JPH03113309A - Position detector - Google Patents

Position detector

Info

Publication number
JPH03113309A
JPH03113309A JP1252924A JP25292489A JPH03113309A JP H03113309 A JPH03113309 A JP H03113309A JP 1252924 A JP1252924 A JP 1252924A JP 25292489 A JP25292489 A JP 25292489A JP H03113309 A JPH03113309 A JP H03113309A
Authority
JP
Japan
Prior art keywords
grating
sample surface
image
light
height
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1252924A
Other languages
Japanese (ja)
Inventor
Ryoji Tanaka
良治 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP1252924A priority Critical patent/JPH03113309A/en
Publication of JPH03113309A publication Critical patent/JPH03113309A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • G03F9/70Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography

Abstract

PURPOSE:To measure mean height in a certain area on the surface of a sample with high accuracy by projecting an image of a grating with the certain area on the sample surface and detecting the thickness phase change of the reflected image of the grating from the sample surface. CONSTITUTION:An exciter 9 rotates and vibrates a glass plate 8 at a constant frequency and the angle of incidence on the glass plate 8 is varied to vary the angle of transmitted light, thereby finely vibrating the grating image of the grating 1 formed on a grating 6. Namely, the spatial phase difference between the grating image of the grating 1 and the grating 6 is modulated with the vibration frequency of the glass plate 8 and the modulated light is received by a photodetector 7. Then, the output of an oscillator 10 which drives the exciter 9 is used as a reference signal to detect the phase of the output of the detector 7 by a lock-in amplifier 11, thereby obtaining an output signal indicating the positional deviation of the surface 3 from the amplifier 11. With this signal, the height displacement of the surface 3 is highly accurately detected.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は位置検出装置、特に、半導体露光装置・検査装
置におけるウェハ表面の位置検出に適用しうる非接触式
の位置検出装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a position detection device, and particularly to a non-contact type position detection device that can be applied to detect the position of a wafer surface in a semiconductor exposure device or inspection device.

〔従来の技術〕[Conventional technology]

従来の技術としては、例えば、特開昭56−2632号
公報に示されているように、ウェハ表面に対し斜め方向
から光を照射して反射光の位置からウェハ表面の位置を
検出する方法がある。
As a conventional technique, for example, as shown in Japanese Unexamined Patent Application Publication No. 56-2632, there is a method in which the wafer surface is irradiated with light from an oblique direction and the position of the wafer surface is detected from the position of the reflected light. be.

従来の位置検出装置は、光源から放射された光を試料表
面に集光させる手段と、試料表面からの反射光を検出器
に結像させる手段とを含んで構成される。
A conventional position detection device includes a means for condensing light emitted from a light source onto a sample surface, and a means for focusing reflected light from the sample surface on a detector.

次に、従来の位置検出装置について図面を参照して詳細
に説明する。
Next, a conventional position detection device will be described in detail with reference to the drawings.

第4図は、従来の位置検出装置の一例を示すブロック図
である。
FIG. 4 is a block diagram showing an example of a conventional position detection device.

第4図に示す位置検出装置は、光源2と、光源2から放
射された光を試料表面3に集光するレンズ12と、試料
表面3からの反射光を結像させるレンズ13と、レンズ
13の結像面上に配置された検出器14とを含んでいる
。この検出器14としては、2分割検出器や半導体装置
検出素子(以下、PSDという)等が用いられ、レンズ
13によって結像されたビーム位置が検出できるように
なっている。
The position detection device shown in FIG. 4 includes a light source 2, a lens 12 that focuses light emitted from the light source 2 onto a sample surface 3, a lens 13 that focuses reflected light from the sample surface 3, and a lens 13 that focuses light emitted from the light source 2 onto a sample surface 3. and a detector 14 disposed on the imaging plane of the image plane. As this detector 14, a two-split detector, a semiconductor device detection element (hereinafter referred to as PSD), or the like is used, and the position of the beam focused by the lens 13 can be detected.

そして、試料表面3の高さが変わると試料表面3上のス
ポット位置が動き、それに伴い検出器14上でのビーム
位置は変化する。すなわち、検出器14上でのビーム位
置を測定することにより、試料表面3の高さを検出する
ことができる。
When the height of the sample surface 3 changes, the spot position on the sample surface 3 moves, and the beam position on the detector 14 changes accordingly. That is, by measuring the beam position on the detector 14, the height of the sample surface 3 can be detected.

ビームの入射角度をθとすると、試料表面がΔhだけ変
化したときの検出器14上でのビームの位置ずれΔXは
次式で表わされる。
When the incident angle of the beam is θ, the positional deviation ΔX of the beam on the detector 14 when the sample surface changes by Δh is expressed by the following equation.

Δx = 2 cosθ0Δh0n n:レンズ13の倍率 検出器14として用いられる2分割検出器またはPSD
等は、a、b2つの信号を出力し、これら2つの差を演
算することによって、検出器14に照射されているビー
ム位置を知ることができる。
Δx = 2 cosθ0Δh0n n: Magnification of lens 13 Two-split detector or PSD used as detector 14
etc. outputs two signals a and b, and by calculating the difference between these two signals, the position of the beam irradiating the detector 14 can be determined.

しかし、試料表面30反射率の変化や表面状態等により
、検出器14に入射するビーム強度が変動すると、誤差
が発生し、試料表面3の正確な高さの測定ができなくな
る。
However, if the intensity of the beam incident on the detector 14 fluctuates due to changes in the reflectance of the sample surface 30, surface conditions, etc., errors occur, making it impossible to accurately measure the height of the sample surface 3.

そこで、第4図に示した従来の位置検出装置では、検出
器14の出力a、bは減算器15で減算されるとともに
、加算器16で加算される。そして、割算器17によっ
て減算器15の出力(a −b)を加算器16の出力(
a+b)で割って規格化することにより、検出器14に
入射するビーム強度の変化に影響をうけない位置ずれ信
号を得ている。
Therefore, in the conventional position detecting device shown in FIG. 4, the outputs a and b of the detector 14 are subtracted by a subtracter 15 and added by an adder 16. Then, the output (a − b) of the subtracter 15 is divided by the divider 17 into the output (a − b) of the adder 16 (
By dividing by a+b) and normalizing, a positional deviation signal that is not affected by changes in the intensity of the beam incident on the detector 14 is obtained.

以上のような従来の位置検出装置は、縮小投影方式の半
導体露光装置(ステツノりにおいて、投影レンズの焦点
なウェハ表面に合わせるためのウェハ表面の高さ測定に
良く用いられている。ところが、ステッパの露光領域は
通常15mmX15mm程度であり、正確に焦点合わせ
な行うためには露光領域内のウェハ表面の平均的な高さ
を知る必要がある。これはウェハには反りや加工による
凹凸があり、露光領域内の高さが一定とは限らないため
である。
Conventional position detection devices such as those described above are often used to measure the height of the wafer surface in order to match the focal point of the projection lens to the wafer surface in reduction projection type semiconductor exposure equipment. The exposure area is usually about 15 mm x 15 mm, and in order to accurately focus, it is necessary to know the average height of the wafer surface within the exposure area.This is because the wafer has warps and irregularities due to processing. This is because the height within the exposure area is not necessarily constant.

第4図に示した従来の位置検出装置では、光をスポット
状に集光し、そのスポット位置の変化を検出するので、
試料表面3上のスポット位置における高さは測定できる
が平均的高さは測定できない。試料表面3上のスポット
径を大きくすれば、それだけ平均的な高さを知ることが
できるが、検出器14上に形成されるスポット径も大き
くなり、位置検出の分解能が低下する。
The conventional position detection device shown in FIG. 4 focuses light into a spot and detects changes in the spot position.
Although the height at the spot position on the sample surface 3 can be measured, the average height cannot be measured. If the spot diameter on the sample surface 3 is increased, the average height can be determined accordingly, but the spot diameter formed on the detector 14 also becomes larger, and the resolution of position detection decreases.

そのため、より正確にウェハ表面の平均的な高さを知る
方法として、第4図に示した位置検出装置を複数個設け
て、多点におけるウェハ面の高さを求める装置が考えら
れ、実際に適用されているが、光学系が増大し、装置全
体が複雑になる。
Therefore, as a way to more accurately determine the average height of the wafer surface, it is possible to install a plurality of position detection devices as shown in Figure 4 to determine the height of the wafer surface at multiple points. However, the optical system increases and the overall device becomes complex.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述した従来の位置検出装置は、試料表面にビームをス
ポット状に集光するため試料面内の一点における高さし
か測定することができないので、試料面に反りや凹凸が
あった場合に平均の高さを正確に検出することができな
いという欠点があった。また、この欠点を除去するため
には、同じ構成の位置検出装置が複数個必要になり、従
来の位置検出装置を適用した半導体露光装置や検査装置
は構造が複雑になり高価になるという欠点があった。
The conventional position detection device described above can only measure the height at one point on the sample surface because it focuses the beam on the sample surface in the form of a spot. There was a drawback that the height could not be detected accurately. In addition, in order to eliminate this drawback, multiple position detection devices with the same configuration are required, and semiconductor exposure equipment and inspection equipment that use conventional position detection devices have the disadvantage of becoming complicated and expensive. there were.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の位置検出装置は光源と、前記光源に投影された
第1格子による第1の格子像を斜め方向から試料表面に
結像する投影光学系と、前記試料表面で反射された前記
第1の格子像を結像し第2の格子像を形成する受光光学
系と、前記第2の格子像の結像面に配置された第2格子
と、前記第2の格子像を振動させて前記第2格子を通過
した通過光を変調しかつ参照信号を出力する変調手段と
、前記変調された通過光を受光して光電変脣し変調信号
を出力する検出器と、前記参照信号を参照して前記変調
信号を位相検波する手段を含んで構成される。
The position detection device of the present invention includes a light source, a projection optical system that forms a first grating image from a first grating projected on the light source onto a sample surface from an oblique direction, and a projection optical system that forms a first grating image projected on the light source on a sample surface, a light-receiving optical system that forms a second grating image by vibrating the second grating image; a modulator that modulates the passing light that has passed through the second grating and outputs a reference signal; a detector that receives the modulated passing light, performs photoelectric conversion and outputs a modulated signal; The modulated signal is configured to include means for phase detecting the modulated signal.

〔実施例〕〔Example〕

次に、本発明の実施例について、図面を参照して詳細に
説明する。
Next, embodiments of the present invention will be described in detail with reference to the drawings.

第1図は本発明の一実施例を示すブロック図である。第
1図に示す位置検出装置は、第1格子lと、第1格子1
を投影するための光源2と、第1格子1の格子像を試料
表面3上に結像させるレンれた第2格子6と、第2格子
6を通過した光の光量を検出するフォトディテクタ7と
、レンズ5と第2格子6との光軸間に配置された平行平
面状のガラス板8と、ガラス板8を回転振動させる加振
器9と、加振器9に駆動信号を与える発振器10と、発
振器10からの出力を参照信号としてフォトディテクタ
7の出力を位相検波するロックインアンプ11とを含ん
で構成される。
FIG. 1 is a block diagram showing one embodiment of the present invention. The position detection device shown in FIG.
a light source 2 for projecting a lattice image of the first lattice 1 onto a sample surface 3; a second lattice 6 for forming a lattice image of the first lattice 1 on a sample surface 3; and a photodetector 7 for detecting the amount of light passing through the second lattice 6. , a parallel plane glass plate 8 disposed between the optical axes of the lens 5 and the second grating 6, an exciter 9 that rotationally vibrates the glass plate 8, and an oscillator 10 that provides a drive signal to the exciter 9. and a lock-in amplifier 11 that detects the phase of the output of the photodetector 7 using the output from the oscillator 10 as a reference signal.

なお、第2格子6上に結像される第1格子1の格子像の
ピッチと第2格子6のピッチが等しくなるように設計し
ている。
Note that the pitch of the grating image of the first grating 1 formed on the second grating 6 is designed to be equal to the pitch of the second grating 6.

第1格子1が試料表面3に投影される照射角をθとする
と、試料表面3の高さの変化Δhと第2位 格子6上での第1の格子lの格子像の変喜ΔXの関係は
、レンズ5の光学的倍率なnとして、次の(1)式とな
る。
If the illumination angle at which the first grating 1 is projected onto the sample surface 3 is θ, then the height change Δh of the sample surface 3 and the change angle ΔX of the grating image of the first grating l on the second grating 6 are The relationship is expressed by the following equation (1), where n is the optical magnification of the lens 5.

ΔX = 2 cosθ・Δh−n         
−(1)また、第2格子6上に結像される第1格子1の
格子像の空間的位相変化をΔφとし、第2格子6上に結
像した第1格子1の格子像のピッチをPとするとΔφ=
2π・Δx / Pとなり、(1)式によりΔXを消去
すると次の(2)式が得られる。
ΔX = 2 cosθ・Δh−n
-(1) Also, let the spatial phase change of the grating image of the first grating 1 imaged on the second grating 6 be Δφ, and the pitch of the grating image of the first grating 1 imaged on the second grating 6 If P is Δφ=
2π·Δx/P, and by eliminating ΔX using equation (1), the following equation (2) is obtained.

Δφ=4πncosθ・Δh/Mrad:]   −・
・(2)(2)式からは、試料表面3の高さの変化Δh
に伴い第1格子1の格子像の空間的位相が変化し、第1
格子1の格子像と等しいピッチを持つ第2格子6を通過
する光の光量が、試料表面3の高さΔhの変化に従って
周期的に変化することがわかる。
Δφ=4πncosθ・Δh/Mrad:] −・
・(2) From equation (2), the change in height of the sample surface 3 Δh
As a result, the spatial phase of the grating image of the first grating 1 changes, and the first
It can be seen that the amount of light passing through the second grating 6 having the same pitch as the grating image of the grating 1 changes periodically in accordance with the change in the height Δh of the sample surface 3.

第2図は、試料表面3の高さの変化Δhと第2句格子6
を通過する光の光量工との関係の一例を示すグラフであ
る。この図に示すように、光量工は試料表面3の高さの
変化△hに対してP/2 n cosθの周期を持つ周
期的な曲線となる。また、高精勤させ、ガラス板8への
入射角を変化させることによって透過光の角度を変え第
2格子6上に結像される第1格子1の格子像を微小振動
させる。すなわち、第1格子の格子像と第2格子6の空
間的位相差をガラス板8の振動周波数で変調し、この変
讐された光をフォトディテクタ7が受光する。
FIG. 2 shows the change in height Δh of the sample surface 3 and the second grid 6.
12 is a graph showing an example of the relationship between the amount of light passing through and the light intensity. As shown in this figure, the light intensity is a periodic curve having a period of P/2 n cos θ with respect to the change Δh in the height of the sample surface 3. Further, by changing the angle of incidence on the glass plate 8 with high precision, the angle of the transmitted light is changed and the grating image of the first grating 1 formed on the second grating 6 is slightly vibrated. That is, the spatial phase difference between the grating image of the first grating and the second grating 6 is modulated by the vibration frequency of the glass plate 8, and the photodetector 7 receives this modified light.

次に、加振器9を駆動する発振器10からの出力を参照
信号として、フォトディテクタ7の出力をロックインア
ンプ11が位相検波し、ロックインアンプ11から試料
表面3の位置ずれを示す出力信号を得る。この位置ずれ
信号から試料表面3の高さの変位を高精度に検出するこ
とができる。
Next, using the output from the oscillator 10 that drives the vibrator 9 as a reference signal, the lock-in amplifier 11 phase-detects the output of the photodetector 7, and outputs an output signal from the lock-in amplifier 11 indicating the positional deviation of the sample surface 3. obtain. From this positional deviation signal, the height displacement of the sample surface 3 can be detected with high precision.

第3図は、試料表面の高さを連続的に変化させた時の変
位Δhとロックインアンプ11の出カドの関係を示すグ
ラフである。第3図に示す位置ずれ信号を示すロックイ
ンアンプ11の出力は、第2図に示した光量変化の曲線
の微分曲線となり、光量の最大値および最小値がゼロク
ロス点になる。
FIG. 3 is a graph showing the relationship between the displacement Δh and the output of the lock-in amplifier 11 when the height of the sample surface is continuously changed. The output of the lock-in amplifier 11 indicating the positional deviation signal shown in FIG. 3 is a differential curve of the light amount change curve shown in FIG. 2, and the maximum and minimum values of the light amount are zero crossing points.

このゼロクロス点近傍でのりニアリティは良く、本発明
の位置検出装置を、例えば、半導体露光装置や検査装置
の焦点合わせ機構に適用する場合は、ロックインアンプ
11の出力がゼロとなる点で合焦点となるように調整す
る。
The linearity is good near this zero cross point, and when the position detection device of the present invention is applied to a focusing mechanism of a semiconductor exposure device or an inspection device, for example, the focus point is at the point where the output of the lock-in amplifier 11 becomes zero. Adjust so that

このゼロクロス点は、試料表面30反射率の変化による
光量変動が生じても変化することがないので、試料表面
3の反射率に影響をうけない高濃度な焦点合わせが実現
できる。
This zero-crossing point does not change even if there is a change in the amount of light due to a change in the reflectance of the sample surface 30, so that high-density focusing that is not affected by the reflectance of the sample surface 3 can be achieved.

なお、上述の実施例では、第2格子6上に結像した第1
格子lの格子像を微小振動させる手段として平行平面状
のガラス板8を使用して透過させて行う例を示したが、
このガラス板8に代りにミラーやプリズムを使用して反
射させて行わせても良い。
In addition, in the above-mentioned embodiment, the first image formed on the second grating 6
Although we have shown an example in which a parallel plane glass plate 8 is used as a means for micro-vibrating the lattice image of the lattice l, the lattice image is transmitted through the lattice image.
Instead of this glass plate 8, a mirror or a prism may be used to reflect the light.

〔発明の効果〕〔Effect of the invention〕

本発明の位置検出装置は、試料表面に斜め方向からビー
ムをスポット状に集光して照射する代りに、ある面積を
持った格子の像を試料表面に投影し、試料表面からの反
射した格子の像の空間的位相変化を検出して試料表面の
高さを測定するため、試料表面のある面積内の平均的な
高さを高濃度に八 測定することができるという効果がある。
The position detection device of the present invention projects an image of a grating with a certain area onto the sample surface, instead of irradiating the sample surface with a focused beam from an oblique direction in the form of a spot. Since the height of the sample surface is measured by detecting the spatial phase change of the image, the average height within a certain area of the sample surface can be measured with high concentration.

すなわち、本発明の位置検出装置は半導体露光装置や検
査装置に適用したとき、複数個で構成する代りに1個で
構成できるので構造を簡単にでき安価にできるという効
果がある。
That is, when the position detection device of the present invention is applied to a semiconductor exposure device or an inspection device, it can be configured with one device instead of a plurality of devices, so that the structure can be simplified and the cost can be reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示すブロック図、第2図は
第1図における試料表面の高さの変化Δhと第2格子を
透過する光量工との関係の一例を示すグラフ、第3図は
第1図における試料表面の高さの変化Δhとロックイン
アンプの出力との関係の一例を示すグラフ、第4図は従
来の一例を示すブロック図である。 1・・・・・・第1格子、2・・・・・・光源、3・・
・・・・試料表面、4.5,12,13・・・・・・レ
ンズ、6・・・・・・第2格子、7・・・・・・フォト
ディテクタ、8・・・・・・ガラス板、9・・・・・・
加振器、10・・・・・・発振器、11・・・・・・ロ
ックインアンプ、14・・・・・・検出器、15・・・
・・・減算器、16・・・・・・加算器、17・・・・
・・割算器。
FIG. 1 is a block diagram showing an embodiment of the present invention, and FIG. 2 is a graph showing an example of the relationship between the change in height of the sample surface Δh in FIG. 1 and the amount of light transmitted through the second grating. FIG. 3 is a graph showing an example of the relationship between the change in height of the sample surface Δh in FIG. 1 and the output of the lock-in amplifier, and FIG. 4 is a block diagram showing an example of the conventional technique. 1...First grating, 2...Light source, 3...
...Sample surface, 4.5, 12, 13...Lens, 6...Second grating, 7...Photodetector, 8...Glass Board, 9...
Exciter, 10... Oscillator, 11... Lock-in amplifier, 14... Detector, 15...
...Subtractor, 16...Adder, 17...
...Divider.

Claims (1)

【特許請求の範囲】[Claims] 光源と、前記光源に投影された第1格子による第1の格
子像を斜め方向から試料表面に結像する投影光学系と、
前記試料表面で反射された前記第1の格子像を結像し第
2の格子像を形成する受光光学系と、前記第2の格子像
の結像面に配置された第2格子と、、前記第2の格子像
を振動させて前記第2格子を通過した通過光を変調しか
つ参照信号を出力する変調手段と、前記変調された通過
光を受光して光電変換変調信号を出力する検出器と、前
記参照信号を参照して前記変調信号を位相検波する手段
とを含むことを特徴とする位置検出装置。
a light source; a projection optical system that forms a first grating image from a first grating projected onto the light source on a sample surface from an oblique direction;
a light-receiving optical system that forms a second grating image by focusing the first grating image reflected on the sample surface; a second grating disposed on an imaging plane of the second grating image; a modulator that vibrates the second grating image to modulate the passing light that has passed through the second grating and outputs a reference signal; and a detection unit that receives the modulated passing light and outputs a photoelectric conversion modulation signal. 1. A position detecting device comprising: a detector; and means for phase-detecting the modulated signal with reference to the reference signal.
JP1252924A 1989-09-27 1989-09-27 Position detector Pending JPH03113309A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1252924A JPH03113309A (en) 1989-09-27 1989-09-27 Position detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1252924A JPH03113309A (en) 1989-09-27 1989-09-27 Position detector

Publications (1)

Publication Number Publication Date
JPH03113309A true JPH03113309A (en) 1991-05-14

Family

ID=17244064

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1252924A Pending JPH03113309A (en) 1989-09-27 1989-09-27 Position detector

Country Status (1)

Country Link
JP (1) JPH03113309A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106289054A (en) * 2015-05-24 2017-01-04 上海微电子装备有限公司 System is measured in a kind of raster pattern vertical position

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106289054A (en) * 2015-05-24 2017-01-04 上海微电子装备有限公司 System is measured in a kind of raster pattern vertical position
CN106289054B (en) * 2015-05-24 2019-11-26 上海微电子装备(集团)股份有限公司 A kind of raster pattern vertical position measuring system

Similar Documents

Publication Publication Date Title
US4332473A (en) Apparatus for detecting a mutual positional relationship of two sample members
US5729337A (en) Inclination detecting apparatus
JPH0374763B2 (en)
JPH0650720A (en) Height measuring method and device
US9846373B2 (en) High accuracy measurement system for focusing and leveling
US4698513A (en) Position detector by vibrating a light beam for averaging the reflected light
JP2746446B2 (en) Optical measuring device
JPH03113309A (en) Position detector
JPH0359413A (en) Position measuring instrument
JPH03115807A (en) Position detector
JP3265031B2 (en) Surface shape detection method and projection exposure apparatus
KR100194598B1 (en) Wafer auto focusing device by probe beam scanning method
JPS61218902A (en) Position measuring method
JPH0661115A (en) Gap detection and setting device
JPH0536727B2 (en)
KR970004476B1 (en) Measurement apparatus of wafer position in altgner
JPH0360011A (en) Position measuring device
JPH03249513A (en) Method and device for detecting inclination or height, projection exposure device, and method and device for interference fringe detection
JP2778231B2 (en) Position detection device
JPH04130239A (en) Apparatus for measuring outward position and inward position of dynamic surface
JP2869143B2 (en) Substrate tilt detector
JP2521792B2 (en) X-ray mask-wafer gap measurement method
JPH08327562A (en) Method and device for inspecting metallic plate for surface flaw
JPH07294537A (en) Speed and distance detector
JPH0412523A (en) Position detector