JPH0359413A - Position measuring instrument - Google Patents

Position measuring instrument

Info

Publication number
JPH0359413A
JPH0359413A JP1195484A JP19548489A JPH0359413A JP H0359413 A JPH0359413 A JP H0359413A JP 1195484 A JP1195484 A JP 1195484A JP 19548489 A JP19548489 A JP 19548489A JP H0359413 A JPH0359413 A JP H0359413A
Authority
JP
Japan
Prior art keywords
grating
sample surface
image
detector
lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1195484A
Other languages
Japanese (ja)
Inventor
Ryoji Tanaka
良治 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP1195484A priority Critical patent/JPH0359413A/en
Publication of JPH0359413A publication Critical patent/JPH0359413A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Optical Distance (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

PURPOSE:To measure the position of a sample surface with high accuracy by projecting a vibration grating on the sample surface, and detecting the spatial phase shift of the image of the vibration grating reflected by the sample surface. CONSTITUTION:A light source 2 slantingly above the sample surface 3 projects the image of the vibration grating 1 on the sample surface 3 and the image of the grating is formed by a lens 4. The image of the grating 1 reflected by the sample surface 3 is formed by a lens 5 and a fixed grating 6 is arranged on the image formation plane of the lens 5 to detect the quantity of transmitted light of the grating 6 by a photodetector 7. At such a time, an exciter 9 vibrates the grating 1 finely at constant frequency and the spatial phase of the image of the grating 1 projected on the grating 6 is modulated. Therefore, the modulat ed signal from the detector 7 is detected and amplified by an amplifier 8. Then the output of an oscillator 10 which drives the exciter 9 is used as a reference signal to detect the phase of the modulated signal by a lock-in amplifier 11, and consequently a high-accuracy position shift signal is obtained, so the position of the sample surface 3 is measured with high accuracy.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は位置測定装置に関し、特に半導体露光装置・検
査装置におけるウェハ表面の位置計測に適用しうる非接
触型の位置測定装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a position measuring device, and more particularly to a non-contact type position measuring device that can be applied to position measurement of a wafer surface in a semiconductor exposure device or inspection device.

〔従来の技術〕[Conventional technology]

従来の技術としては、例えば、特開昭56−2632号
公報に示されているように、ウェハ表面に対し斜め方向
から光を照射して反射光の位置からウェハ表面の位置を
測定する方法が挙げられる。
As a conventional technique, for example, as shown in Japanese Unexamined Patent Publication No. 56-2632, there is a method in which the wafer surface is irradiated with light from an oblique direction and the position of the wafer surface is measured from the position of the reflected light. Can be mentioned.

この方法の従来の位置測定装置は、光源から放射された
光を試料表面上に集光させる手段と、試料表面からの反
射光を検出器に結像させる手段とを含んで構成されてい
る。
A conventional position measuring device using this method includes means for condensing light emitted from a light source onto a sample surface and means for focusing reflected light from the sample surface on a detector.

次に、従来の位置測定装置について、図面を参照して説
明する。
Next, a conventional position measuring device will be explained with reference to the drawings.

第4図は従来の位置測定装置の一例を示すブロック図で
ある。
FIG. 4 is a block diagram showing an example of a conventional position measuring device.

第4図に示す位置測定装置は、光源41と、光源41か
ら放射された光を試料表面42上に集光するレンズ43
と、試料表面42からの反射光を結像させるレンズ′4
4と、レンズ44の結像面上に配置された検出器45と
を含んでいる。この検出器45としては、2分割検出器
や半導体装置検出素子(以下、PSDという)等が用い
られ、レンズ44によって結像されたビーム位置が検出
できるようになっている。
The position measuring device shown in FIG. 4 includes a light source 41 and a lens 43 that focuses the light emitted from the light source 41 onto a sample surface 42.
and a lens '4 that forms an image of the reflected light from the sample surface 42.
4 and a detector 45 disposed on the imaging plane of the lens 44. As this detector 45, a two-split detector, a semiconductor device detection element (hereinafter referred to as PSD), or the like is used, and the position of the beam focused by the lens 44 can be detected.

そして、試料表面42の高さが変わると試料表面42上
のスポット位置が動き、それに伴い検出器45上でのビ
ーム位置が変化する。したがって、検出器45上でのビ
ーム位置を検出することにより、試料表面42の高さを
測定することができる。
When the height of the sample surface 42 changes, the spot position on the sample surface 42 moves, and the beam position on the detector 45 changes accordingly. Therefore, by detecting the beam position on the detector 45, the height of the sample surface 42 can be measured.

ビームの入射角度をθとすると、試料表面がΔh屏だけ
変化したときの検出器45上でのビームの位置ずれΔX
は次式で表わされる。
If the incident angle of the beam is θ, then the beam position shift ΔX on the detector 45 when the sample surface changes by Δh screen is
is expressed by the following equation.

Δx = 2 cosθ0Δh0n n:レンズ44の倍率 検出器45として用いられる2分割検出器またはPSD
等は、a、b2つの信号を出力し、これら2つの差を演
算することによって、検出器45に照射されているビー
ム位置を知ることができる。
Δx = 2 cosθ0Δh0n n: Magnification of lens 44 Two-split detector or PSD used as detector 45
etc. outputs two signals a and b, and by calculating the difference between these two signals, the position of the beam irradiating the detector 45 can be determined.

しかし、試料表面42の反射率の変化等により、検出器
45に入射するビーム強度が変動すると、位置測定誤差
が発生し、試料表面42の正確な高さの測定ができなく
なる。
However, if the intensity of the beam incident on the detector 45 fluctuates due to changes in the reflectance of the sample surface 42, etc., a position measurement error occurs, making it impossible to accurately measure the height of the sample surface 42.

そこで、第4図に示した従来の位置測定装置では、検出
器45の出力a、bは、減算器46で減算されるととも
に、加算器47で加算される。そして、割算器48によ
って減算器46の出力(a−b)を加算器47の出力(
a+b)で割って規格化することにより、検出器45に
入射するビームの強度変化に影響をうけない位置ずれ信
号を得ている。
Therefore, in the conventional position measuring device shown in FIG. 4, the outputs a and b of the detector 45 are subtracted by a subtracter 46 and added by an adder 47. Then, the output (a-b) of the subtracter 46 is divided by the divider 48 into the output (a-b) of the adder 47 (
By dividing and normalizing by a+b), a positional deviation signal that is not affected by changes in the intensity of the beam incident on the detector 45 is obtained.

以上のような従来の位置測定装置は、縮小投影方式の半
導体露光装置(ステラノリにおいて、投影レンズの焦点
をウェハ表面に合わせるためのウェハ表面の高さ測定に
良く用いられている。ところが、ステッパの露光領域は
、通常15ma+X15mm程度であり、正確に焦点合
わせを行うためには露光領域内のウェハ表面の平均的な
高さを知る必要がある。これはウェハには反りや加工に
よる凹凸があり、露光領域内の高さが一定とは限らない
ためである。
Conventional position measuring devices such as those described above are often used to measure the height of the wafer surface in order to focus the projection lens on the wafer surface in reduction projection type semiconductor exposure equipment (Stellanori). The exposure area is usually about 15 ma + x 15 mm, and in order to accurately focus, it is necessary to know the average height of the wafer surface within the exposure area.This is because the wafer has warpage and unevenness due to processing. This is because the height within the exposure area is not necessarily constant.

第4図に示した従来の位置測定装置では、光をスポット
状に集光し、そのスポット位置の変化を検出するために
、試料表面42上のスポット位置における高さしか測定
できない。試料表面42上のスポット径を大きくすれば
、それだけ平均的な高さを知ることができるが、検出器
45上に形成されるスポット径も大きくなり、位置検出
の分解能が低下する。
In the conventional position measuring device shown in FIG. 4, only the height at the spot position on the sample surface 42 can be measured in order to collect light into a spot and detect a change in the spot position. If the spot diameter on the sample surface 42 is increased, the average height can be determined accordingly, but the spot diameter formed on the detector 45 also becomes larger, and the resolution of position detection decreases.

したがって、より正確にウェノ)表面の平均的な高さを
知るために、第4図に示した位置測定装置を複数個設け
て、多点におけるウェハ表面の高さを求める方法が考え
られ、実際に装置に適用されているが、光学系が増大し
、装置全体が複雑になる。
Therefore, in order to find out the average height of the wafer surface more accurately, a method can be considered in which multiple position measuring devices shown in Figure 4 are installed to determine the height of the wafer surface at multiple points. However, the optical system increases and the overall device becomes complicated.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述した従来の位置測定装置は、試料表面上にビームを
スポット状に集光するために、試料表面内の一点におけ
る高さしか測定することができないので、試料表面に反
りや凹凸があった場合に正確な位置を検出することがで
きないという欠点を有している。
The conventional position measuring device described above focuses the beam into a spot on the sample surface, so it can only measure the height at one point on the sample surface. Therefore, if the sample surface is warped or uneven, It has the disadvantage of not being able to accurately detect the position.

また、従来の位置測定装置は、正確に位置を検出するた
めには、同じ構成の位置測定装置が複数個必要になり、
装置全体が複雑になって高価になるという欠点を有して
いる。
Furthermore, in order to accurately detect a position, conventional position measuring devices require multiple position measuring devices with the same configuration.
This has the disadvantage that the entire device becomes complicated and expensive.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の位置測定装置は、試料表面に対し斜め方向から
第1の格子による第1の格子像を投影する投影光学系と
、前記試料表面で反射した前記第1の格子像を再び結像
させて第2の格子像を形成する受光光学系と、前記受光
光学系の結像面に配置した第2の格子と、前記第2の格
子を通過した光量を検出する検出器と、前記試料表面に
投影された第1の格子像を振動させる手段と、前記第1
の格子像を振動させる手段によって変調された前記検出
器の出力を位相検波する手段とを含んで構成されている
The position measuring device of the present invention includes a projection optical system that projects a first grating image formed by a first grating from an oblique direction onto a sample surface, and a projection optical system that re-images the first grating image reflected on the sample surface. a light-receiving optical system that forms a second grating image, a second grating disposed on the imaging plane of the light-receiving optical system, a detector that detects the amount of light that has passed through the second grating, and a detector that detects the amount of light that has passed through the second grating; means for vibrating a first grating image projected on the first grating;
and means for phase-detecting the output of the detector modulated by the means for vibrating the grating image of the detector.

〔実施例〕〔Example〕

次に、本発明の実施例について、図面を参照して詳細に
説明する。
Next, embodiments of the present invention will be described in detail with reference to the drawings.

第1図は本発明の位置測定装置の一実施例を示すブロッ
ク図である。
FIG. 1 is a block diagram showing an embodiment of the position measuring device of the present invention.

第1図に示す位置測定装置は、第1の格子である振動格
子lと、振動格子lを投影するための光源2と、振動格
子lの像を試料表面3上に結像させるレンズ4と、試料
表面3で反射された振動格子lの像を再び結像させるレ
ンズ5と、レンズ5の結像面に配置された第2の格子で
ある固定格子6と、固定格子6を透過する光量を検出す
る検出器であるフォトディテクタ7と、フォトディテク
タ7の出力を増幅するアンプ8と、振動格子lを加振す
る加振器9と、加振器9に駆動信号を与える発振器lO
と、発振器lOの出力を参照信号にしてアンプ8の出力
を位相検波するロックインアンプIIとを含んで構成さ
れている。
The position measuring device shown in FIG. 1 includes a vibrating grating l as a first grating, a light source 2 for projecting the vibrating grating l, and a lens 4 for forming an image of the vibrating grating l onto a sample surface 3. , a lens 5 that re-images the image of the vibrating grating l reflected on the sample surface 3, a fixed grating 6 which is a second grating placed on the imaging plane of the lens 5, and an amount of light transmitted through the fixed grating 6. a photodetector 7, which is a detector for detecting the
and a lock-in amplifier II that performs phase detection on the output of the amplifier 8 using the output of the oscillator IO as a reference signal.

なお、固定格子6上に投影される振動格子lの像のピッ
チと固定格子6のピッチとは、等しくなるように設計し
ている。
Note that the pitch of the image of the vibrating grating l projected onto the fixed grating 6 is designed to be equal to the pitch of the fixed grating 6.

振動格子lが試料表面3に投影される照射角をθとする
と、試料表面3の高さの変化Δhと固定格子6上での振
動格子lの像の変位ΔXとの関係は、レンズ5の光学的
倍率なnとすると、Δに=2cosθ・Δh−n で表わされる。
Assuming that the illumination angle at which the vibrating grating l is projected onto the sample surface 3 is θ, the relationship between the change Δh in the height of the sample surface 3 and the displacement ΔX of the image of the vibrating grating l on the fixed grating 6 is given by If n is the optical magnification, then Δ is expressed as =2 cos θ·Δh−n.

したがって、振動格子lの像の位相変化Δφは、Δx=
P・Δφ/2yr=2cosθ・Δh−n、°、Δφ=
4xncosθ・Δh/P〔rad:]ただし、Pは固
定格子6のピッチ となり、試料表面3の高さの変化Δhに伴い振動格子l
の像の空間的位相が変化することになる。
Therefore, the phase change Δφ of the image of the vibrating grating l is Δx=
P・Δφ/2yr=2cosθ・Δh−n,°, Δφ=
4xn cos θ・Δh/P [rad:] However, P is the pitch of the fixed grating 6, and as the height of the sample surface 3 changes Δh, the vibration grating l
The spatial phase of the image will change.

このことは、振動格子1と等しいピッチを持つ固定格子
6を透過する光量Iが周期的に変化することを示してい
る。
This indicates that the amount of light I transmitted through the fixed grating 6 having the same pitch as the vibrating grating 1 changes periodically.

第2図は第1図における試料表面3の高さの変化Δhと
固定格子6を透過する光量Iとの関係の一例を示すグラ
フである。第2図に示すように、試料表面3の高さの変
化Δhに換算して周期がP/2ncosθの周期的な信
号となる。
FIG. 2 is a graph showing an example of the relationship between the change Δh in the height of the sample surface 3 and the amount of light I transmitted through the fixed grating 6 in FIG. As shown in FIG. 2, the signal becomes a periodic signal whose period is P/2n cos θ in terms of change Δh in the height of the sample surface 3.

本実施例では、高精度に試料表面3の位置を測定するた
めに、加振器9によって振動格子lを一定周波数で微小
振動させ固定格子6上に投影される振動格子lの像の空
間的位相に変調をかける。
In this embodiment, in order to measure the position of the sample surface 3 with high precision, the vibrating grating l is minutely vibrated at a constant frequency by the vibrator 9, and the image of the vibrating grating l projected onto the fixed grating 6 is Modulates the phase.

したがって、フォトディテクタ7では変調された信号が
検出されてアンプ8で増幅され、加振器9を駆動する発
振器lOの出力を参照信号にして変調された信号をロッ
クインアンプ11で位相検波することにより、高精度な
位置ずれ信号を得ることができる。
Therefore, a modulated signal is detected by the photodetector 7 and amplified by the amplifier 8, and the phase of the modulated signal is detected by the lock-in amplifier 11 using the output of the oscillator lO that drives the exciter 9 as a reference signal. , it is possible to obtain a highly accurate positional deviation signal.

第3図は第1図における試料表面3の高さの変化Δhと
ロックインアンプ11の出力との関係の一例を示すグラ
フである。第3図に示す位置ずれ信号は、第2図に示し
た光量Iの変化の曲線の微分曲線となり、光量Iの最大
値および最小値がゼロクロス点になる。
FIG. 3 is a graph showing an example of the relationship between the change in height Δh of the sample surface 3 in FIG. 1 and the output of the lock-in amplifier 11. The positional deviation signal shown in FIG. 3 is a differential curve of the curve of change in the amount of light I shown in FIG. 2, and the maximum and minimum values of the amount of light I are zero-crossing points.

このゼロクロス点の近傍でのりニアリティは良く、本実
施例の位置測定装置を焦点合わせ機構に適用する場合に
は、ロックインアンプ11の出力がゼロとなる点で合焦
点となるように調整する。
The linearity is good in the vicinity of this zero cross point, and when the position measuring device of this embodiment is applied to a focusing mechanism, it is adjusted so that the focused point is at the point where the output of the lock-in amplifier 11 becomes zero.

このゼロクロス点は、試料表面3の反射率変化による光
量lの変動が生じても、変動することがないので、試料
表面3の反射率に影響をうけない高精度な焦点合わせが
実現できる。
This zero-crossing point does not change even if the amount of light l changes due to a change in the reflectance of the sample surface 3, so that highly accurate focusing that is not affected by the reflectance of the sample surface 3 can be achieved.

〔発明の効果〕〔Effect of the invention〕

に、ある面積を持った第1の格子の像を試料表面に投影
し、試料表面から反射した第1の格子の像の空間的位相
変化を検出して試料表面の高さを測定するために、試料
表面のある面積内の平均的な高さを高精度に測定するこ
とができるという効果を有している。
In order to measure the height of the sample surface by projecting the image of the first grating having a certain area onto the sample surface and detecting the spatial phase change of the image of the first grating reflected from the sample surface. This has the effect that the average height within a certain area of the sample surface can be measured with high precision.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の位置測定装置の一実施例を示すブロッ
ク図、第2図は第1図における試料表面3の高さの変化
Δhと固定格子6を透過する光量Iとの関係の一例を示
すグラフ、第3図は第1図における試料表面3の高さの
変化Δhとロックインアンプ11の出力との関係の一例
を示すグラフ、第4図は従来の位置測定装置の一例を示
すブロック図である。 1・・・・・・振動格子、2・・・・・・光源、3・・
・・・・試料表面、4.5・・・・・・レンズ、6・・
・・・・固定格子、7・・・・・・フォトディテクタ、
8・・・・・・アンプ、9・・・・・・加振器、lO・
・・・・・発m器、11・・・・・・ロフィンアンプ、
41・・・・・・光源、42・・・・・・試料表面、4
3,44・・・・・・レンズ、45・・・・・・検出器
、46・・・・・・減算器、47・・・・・・加算器、
48・・・・・・割算器。
FIG. 1 is a block diagram showing an embodiment of the position measuring device of the present invention, and FIG. 2 is an example of the relationship between the change Δh in the height of the sample surface 3 in FIG. 1 and the amount of light I transmitted through the fixed grating 6. 3 is a graph showing an example of the relationship between the change in height Δh of the sample surface 3 in FIG. 1 and the output of the lock-in amplifier 11, and FIG. 4 is an example of a conventional position measuring device. It is a block diagram. 1... Vibration grating, 2... Light source, 3...
...Sample surface, 4.5...Lens, 6...
...Fixed grid, 7...Photodetector,
8... Amplifier, 9... Exciter, lO・
...m generator, 11 ... Rofin amplifier,
41... Light source, 42... Sample surface, 4
3, 44...Lens, 45...Detector, 46...Subtractor, 47...Adder,
48...Divider.

Claims (1)

【特許請求の範囲】[Claims] 試料表面に対し斜め方向から第1の格子による第1の格
子像を投影する投影光学系と、前記試料表面で反射した
前記第1の格子像を再び結像させて第2の格子像を形成
する受光光学系と、前記受光光学系の結像面に配置した
第2の格子と、前記第2の格子を通過した光量を検出す
る検出器と、前記試料表面に投影された第1の格子像を
振動させる手段と、前記第1の格子像を振動させる手段
によって変調された前記検出器の出力を位相検波する手
段とを含むことを特徴とする位置測定装置。
a projection optical system that projects a first grating image formed by a first grating from an oblique direction onto a sample surface; and a projection optical system that refocuses the first grating image reflected on the sample surface to form a second grating image. a second grating arranged on an imaging plane of the light receiving optical system, a detector that detects the amount of light passing through the second grating, and a first grating projected onto the sample surface. A position measuring device comprising: means for vibrating an image; and means for phase-detecting the output of the detector modulated by the means for vibrating the first grating image.
JP1195484A 1989-07-27 1989-07-27 Position measuring instrument Pending JPH0359413A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1195484A JPH0359413A (en) 1989-07-27 1989-07-27 Position measuring instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1195484A JPH0359413A (en) 1989-07-27 1989-07-27 Position measuring instrument

Publications (1)

Publication Number Publication Date
JPH0359413A true JPH0359413A (en) 1991-03-14

Family

ID=16341855

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1195484A Pending JPH0359413A (en) 1989-07-27 1989-07-27 Position measuring instrument

Country Status (1)

Country Link
JP (1) JPH0359413A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11467505B2 (en) 2016-11-02 2022-10-11 Asml Netherlands B.V. Height sensor, lithographic apparatus and method for manufacturing devices

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11467505B2 (en) 2016-11-02 2022-10-11 Asml Netherlands B.V. Height sensor, lithographic apparatus and method for manufacturing devices

Similar Documents

Publication Publication Date Title
JPH0374763B2 (en)
US5729337A (en) Inclination detecting apparatus
US4698513A (en) Position detector by vibrating a light beam for averaging the reflected light
EP1336095B1 (en) Measurement of surface defects
JPH038491B2 (en)
JPS61215905A (en) Position detecting device
JPH0359413A (en) Position measuring instrument
JPH03113309A (en) Position detector
JPH03115807A (en) Position detector
JPS6126605B2 (en)
JP2698446B2 (en) Interval measuring device
JPH0360011A (en) Position measuring device
JP2778231B2 (en) Position detection device
KR970004476B1 (en) Measurement apparatus of wafer position in altgner
KR100194598B1 (en) Wafer auto focusing device by probe beam scanning method
JPH0536727B2 (en)
JPH10270347A (en) Method and device for detecting alignment offset
JPS62144013A (en) Photoelectric position detector
JPH07294537A (en) Speed and distance detector
JPH09203615A (en) Method and apparatus for measuring depth
JPS6227730B2 (en)
JPS62118243A (en) Surface defect inspecting instrument
JPH0331367B2 (en)
JPH04220586A (en) Method for detecting inclination and position deviation of object to be measured in measurement of speed and length of object to be measured in laser doppler system
JPH04207013A (en) Position detector