JPH03112896A - Polycrystal diamond grain and its production - Google Patents

Polycrystal diamond grain and its production

Info

Publication number
JPH03112896A
JPH03112896A JP24638389A JP24638389A JPH03112896A JP H03112896 A JPH03112896 A JP H03112896A JP 24638389 A JP24638389 A JP 24638389A JP 24638389 A JP24638389 A JP 24638389A JP H03112896 A JPH03112896 A JP H03112896A
Authority
JP
Japan
Prior art keywords
diamond
nuclei
substrate
mixed gas
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24638389A
Other languages
Japanese (ja)
Other versions
JP2754260B2 (en
Inventor
Kunio Komaki
小巻 邦雄
Isamu Yamamoto
勇 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP24638389A priority Critical patent/JP2754260B2/en
Publication of JPH03112896A publication Critical patent/JPH03112896A/en
Application granted granted Critical
Publication of JP2754260B2 publication Critical patent/JP2754260B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To obtain a polycrystal having a structure of mutually crossed crystal skeletons by changing the ratio of O2 to C2H2 of a combustion mixed gas on forming nuclei on a substrate and growing the nuclei in synthesizing diamond according to incomplete combustion of the C2H2. CONSTITUTION:C2H2 is incompletely burned to synthesize diamond. In the process, a mixed gas of O2 and C2H2 at 0.8-0.87 ratio (O2/C2H2) is used to form nuclei on a substrate. A mixed gas at 0.85-0.98 ratio (O2/C2H2) is then used to grow the above-mentioned formed nuclei. Thereby, polycrystal diamond grains having a structure of mutually crossed crystal skeletons are obtained.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は多結晶のダイヤモンド粒及び同ダイヤモンド粒
の製造法に関する。更に詳しくは従来の合成天然ダイヤ
モンドとは異なった構造を持つ新規な構造の多結晶ダイ
ヤモンド粒及びその製造方法に関する。本発明のダイヤ
モンド粒は大粒であり耐摩耗性、耐蝕性、高熱伝導性、
高比弾性等の特性を有し、超硬工具材、研磨材、研削材
、摺動材、耐蝕材、刃先用部材などに有用である。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to polycrystalline diamond grains and a method for producing the same. More specifically, the present invention relates to polycrystalline diamond grains having a new structure different from that of conventional synthetic natural diamonds and a method for producing the same. The diamond grains of the present invention are large grains and have wear resistance, corrosion resistance, high thermal conductivity,
It has properties such as high specific elasticity, and is useful for carbide tool materials, abrasive materials, grinding materials, sliding materials, corrosion-resistant materials, cutting edge members, etc.

〈従来の技術〉 ダイヤモンドの合成法としては古くより超高圧法が実用
化され、近年更に気相法が開発された。
<Prior art> Ultra-high pressure methods have been put into practical use as diamond synthesis methods for a long time, and gas phase methods have been further developed in recent years.

そして本出願の発明者らは気相法の改良として燃焼炎法
を発明し、第35回応用物理関係連合講演会(講演予稿
集第2分冊434頁299−T−1)において発表し、
かつ特願昭63−71758として出願している。これ
らの合成法において製造されるダイヤモンドはその結晶
形が一般的に知られている天然の原石の結晶形、即ち八
面体結晶、十二面体結晶、六面体結晶を基準にしたもの
である。
The inventors of the present application invented the combustion flame method as an improvement of the gas phase method, and announced it at the 35th Applied Physics Joint Conference (Presentation Proceedings, Volume 2, 434, p. 299-T-1),
And it has been filed as Japanese Patent Application No. 1983-71758. The crystal forms of diamonds produced by these synthetic methods are based on the commonly known crystal forms of natural rough stones, ie, octahedral crystals, dodecahedral crystals, and hexahedral crystals.

〈発明が解決しようとする課題〉 従来の超高圧法で製造する大粒ダイヤモンドは成長速度
が遅く、且つ製造設備が膨大で高価なものであった。又
、燃焼炎法をも含む気相法ではダイヤモンドは通常では
薄膜として得られ、粒状では結晶の数を抑制し、且つ低
速でしか得られない。
<Problems to be Solved by the Invention> Large diamonds produced by the conventional ultra-high pressure method have a slow growth rate, and the production equipment is enormous and expensive. Further, in the gas phase method including the combustion flame method, diamond is usually obtained in the form of a thin film, and in the form of granules, the number of crystals is suppressed and can only be obtained at low speed.

ダイヤモンドの需要の拡大にともない、大粒のものが望
まれ、又従来の概念とは異なった構造のものが開発され
れば、更に一段と需要の幅が広(なると考えられている
。本発明者らはこれらの点を考慮して研究を重ね、本発
明を完成した。
As the demand for diamonds increases, larger diamonds are desired, and if diamonds with a structure different from the conventional concept are developed, it is thought that the range of demand will further expand.The inventors of the present invention took these points into consideration, conducted repeated research, and completed the present invention.

く課題を解決するための手段〉 前記目的を達するための本発明は、結晶はその骨格が互
いに交叉した構造である多結晶ダイヤモンド粒及び、ア
セチレンと酸素との混合ガスの燃焼炎をダイヤモンド析
出用基材に衝突させて該基材上にダイヤモンドを析出さ
せる燃焼炎法ダイヤモンド合成法であって、基材上に核
を形成させる第一工程と、形成されたダイヤモンド核を
成長させる第二工程とより、且つ両工程間の酸素とアセ
チレンとの混合比を変化させる多結晶ダイヤモンドの製
造方法に関する。
Means for Solving the Problems> To achieve the above object, the present invention uses polycrystalline diamond grains whose crystal skeletons intersect with each other and a combustion flame of a mixed gas of acetylene and oxygen for diamond precipitation. A combustion flame diamond synthesis method in which diamond is precipitated on the base material by colliding with the base material, the method comprising a first step of forming a nucleus on the base material, and a second step of growing the formed diamond nucleus. The present invention also relates to a method for producing polycrystalline diamond in which the mixing ratio of oxygen and acetylene is changed between both steps.

本発明について更に詳しく説明する。The present invention will be explained in more detail.

本発明の多結晶ダイヤモンド粒はその骨格が互いに交叉
した構造である。
The polycrystalline diamond grains of the present invention have a structure in which their skeletons intersect with each other.

別の表現をすると、双蝶形の結晶面を有し、又多(のへ
き開面を有するものである。そしておおむね双晶であり
、ダイヤモンド特有の(111)面が主体の八面体結晶
と(110)面を有する十二面体結晶の一部が寄り集ま
ったものと考えられる。
In other words, it has bisphenoidal crystal faces and multiple cleavage planes.It is generally twinned, and has an octahedral crystal mainly composed of (111) planes, which is unique to diamond. It is considered that a part of a dodecahedral crystal having 110) faces is gathered together.

次に本発明の多結晶のダイヤモンド粒の具体的な形を図
面より説明する。
Next, the specific shape of the polycrystalline diamond grains of the present invention will be explained with reference to the drawings.

第1図は骨格が交叉した基本形の平面図である。第2図
は基本形のピラミッド状多面体の立面図である。
FIG. 1 is a plan view of the basic shape in which the skeletons intersect. FIG. 2 is an elevational view of the basic pyramidal polyhedron.

第3図は交叉する骨格が上下の関係ある場合を示す平面
図である。
FIG. 3 is a plan view showing a case where the intersecting skeletons are in a vertical relationship.

第4図は骨格が斜めに交叉した場合を示す平面図である
FIG. 4 is a plan view showing a case where the skeletons intersect diagonally.

第5図は交叉骨格の長さが短い場合の平面図、第6図は
交叉が斜めで且つ上下の関係にある場合の平面図を、そ
して第7図は交叉する位置がずれ、且つ交叉骨格の長さ
が短い例の平面図を示す。
Fig. 5 is a plan view when the length of the chiasm skeleton is short, Fig. 6 is a plan view when the chiasm is diagonal and in a vertical relationship, and Fig. 7 is a plan view when the cross position is shifted and the chiasm skeleton is A plan view of an example in which the length of is short is shown.

更に、第8図は多重堆積型の平面図を示す。Furthermore, FIG. 8 shows a plan view of the multiple stack type.

第1図、第2図の基本形は核形成点と見られる中心から
四方に結晶がベンディングしながら伸びて骨格が互いに
交叉した構造となる。即ち、ちょうど二匹の蝶が重なり
合ったような結晶構造が生ずる。そして第3図〜第8図
に例示された各種の変形形態も生ずる。
The basic shape shown in FIGS. 1 and 2 has a structure in which the crystals bend and extend in all directions from the center, which is considered to be the nucleation point, and the skeletons intersect with each other. In other words, a crystal structure similar to two butterflies superimposed on each other is created. Various modifications illustrated in FIGS. 3 to 8 also occur.

次に本発明の多結晶体ダイヤモンド粒の製造法について
述べる。即ち、本発明は基本的には、炭素を含むダイヤ
モンド析出用原料ガスであるアセチレンを不完全燃焼領
域を有するように燃焼させる燃焼炎法であるが、この燃
焼過程において選択的に核を育成する工程と、次いで、
できた核を成長させる工程とを設け、且つ両工程の酸素
とアセチレンとの混合比を変化させることに特徴がある
。そして特に後者の条件が不適当な場合、結晶は通常の
スピネル状の八面体、あるいはざくろ石状の十二面体か
、もしくはキュービックの四面体の基本結晶の組合わせ
である(6+8)面体、(12+6)面体、(12+ 
8 )面体、(12+ 8 +6)面体などの単結晶か
或いは多数の角錐突起を有する金平糖状や表面に正方又
は矩形面を有するミラーボール状の多結晶が生長する。
Next, a method for producing polycrystalline diamond grains according to the present invention will be described. That is, the present invention is basically a combustion flame method in which acetylene, which is a raw material gas for diamond precipitation containing carbon, is combusted so as to have an incomplete combustion region, but in this combustion process, nuclei are selectively grown. process and then
The method is characterized in that it includes a step of growing the resulting nuclei, and that the mixing ratio of oxygen and acetylene in both steps is changed. And especially when the latter condition is unsuitable, the crystal is a combination of the basic crystals of the usual spinel-like octahedron, or garnet-like dodecahedron, or cubic tetrahedron (6+8)-hedron, ( 12+6) face piece, (12+
8) Single crystals such as hedrons and (12+8+6) hedrons, or polycrystals in the shape of spinous twigs having a large number of pyramidal protrusions or mirror balls having square or rectangular surfaces on the surface grow.

次に本発明について説明する。Next, the present invention will be explained.

基板としてW、WC,Mo、S L、T i C。W, WC, Mo, SL, TiC as substrates.

TiN、サーメット等が使用可能である。超音波により
洗浄した基板を水冷により温度調節が可能な支持台上に
セットし、その基板に対してバーナーよりアセチレンと
酸素の混合ガスの還元炎を吹き付ける。この場合に基板
温度を最初の核形成の段階で通常のダイヤ生成条件より
やや高く、即ち900°〜1000℃に保って核形成過
程で選択的に成長核を育成する。通常900℃内外では
、基板上に106〜10’ /+++m”個の核が発生
するが、これらの幅が最終的には1027mm”個以内
に結晶核数な限定させるために、意図的に結晶核の成長
を抑制する。本発明においてはこの核の形成工程とその
燃焼条件をかえた成長工程とが設けられることに特徴が
ある。次にその条件を記載する。
TiN, cermet, etc. can be used. The ultrasonically cleaned substrate is set on a support stand whose temperature can be controlled by water cooling, and a reducing flame of a mixed gas of acetylene and oxygen is blown onto the substrate from a burner. In this case, the substrate temperature is maintained at a temperature slightly higher than normal diamond formation conditions at the initial stage of nucleation, ie, 900° to 1000° C., to selectively grow growth nuclei during the nucleation process. Normally, at temperatures around 900°C, 106 to 10'/+++m" nuclei are generated on the substrate, but in order to limit the number of crystal nuclei to a width of 1027 mm or less, the number of crystal nuclei is intentionally Inhibits nuclear growth. The present invention is characterized in that it includes a step of forming this nucleus and a step of growing it with different combustion conditions. Next, the conditions will be described.

合成条件 (設定時間) (Ozvol/CtHzvol) (C
zH!cc/cが−S) (02”c/CIl+”、 
S)〔核形成15〜15分 0.80〜0.87  1
00〜70  85−60[結晶成長17〜10分 0
.85〜0.98  100〜7090〜63そして0
□/ C2H2は核形成工程では0.83〜0.86、
核成長工程では0.88〜0.92の範囲であることが
好ましい。
Synthesis conditions (setting time) (Ozvol/CtHzvol) (C
zH! cc/c is -S) (02"c/CIl+",
S) [Nucleation 15-15 minutes 0.80-0.87 1
00-70 85-60 [Crystal growth 17-10 minutes 0
.. 85~0.98 100~7090~63 and 0
□/C2H2 is 0.83 to 0.86 in the nucleation process,
In the nuclear growth step, it is preferably in the range of 0.88 to 0.92.

このような条件で反応させると各工程において次の様な
結果を得る。
When the reaction is carried out under these conditions, the following results are obtained in each step.

(発生核数)   (成長速度)    (結晶形体)
即ち、第1段階で微細な単結晶が核として形成され、第
2段階で急速成長させることにより、核の選択と選択さ
れた核の育成が行なわれ、特定の核が100μ/hr以
上の成長速度で周辺の結晶核の成長を抑制しつつ、自ら
は巨大な結晶に成長する。
(Number of nuclei generated) (Growth rate) (Crystal form)
That is, in the first step, a fine single crystal is formed as a nucleus, and in the second step, by rapid growth, selection of the nucleus and growth of the selected nucleus are performed, and a specific nucleus grows at a rate of 100μ/hr or more. It uses its speed to suppress the growth of surrounding crystal nuclei while growing itself into a gigantic crystal.

〈実施例1〉 0.5tX 20X 20 (mm)のモリブデン板を
エタノール液中で超音波洗浄を行ない試料支持台上にセ
ットする。
<Example 1> A molybdenum plate of 0.5 t×20×20 (mm) is ultrasonically cleaned in an ethanol solution and set on a sample support stand.

基板とバーナーの火口距離を7mmに保ち、バーナーロ
よりアセチレン5.0 ffi/min s酸素4.2
51/minの混合ガスを大気中で着火し、フェザ−内
に基板を保ち、基板温度が1000℃を保持する様に冷
却水により基板の支持台温度を調節する。
Keeping the distance between the substrate and the burner at 7 mm, acetylene 5.0 ffi/min s oxygen 4.2
A mixed gas of 51/min was ignited in the atmosphere, the substrate was kept in the feather, and the temperature of the substrate support was adjusted using cooling water so that the substrate temperature was maintained at 1000°C.

5分後には基板上のフェザ−内が薄白色に変色し微細な
結晶核の発生が確認される。直ちに酸素流量を若干増加
し、4.5 ffi/minとする。、10分後には薄
白色域内から小粒がかなりの数生じ始める。
After 5 minutes, the inside of the feather on the substrate changed color to pale white, and the generation of fine crystal nuclei was confirmed. Immediately increase the oxygen flow rate slightly to 4.5 ffi/min. After 10 minutes, a considerable number of small particles begin to form within the pale white area.

やがて20分後には相互に独立した粒が肩を競って成長
して(る。基板を少しづつ回転しフェザ−を結晶に均一
に放射させながら30分間保持する。
Eventually, after 20 minutes, independent grains will grow competing with each other. The substrate is rotated little by little to uniformly radiate feathers onto the crystals, and the substrate is held for 30 minutes.

反応完了後、基板を徐冷し、析出物を走査電子顕微鏡で
観察し5更にX線回折、及びラマン分光により調べた。
After the reaction was completed, the substrate was slowly cooled, and the precipitate was observed using a scanning electron microscope (5) and further examined by X-ray diffraction and Raman spectroscopy.

その結果、粒径300〜500μmの双蝶形の大塊が大
半を占め、その周辺に100〜200μmのブロック状
の粒塊のダイヤモンドが生成していることを確認した。
As a result, it was confirmed that diamond-shaped large lumps with a grain size of 300 to 500 μm occupied the majority, and block-shaped diamond grains with a diameter of 100 to 200 μm were generated around them.

その粒の代表的な二側の400倍及び200倍の走査電
子顕微鏡写真を第9〜10図に示す。
Scanning electron micrographs of representative two sides of the grain at 400x and 200x are shown in Figures 9-10.

〈比較例1〉 実施例1と同一条件で実験を開始し、酸素流量を変化さ
せずアセチレン5.0 j/win 、酸素4. z5
j/I!linの流量を保持したまま30分間生成を行
ない、反応終了後に析出物を実体顕微鏡で調べた。析出
中心には数十ミクロンの表面に正方又は矩形面を有する
ミラーボール状の多結晶や角錐突起を有する金平糖状の
粒が中心部に積重し、その周辺部にはDLC(ダイヤモ
ンドライクカーボン)が見られ、更に外周部にはic(
アイカーボン)の丸い粒が夫々重なって析出し膜状を呈
している。即ち本発明の骨格が交叉した構造のものは得
られなかった。尚、いずれも中心部の析出物はX線回折
、及びラマン分光によりダイヤモンドであることを確認
した。
<Comparative Example 1> An experiment was started under the same conditions as in Example 1, and the oxygen flow rate was unchanged, with acetylene at 5.0 j/win and oxygen at 4.0 j/win. z5
j/I! Generation was carried out for 30 minutes while maintaining the flow rate of lin, and after the reaction was completed, the precipitate was examined using a stereomicroscope. At the center of the precipitation, mirror ball-shaped polycrystals with square or rectangular faces on the surface of several tens of microns and confetti-shaped grains with pyramidal protrusions are piled up in the center, and DLC (diamond-like carbon) is deposited in the periphery. can be seen, and IC (
Round grains of iCarbon) are deposited on top of each other to form a film. That is, a structure in which the skeletons of the present invention were crossed could not be obtained. In each case, the precipitate at the center was confirmed to be diamond by X-ray diffraction and Raman spectroscopy.

〈比較例2〉 実施例1と同様に基板を処理し、基板〜火口距離を7+
+mに保ち試料支持台上にセットした。
<Comparative Example 2> The substrate was treated in the same manner as in Example 1, and the distance between the substrate and the crater was set to 7+
+m and set it on a sample support stand.

アセチレン5.Of/min 、酸素4.5ffi/m
inの流量を保持して、35分間生成を行ない、反応終
了後に析出物を実体顕微鏡で観察した。
Acetylene 5. Of/min, oxygen 4.5ffi/m
Generation was carried out for 35 minutes while maintaining the flow rate of in. After the reaction was completed, the precipitate was observed using a stereomicroscope.

基板温度が上昇した析出中心部はグラファイトの大塊が
盛り上がり、ダイヤは見い出せなかった。周辺部に(1
00)面のみ成長した単面体の粒が少し析出しているの
を認めた。
At the center of the precipitation, where the substrate temperature had risen, a large mass of graphite swelled up, and no diamonds were found. In the periphery (1
A small amount of monohedral grains, in which only the 00) plane grew, was observed to be precipitated.

〈発明の効果〉 本発明のダイヤモンド粒子は、従来の気相法で得られる
通常数ミクロンから数十ミクロンの結晶粒子より著しく
粒径も大きく、形状も天然や他の人造ダイヤでは見られ
ない特長を持つ。しがも容易に大粒のダイヤモンドが得
られるので、従来の人造ダイヤが使用されている分野、
即ち(石油)掘削用ビット、石材加工用砥石、各種切削
用工具に使用可能である。又、多くのへき開面を持つの
でマトリックスへのアンカー効果が期待されるし、切削
工程において自発方性が高く、切れ味の良い耐久性のあ
るツールの出現が可能である。
<Effects of the Invention> The diamond particles of the present invention have a significantly larger particle size than the crystal grains normally obtained from a few microns to several tens of microns obtained by conventional vapor phase methods, and have a shape that is not found in natural or other man-made diamonds. have. However, since large diamonds can be easily obtained, it is suitable for fields where conventional artificial diamonds are used.
That is, it can be used for (oil) drilling bits, stone processing grindstones, and various cutting tools. In addition, since it has many cleavage planes, it is expected to have an anchoring effect to the matrix, and it is possible to create a tool that has high spontaneity in the cutting process and is sharp and durable.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の多結晶ダイヤモンド粒の基本形の平面
図、 第2図は本発明の多結晶ダイヤモンド粒の基本形のピラ
ミッド状多面体の立面図、 第3図、第4図、第5図、第6図、第7図は第1図の基
本形の交叉する骨格の各種の例を示す平面図、 第8図はその構造が多重堆積型である例を示す平面図、 第9図、第10図は実施例1により製造された本発明の
多結晶粒ダイヤモンド代表的な二側の400倍、200
倍の走査電子顕微鏡写真を示す。
Fig. 1 is a plan view of the basic shape of polycrystalline diamond grains of the present invention, Fig. 2 is an elevational view of a pyramidal polyhedron of the basic form of polycrystalline diamond grains of the present invention, Figs. 3, 4, and 5. , Figures 6 and 7 are plan views showing various examples of intersecting skeletons of the basic form shown in Figure 1, Figure 8 is a plan view showing examples whose structure is of the multi-layered type, Figures 9 and 7 are Figure 10 shows two representative polycrystalline diamonds of the present invention produced according to Example 1, 400x and 200x.
A scanning electron micrograph of magnification is shown.

Claims (2)

【特許請求の範囲】[Claims] (1)結晶の骨格が互いに交叉した構造である多結晶体
ダイヤモンド粒。
(1) Polycrystalline diamond grains have a structure in which the crystal skeletons intersect with each other.
(2)アセチレンを不完全燃焼領域を有するように燃焼
させて、燃焼炎法によりダイヤモンド合成する際に、 基材上に核を形成させる第一工程と、形成されたダイヤ
モンド核を生長させる第二工程とを設け、第一工程と第
二工程の燃焼炎用混合ガス組成を変化させ、且つ第一工
程の燃焼炎用混合ガスはO_2/C_2H_2が0.8
0〜0.87、第二工程の燃焼炎用混合ガスはO_2/
C_2H_2が0.85〜0.98の範囲である多結晶
体ダイヤモンド粒の製造法。
(2) When synthesizing diamond by the combustion flame method by burning acetylene so that it has an incomplete combustion region, the first step is to form a nucleus on the base material, and the second step is to grow the formed diamond nucleus. The mixture gas composition for combustion flame in the first step and the second step is changed, and the mixed gas for combustion flame in the first step has O_2/C_2H_2 of 0.8.
0 to 0.87, the mixed gas for the combustion flame in the second step is O_2/
A method for producing polycrystalline diamond grains in which C_2H_2 is in the range of 0.85 to 0.98.
JP24638389A 1989-09-25 1989-09-25 Polycrystalline diamond grains and method for producing the same Expired - Fee Related JP2754260B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24638389A JP2754260B2 (en) 1989-09-25 1989-09-25 Polycrystalline diamond grains and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24638389A JP2754260B2 (en) 1989-09-25 1989-09-25 Polycrystalline diamond grains and method for producing the same

Publications (2)

Publication Number Publication Date
JPH03112896A true JPH03112896A (en) 1991-05-14
JP2754260B2 JP2754260B2 (en) 1998-05-20

Family

ID=17147724

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24638389A Expired - Fee Related JP2754260B2 (en) 1989-09-25 1989-09-25 Polycrystalline diamond grains and method for producing the same

Country Status (1)

Country Link
JP (1) JP2754260B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018501176A (en) * 2014-11-06 2018-01-18 ツーシックス、インコーポレイテッドIi−Vi Incorporated Highly twinned oriented polycrystalline diamond film and method for producing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018501176A (en) * 2014-11-06 2018-01-18 ツーシックス、インコーポレイテッドIi−Vi Incorporated Highly twinned oriented polycrystalline diamond film and method for producing the same
US10373725B2 (en) 2014-11-06 2019-08-06 Ii-Vi Incorporated Highly twinned, oriented polycrystalline diamond film and method of manufacture thereof
US10910127B2 (en) 2014-11-06 2021-02-02 Ii-Vi Delaware, Inc. Highly twinned, oriented polycrystalline diamond film and method of manufacture thereof

Also Published As

Publication number Publication date
JP2754260B2 (en) 1998-05-20

Similar Documents

Publication Publication Date Title
Clausing et al. Textures and morphologies of chemical vapor deposited (CVD) diamond
Cheng et al. Texture formation in titanium nitride films prepared by chemical vapor deposition
Hayashi et al. Formation of ultrafine metal particles by gas-evaporation technique. IV. Crystal habits of iron and Fcc metals, Al, Co, Ni, Cu, Pd, Ag, In, Au and Pb
Sunagawa Growth and morphology of diamond crystals under stable and metastable contitions
TW434045B (en) Crystal growth
KR20010033021A (en) Crystal growth
IE61745B1 (en) Process for synthesizing large diamond
Uyeda Growth of polyhedral metal crystallites in inactive gas
JPH06182184A (en) Synthesis of single crystal diamond
Hirmke et al. Diamond single crystal growth in hot filament CVD
JPH03112896A (en) Polycrystal diamond grain and its production
US5653952A (en) Process for synthesizing diamond using combustion method
Feoktistov et al. Evolution of the morphology of diamond particles and mechanism of their growth during the synthesis by chemical vapor deposition
DE102004034667A1 (en) Producing synthetic diamond particles comprises exposing hydrogen and fluidized carbon seed particles to an energy source
JPH05139900A (en) Zinc oxide crystals and production thereof
JPS6136112A (en) Preparation of whetstone granule of poly-crystalline diamond
Khokhryakov et al. Influence of a silicon impurity on growth of diamond crystals in the Mg-C system
JPH06165929A (en) Method for synthesizing diamond single crystal
JPS59184791A (en) Vapor phase synthesis of diamond
JPH06262520A (en) Grinding wheel and its manufacture
Haubner The microstructures of polycrystalline diamond, ballas and nanocrystalline diamond
Aoki et al. Arrowhead-like diamond crystals formed by hot-filament chemical vapor deposition
Clanton et al. Iron crystals in lunar breccias
Ueda et al. Photopolymerization of vapor-deposited 2, 5-distyrylpyrazine films
Shang et al. Morphological Evolution of In 2 O 3 Crystallites by Metallothermal Reaction Growth: A Unified Elucidation

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees