデジタル変換データやC
PU13aによる演算結果等を格納するエリアを有する
RAM13C等を備え、これらは互いにパスラインによ
って接続されている。なお、制御部13には、プリンタ
等の外部機器との接続の為の入出力ターミナル16が、
UART17を介して接続されている。The control unit 13 is composed of a microcomputer, and includes a CPU 13a that executes various programs, performs arithmetic processing, and controls each peripheral device, a ROMI 3b in which a measurement program and a leak check program to be described later are written;
and digital conversion data from the A-D converter 15 and C
It includes a RAM 13C and the like having an area for storing calculation results etc. by the PU 13a, and these are connected to each other by a pass line. The control unit 13 includes an input/output terminal 16 for connection with external equipment such as a printer.
It is connected via UART17.
次に本発明実施例の作用を説明する。なお、吸着量測定
時における各部の動作およびその作用は、従来装置と同
じであるからその説明を省略し、ここではリークチェッ
ク時における作用をROM13bに書き込まれたリーク
チェック用プログラムを参照しつつ説明する。第2図に
そのフローチャートを示す。また、第2図における「排
気」、「昇圧速度測定」、「注入」および「終了処理」
のサブルーチンを、それぞれ第3図、第4図、第5図お
よび第6図にフローチャートで示す。Next, the operation of the embodiment of the present invention will be explained. The operations and effects of each part during adsorption amount measurement are the same as those of the conventional device, so explanations thereof will be omitted.Here, the operations during leak check will be explained with reference to the leak check program written in the ROM 13b. do. FIG. 2 shows the flowchart. Also, "exhaust", "pressure increase rate measurement", "injection" and "termination process" in Figure 2
The subroutines are shown in flowcharts in FIGS. 3, 4, 5, and 6, respectively.
チェックに先立ち、全てのセル接続部7・・・に空の試
料セル8又はプラグ9を取り付けておく。チェック開始
を指示すると、電磁開閉弁H,Nを除く全電磁開閉弁を
開放して真空ポンプ4による系内の排気が行なわれる。Prior to checking, empty sample cells 8 or plugs 9 are attached to all cell connections 7. When the check start is instructed, all the electromagnetic on-off valves except the electromagnetic on-off valves H and N are opened and the system is evacuated by the vacuum pump 4.
このとき、第3図に示す如く、所定時間(例えば20分
間)内で到達真空度が例えば0.01mHgを満足しな
ければ、電磁開閉弁H又はN、あるいは配管系にリーク
があることを検知したことになる。更に、第2図の1お
よび第4図に示す如く、到達真空度が0.01mHgを
満足したとき、電磁開閉弁VACを閉じた直後の圧力P
1を測定し、その状態で所定時間、例えば1分間待機し
て再度その圧力P2を測定し、P2とPlとの差があら
かじめ設定された許容値、例えば0.01aHgを越え
ているか否かを判別すれば、より厳密なチェックとなる
。許容値を越えた昇圧速度であれば、その旨を例えばプ
リンタ等によって検知し、この場合、以後のチェックは
困難であるから、全ての弁を閉じてチェックを終了する
。At this time, as shown in Figure 3, if the ultimate vacuum does not satisfy, for example, 0.01 mHg within a predetermined time (for example, 20 minutes), it is detected that there is a leak in the electromagnetic on-off valve H or N, or in the piping system. That means you did it. Furthermore, as shown in 1 and 4 of Fig. 2, when the ultimate vacuum satisfies 0.01 mHg, the pressure P immediately after closing the electromagnetic on-off valve VAC
1, wait in that state for a predetermined period of time, for example 1 minute, and then measure the pressure P2 again to determine whether the difference between P2 and Pl exceeds a preset tolerance, for example 0.01aHg. If it is determined, it will be a more rigorous check. If the pressure increase rate exceeds the allowable value, this fact is detected by, for example, a printer, and in this case, since subsequent checks are difficult, all valves are closed and the checks are completed.
次に、以上のチェックにおいて異常がない場合、電磁開
閉弁ESP3% Sl 、S2およびS3のチェックが
行なわれる。各電磁開閉弁のチェックは、第2図のフロ
ーチャートにおいて■、■、■、■、■でそれぞれ単独
に実施されるが、全て同じ手順で行なわれるので、■に
示′す電磁開閉弁Eのチェックを例にとって説明する。Next, if there is no abnormality in the above checks, the electromagnetic on-off valves ESP3% Sl, S2 and S3 are checked. The checks for each electromagnetic on-off valve are carried out individually in steps ■, ■, ■, ■, and ■ in the flowchart in Figure 2, but all are performed in the same procedure, so the check for the electromagnetic on-off valve E shown in This will be explained using a check as an example.
電磁開閉弁HおよびNが閉じられ、かつ、他の電磁開閉
弁が開かれた状態から、第5図に示す如(、先ず電磁開
閉弁Hを開放して全系内にヘリウムガスを導入し、系内
の圧力が760imHgを越えれば、電磁開閉弁Hを閉
じる。このようなヘリウムガスの注入後、チェックすべ
き弁、すなわちこの場合電磁開閉弁E、を閉じ、次に真
空ポンプ4により真空排気を行う。この状態では、電磁
開閉弁Eを介して一方のマニホールド側が真空状態、他
方のエキストラ容積器5側が1気圧となっている。そし
てその状態で上述の昇圧速度測定ルーチンを実行し、P
2とPI との差が例えば0.01fi Hg以下であ
れば弁Eが正常である旨を報知して次の弁のチェックに
移り、0.01inHgを越えていれば弁Eにリークが
発生しいる旨を報知し、この場合、 ′弁Eを開いた状
態で次の弁のチェックに移行する。With the electromagnetic on-off valves H and N closed and the other electromagnetic on-off valves opened, as shown in Figure 5, first open the electromagnetic on-off valve H and introduce helium gas into the entire system. , if the pressure in the system exceeds 760 imHg, close the electromagnetic on-off valve H. After such injection of helium gas, close the valve to be checked, that is, the electromagnetic on-off valve E in this case, and then apply vacuum with the vacuum pump 4. Exhaust is performed. In this state, one manifold side is in a vacuum state via the electromagnetic on-off valve E, and the other side of the extra volumetric vessel 5 is at 1 atm. Then, in this state, the above-mentioned pressure increase rate measurement routine is executed, P
If the difference between 2 and PI is less than, for example, 0.01 fi Hg, it will notify that valve E is normal and move on to checking the next valve, and if it exceeds 0.01 in Hg, a leak has occurred in valve E. In this case, proceed to check the next valve with valve E open.
以上のような手順で残る全ての弁のチェックを行うと、
第6図に示す如く、全ての弁を閉じ、チェック終了を報
知する。After checking all remaining valves using the above procedure,
As shown in FIG. 6, all valves are closed and the completion of the check is notified.
なお、以上の実施例では、弁を介してマニホールド側を
減圧状態とし、伯の側を1気圧としたが、その逆の差圧
を与えてもよいことは勿論で、更に、差圧付与直後の圧
力P1と所定時間後の圧力P2の差が所定値を越えてい
るか否かでリークチェックを行ったが、差は比であって
もよい。In the above embodiment, the pressure on the manifold side was reduced through the valve and the pressure on the side was set at 1 atm. However, it is of course possible to apply the opposite pressure difference, and furthermore, the pressure difference may be applied immediately after the pressure difference is applied. Although the leak check was performed based on whether the difference between the pressure P1 after a predetermined time and the pressure P2 after a predetermined time exceeds a predetermined value, the difference may be a ratio.
また、チェックすべき弁を複数個づつ群にわけ、一旦そ
の群ごとの弁のチェックを行い、リークのある群につい
てのみ掴々の弁のリークチェックを行うよう構成するこ
ともでき、この場合チェック時間を短縮することができ
る。It is also possible to divide the valves to be checked into multiple groups, check the valves in each group once, and perform a leak check on the valves only for groups with leaks. It can save time.
更に、差圧を与える前後の時間的圧力変化をそれぞれ測
定し、その比又は差からリークチェックを行うよう構成
すれば、圧力針又は真空計のドリフトや配管からの自然
のアウトガス等の影響を除去することができ、高精度の
チェックが可能とな ゛る。Furthermore, if the structure is configured to measure the temporal pressure change before and after applying the differential pressure, and perform a leak check based on the ratio or difference, the effects of drift of the pressure needle or vacuum gauge, natural outgassing from piping, etc. can be eliminated. This enables highly accurate checking.
(へ)効果
以上説明したように、本発明によれば、吸着量測定に先
立って、自動的に多弁のリークを検査し、かつ、どの弁
にリークがあるかが報知されるので、従来装置のように
異常状態で測定を行ってしまう無駄が省かれ、また測定
値の信頼性が向上する。(F) Effects As explained above, according to the present invention, prior to measurement of adsorption amount, multiple valves are automatically inspected for leaks, and which valve has a leak is notified. This eliminates the waste of performing measurements under abnormal conditions, and improves the reliability of measured values.
また、繁雑で熟練を要するリークチェック操作が不要と
なり、誰でも使いこなせる吸着量測定装置を得ることが
できる。In addition, a complicated leak check operation that requires skill is no longer necessary, and an adsorption amount measuring device that can be used by anyone can be obtained.
第1図は本発明実施例の構成図、第2図はそのROM1
3bに書き込まれたり一りチェック用プログラムを示す
フローチャート、第3図、第4図、第5図および第6図
は、それぞれその「排気」、「昇圧速度測定」、「注入
」及び「終了処理」のサブルーチンを示すフローチャー
トである。
1・・・マニホールド
2・・・圧力計
3・・・真空計
4・・・真空ポンプ
5・・・エキストラ容積器
6・・・飽和蒸気測定管
7・・・セル接続部
8・・・試料セル
9・・・プラグ
Ll、12・・・入出力インターフェース13・・・制
御部
13 a ・−CP U
13b・・・ROM
13c・−RA M
15・・・A−D変換器
16−・・マルチプレクサ
HSN% 2% P3% Ss % S2、S3・・・
・・・電磁開閉弁Figure 1 is a configuration diagram of an embodiment of the present invention, and Figure 2 is its ROM1.
The flowcharts 3, 4, 5, and 6 show the check programs written in 3b, respectively. ” is a flowchart showing a subroutine. 1... Manifold 2... Pressure gauge 3... Vacuum gauge 4... Vacuum pump 5... Extra volumetric vessel 6... Saturated steam measuring tube 7... Cell connection part 8... Sample Cell 9...Plug Ll, 12...Input/output interface 13...Control unit 13a...-CPU 13b...ROM 13c...-RAM 15...A-D converter 16-... Multiplexer HSN% 2% P3% Ss % S2, S3...
...Solenoid on-off valve
Claims (1)
セル等に対してそれぞれの開閉弁によって仕切られ、内
部の圧力又は真空度を計測するセンサを備えたマニホー
ルドを有し、所望の開閉弁の操作により、当該マニホー
ルドおよび上記試料セル内等の真空排気と気相非吸着質
又は気相吸着質の充填を交互に行い、各気相質の充填時
における上記センサの出力から、上記試料セル内の試料
の吸着量を求める装置において、検査すべき開閉弁を閉
じた状態で当該弁の両側に差圧を与える手段と、その状
態で上記センサ出力から上記マニホールド内の時間的圧
力変化があらかじめ設定された許容値を越えているか否
かを判別する手段と、その判別結果に基づいて開閉弁の
リークの有無を報知する手段とを備え、各開閉弁のリー
クを自動的に検査して、リークのあるものを特定し得る
よう構成したことを特徴とする吸着量測定装置。The gas-phase adsorbate source, gas-phase non-adsorbate source, vacuum pump, sample cell, etc. are separated by respective on-off valves, and have a manifold equipped with a sensor to measure the internal pressure or degree of vacuum. By operating the on-off valve, the manifold and the sample cell are alternately evacuated and filled with vapor phase non-adsorbent or vapor phase adsorbate, and from the output of the sensor when each gas phase substance is filled, the above In an apparatus for determining the amount of sample adsorbed in a sample cell, there is a means for applying a differential pressure on both sides of the on-off valve to be inspected in a closed state, and a means for applying a pressure difference on both sides of the valve to be inspected, and a temporal pressure change in the manifold based on the sensor output in that state. It is equipped with a means for determining whether or not exceeds a preset allowable value, and a means for notifying the presence or absence of a leak in the on-off valve based on the determination result, and automatically inspects for leaks on each on-off valve. An adsorption amount measuring device characterized in that it is configured to be able to identify leakage.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59202699A JPH0623676B2 (en) | 1984-09-27 | 1984-09-27 | Adsorption amount measuring device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59202699A JPH0623676B2 (en) | 1984-09-27 | 1984-09-27 | Adsorption amount measuring device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6179130A true JPS6179130A (en) | 1986-04-22 |
JPH0623676B2 JPH0623676B2 (en) | 1994-03-30 |
Family
ID=16461691
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59202699A Expired - Lifetime JPH0623676B2 (en) | 1984-09-27 | 1984-09-27 | Adsorption amount measuring device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0623676B2 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0291932U (en) * | 1988-12-29 | 1990-07-20 | ||
WO1992021956A1 (en) * | 1991-05-30 | 1992-12-10 | Tadahiro Ohmi | Method and device for evaluating quantities of adsorbed impurities |
US6595036B1 (en) | 2002-02-27 | 2003-07-22 | Bel Japan, Inc. | Method and apparatus for measuring amount of gas adsorption |
JP2020091108A (en) * | 2018-12-03 | 2020-06-11 | 株式会社東洋精機製作所 | Gas permeability measuring device |
WO2021183271A1 (en) * | 2020-03-10 | 2021-09-16 | Chart Inc. | Liquid density measurement device, system and method |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS50147385A (en) * | 1974-05-16 | 1975-11-26 | ||
JPS5992324A (en) * | 1982-11-19 | 1984-05-28 | Hitachi Ltd | Gas leakage detector |
-
1984
- 1984-09-27 JP JP59202699A patent/JPH0623676B2/en not_active Expired - Lifetime
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS50147385A (en) * | 1974-05-16 | 1975-11-26 | ||
JPS5992324A (en) * | 1982-11-19 | 1984-05-28 | Hitachi Ltd | Gas leakage detector |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0291932U (en) * | 1988-12-29 | 1990-07-20 | ||
WO1992021956A1 (en) * | 1991-05-30 | 1992-12-10 | Tadahiro Ohmi | Method and device for evaluating quantities of adsorbed impurities |
US5497652A (en) * | 1991-05-30 | 1996-03-12 | Ohmi; Tadahiro | Method and apparatus for evaluating quantities of absorbed impurities |
US6595036B1 (en) | 2002-02-27 | 2003-07-22 | Bel Japan, Inc. | Method and apparatus for measuring amount of gas adsorption |
JP2020091108A (en) * | 2018-12-03 | 2020-06-11 | 株式会社東洋精機製作所 | Gas permeability measuring device |
WO2021183271A1 (en) * | 2020-03-10 | 2021-09-16 | Chart Inc. | Liquid density measurement device, system and method |
Also Published As
Publication number | Publication date |
---|---|
JPH0623676B2 (en) | 1994-03-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0632258B1 (en) | Apparatus for detection of leaks | |
JP6791944B2 (en) | Method to control leakage resistance of sealed products and leakage detection device | |
KR100304208B1 (en) | Method and apparatus for automatically detecting gas leak, and recording medium for leak detection | |
JP3344046B2 (en) | Leak amount detection device | |
KR100537656B1 (en) | Leak detection in a closed vapor handling system using a pressure switch and time counter | |
JPS6346358A (en) | Method of diagnosing trouble of pressure sensor in refrigerator | |
CN113286994B (en) | System and method for detecting possible loss of integrity of flexible bags of biopharmaceutical products | |
CN110319985A (en) | A kind of detection system and detection method | |
JPS6179130A (en) | Measuring device for amount of suction | |
US5267468A (en) | Machine for air seal tests on cart wheel rims | |
US4845977A (en) | Method and an apparatus for detecting a possible leak in a vacuum package | |
JPH02122234A (en) | Leak testing device | |
JP3186644B2 (en) | Gas leak inspection method | |
JPH01137175A (en) | Method of diagnosing trouble of pressure sensor in refrigerator | |
JP3382727B2 (en) | Leak test equipment | |
JP2001235391A (en) | Leak inspecting device | |
JP3132710B2 (en) | Leak inspection equipment | |
JP2001235387A (en) | Leak inspecting device | |
CN217424683U (en) | Differential pressure method gas tightness detection valve | |
JPH07117474B2 (en) | Leak test method and device | |
JPH0712674A (en) | Method and device for testing watertightness of housing | |
JP3349130B2 (en) | Leak inspection device | |
JPH07286928A (en) | Helium leak detector | |
JP3024456B2 (en) | Airtightness inspection method for hollow containers | |
JP4304826B2 (en) | Abnormality diagnosis device for fuel vapor purge system |