JP2754260B2 - Polycrystalline diamond grains and method for producing the same - Google Patents

Polycrystalline diamond grains and method for producing the same

Info

Publication number
JP2754260B2
JP2754260B2 JP24638389A JP24638389A JP2754260B2 JP 2754260 B2 JP2754260 B2 JP 2754260B2 JP 24638389 A JP24638389 A JP 24638389A JP 24638389 A JP24638389 A JP 24638389A JP 2754260 B2 JP2754260 B2 JP 2754260B2
Authority
JP
Japan
Prior art keywords
diamond
polycrystalline diamond
substrate
crystal
grains
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP24638389A
Other languages
Japanese (ja)
Other versions
JPH03112896A (en
Inventor
邦雄 小巻
勇 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP24638389A priority Critical patent/JP2754260B2/en
Publication of JPH03112896A publication Critical patent/JPH03112896A/en
Application granted granted Critical
Publication of JP2754260B2 publication Critical patent/JP2754260B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は多結晶のダイヤモンド粒及び同ダイヤモンド
粒の製造法に関する。更に詳しくは従来の合成天然ダイ
ヤモンドとは異なった構造を持つ新規な構造の多結晶ダ
イヤモンド粒及びその製造方法に関する。本発明のダイ
ヤモンド粒は大粒であり耐摩耗性、耐蝕性、高熱伝導
性、高比弾性等の特性を有し、超硬工具材、研磨材、研
削材、摺動材、耐蝕材、刃先用部材などに有用である。
The present invention relates to polycrystalline diamond grains and a method for producing the same. More specifically, the present invention relates to a polycrystalline diamond grain having a new structure different from that of a conventional synthetic natural diamond, and a method for producing the same. The diamond grains of the present invention are large grains and have properties such as wear resistance, corrosion resistance, high thermal conductivity, and high specific elasticity, and are used for carbide tool materials, abrasive materials, abrasive materials, sliding materials, corrosion-resistant materials, and cutting edges. It is useful for members and the like.

〈従来の技術〉 ダイヤモンドの合成法としては古くより超高圧法が実
用化され、近年更に気相法が開発された。そして本出願
の発明者らは気相法の改良として燃焼炎法を発明し、第
35回応用物理関係連合講演会(講演予稿集第2分冊434
頁299−T−1)において発表し、かつ特願昭63−71758
として出願している。これらの合成法において製造され
るダイヤモンドはその結晶形が一般的に知られている天
然の原石の結晶形、即ち八面体結晶、十二面体結晶、六
面体結晶を基準にしたものである。
<Conventional Technology> As a method for synthesizing diamond, an ultra-high pressure method has been practically used for a long time, and a gas phase method has been further developed in recent years. The inventors of the present application invented the combustion flame method as an improvement of the gas phase method, and
35th Federated Lectures on Applied Physics (Preprints of the Second Lecture Volume 434)
Page 299-T-1) and Japanese Patent Application No. 63-71758.
As an application. The diamonds produced in these synthetic methods are based on the crystal forms of natural ores whose crystal forms are generally known, ie, octahedral, dodecahedral, and hexahedral crystals.

〈発明が解決しようとする課題〉 従来の超高圧法で製造する大粒ダイヤモンドは成長速
度が遅く、且つ製造設備が膨大で高価なものであった。
又、燃焼炎法をも含む気相法ではダイヤモンドは通常で
は薄膜として得られ、粒状では結晶の数を抑制し、且つ
低速でしか得られない。
<Problems to be Solved by the Invention> A large-diameter diamond produced by a conventional ultrahigh-pressure method has a low growth rate, and the production equipment is enormous and expensive.
Further, in the gas phase method including the combustion flame method, diamond is usually obtained as a thin film, and in a granular state, the number of crystals is suppressed, and diamond is obtained only at a low speed.

ダイヤモンドの需要の拡大にともない、大粒のものが
望まれ、又従来の概念とは異なった構造のものが開発さ
れれば、更に一段と需要の幅が広くなると考えられてい
る。本発明者らはこれらの点を考慮して研究を重ね、本
発明を完成した。
It is thought that with the increase in demand for diamond, large grains are desired, and if a structure having a structure different from the conventional concept is developed, the range of demand will be further widened. The present inventors have conducted studies in consideration of these points and completed the present invention.

〈課題を解決するための手段〉 前記目的を達するための本発明は、結晶はその骨格が
互いに交叉した構造である多結晶ダイヤモンド粒及び、
アセチレンと酸素との混合ガスの燃焼炎をダイヤモンド
析出用基材に衝突させて該基材上にダイヤモンドを析出
させる燃焼炎法ダイヤモンド合成法であって、基材上に
核を形成させる第一工程と、形成されたダイヤモンド核
を成長させる第二工程とより、且つ両工程間の酸素とア
セチレンとの混合比を変化させる多結晶ダイヤモンドの
製造方法に関する。
<Means for Solving the Problems> The present invention for achieving the object, the crystal is a polycrystalline diamond grains having a structure in which the skeleton crosses each other,
A combustion flame method in which a combustion flame of a mixed gas of acetylene and oxygen strikes a substrate for diamond deposition to deposit diamond on the substrate, and a first step of forming a nucleus on the substrate And a second step of growing the formed diamond nuclei, and a method for producing polycrystalline diamond in which the mixing ratio of oxygen and acetylene is changed between the two steps.

本発明について更に詳しく説明する。 The present invention will be described in more detail.

本発明の多結晶ダイヤモンド粒はその骨格が互いに交
叉した構造である。
The polycrystalline diamond grains of the present invention have a structure in which the skeletons cross each other.

別の表現をすると、又蝶形の結晶面を有し、又多くの
へき開面を有するものである。そしておおむね双晶であ
り、ダイヤモンド特有の(111)面が主体の八面体結晶
と(110)面を有する十二面体結晶の一部が寄り集まっ
たものと考えられる。
In other words, it also has a butterfly-shaped crystal face and has many cleavage faces. It is considered that the octahedral crystal mainly composed of (111) planes and the dodecahedral crystal mainly having (110) planes, which are almost twin crystals, are gathered together.

次に本発明の多結晶のダイヤモンド粒の具体的な形を
図面より説明する。
Next, the specific shape of the polycrystalline diamond grains of the present invention will be described with reference to the drawings.

第1図は骨格が交叉した基本形の平面図である。第2
図は基本形のピラミッド状多面体の立面図である。
FIG. 1 is a plan view of a basic form in which skeletons intersect. Second
The figure is an elevation view of a basic pyramid-shaped polyhedron.

第3図は交叉する骨格が上下の関係ある場合を示す平
面図である。
FIG. 3 is a plan view showing a case where the intersecting skeletons are vertically related.

第4図は骨格が斜めに交叉した場合を示す平面図であ
る。
FIG. 4 is a plan view showing a case where the skeletons cross obliquely.

第5図は交叉骨格の長さが短い場合の平面図、第6図
は交叉が斜めで且つ上下の関係にある場合の平面図を、
そして第7図は交叉する位置がずれ、且つ交叉骨格の長
さが短い例の平面図を示す。
FIG. 5 is a plan view when the length of the cross skeleton is short, and FIG. 6 is a plan view when the cross is oblique and in a vertical relationship.
FIG. 7 is a plan view showing an example in which the crossing position is shifted and the length of the cross skeleton is short.

更に、第8図は多重堆積型の平面図を示す。 FIG. 8 shows a plan view of a multiple deposition type.

第1図、第2図の基本形は核形成点と見られる中心か
ら四方に結晶がベンディングしながら伸びて骨格が互い
に交叉した構造となる。即ち、ちょうど二匹の蝶が重な
り合ったような結晶構造が生ずる。そして第3図〜第8
図に例示された各種の変形形態も生ずる。
The basic form shown in FIGS. 1 and 2 has a structure in which crystals extend in four directions from the center, which is regarded as a nucleation point, while bending, and skeletons cross each other. That is, a crystal structure in which exactly two butterflies overlap is generated. 3 to 8
Various variations illustrated in the figures also occur.

次に本発明の多結晶体ダイヤモンド粒の製造法につい
て述べる。即ち、本発明は基本的には、炭素を含むダイ
ヤモンド析出用原料ガスであるアセチレンを不完全燃焼
領域を有するように燃焼させる燃焼炎法であるが、この
燃焼過程において選択的に核を育成する工程と、次い
で、できた核を成長させる工程とを設け、且つ両工程の
酸素とアセチレンとの混合比を変化させることに特徴が
ある。そして特に後者の条件が不適当な場合、結晶は通
常のスピネル状の八面体、あるいはざくろ石状の十二面
体か、もしくはキュービックの四面体の基本結晶の組合
わせである(6+8)面体、(12+6)面体、(12+
8)面体、(12+8+6)面体などの単結晶か或いは多
数の角錐突起を有する金平糖状や表面に正方又は矩形面
を有するミラーボール状の多結晶が生長する。
Next, a method for producing the polycrystalline diamond grains of the present invention will be described. That is, the present invention is basically a combustion flame method in which acetylene which is a raw material gas for depositing carbon containing carbon is burned so as to have an incomplete combustion region. In this combustion process, nuclei are selectively grown. It is characterized in that a step and a step of growing the nuclei are provided, and the mixing ratio of oxygen and acetylene in both steps is changed. In particular, when the latter condition is not appropriate, the crystal is a normal spinel-like octahedron, garnet-like dodecahedron, or a combination of cubic tetrahedral basic crystals (6 + 8) -hedron, ( 12 + 6) face, (12+)
8) A single crystal such as a facet, a (12 + 8 + 6) facet, or a confetti-like crystal having a large number of pyramidal projections or a mirror ball-like polycrystal having a square or rectangular surface on its surface grows.

次に本発明について説明する。 Next, the present invention will be described.

基板としてW,WC,Mo,Si,TiC,TiN,サーメット等が使用
可能である。超音波により洗浄した基板を水冷により温
度調節が可能な支持台上にセットし、その基板に対して
バーナーよりアセチレンと酸素の混合ガスの還元炎を吹
き付ける。この場合に基板温度を最初の核形成の段階で
通常のダイヤ生成条件よりやや高く、即ち900゜〜1000
℃に保って核形成過程で選択的に成長核を育成する。通
常900℃内外では、基板上に105〜106/mm2個の核が発生
するが、これらの幅が最終的には102/mm2個以内に結晶
核数を限定させるために、意図的に結晶核の成長を抑制
する。本発明においてはこの核の形成工程とその燃焼条
件をかえた成長工程とが設けられることに特徴がある。
次にその条件を記載する。
As the substrate, W, WC, Mo, Si, TiC, TiN, cermet, or the like can be used. The substrate cleaned by ultrasonic waves is set on a support table whose temperature can be adjusted by water cooling, and a reducing flame of a mixed gas of acetylene and oxygen is blown from the burner to the substrate. In this case, the substrate temperature in the first nucleation stage is slightly higher than the normal diamond formation condition, that is, 900 to 1000 ° C.
The growth nucleus is selectively grown during the nucleation process while maintaining the temperature at ℃. Usually, at 900 ° C or outside, 10 5 to 10 6 / mm 2 nuclei are generated on the substrate, but since these widths ultimately limit the number of crystal nuclei to 10 2 / mm 2 or less, Intentionally suppresses the growth of crystal nuclei. The present invention is characterized in that a step of forming the nucleus and a step of growing the nucleus under different burning conditions are provided.
Next, the conditions will be described.

合成条件 そしてO2/C2H2は核形成工程では0.83〜0.86、核成長
工程では0.88〜0.92の範囲であることが好ましい。
Synthesis conditions O 2 / C 2 H 2 is preferably in the range of 0.83 to 0.86 in the nucleation step and 0.88 to 0.92 in the nucleus growth step.

このような条件で反応させると各工程において次の様
な結果を得る。
When the reaction is carried out under such conditions, the following results are obtained in each step.

即ち、第1段階で微細な単結晶が核として形成され、
第2段階で急速成長させることにより、核の選択と選択
された核の育成が行なわれ、特定の核が100μ/hr以上の
成長速度で周辺の結晶核の成長を抑制しつつ、自らは巨
大な結晶に成長する。
That is, a fine single crystal is formed as a nucleus in the first stage,
By performing rapid growth in the second stage, nuclei are selected and the selected nuclei are grown. A specific nucleus grows at a growth rate of 100 μ / hr or more while suppressing the growth of surrounding crystal nuclei. Crystal grows.

〈実施例 1〉 0.5t×20×20(mm)のモリブデン板をエタノール液中
で超音波洗浄を行ない試料支持台上にセットする。
<Example 1> A 0.5 t × 20 × 20 (mm) molybdenum plate was subjected to ultrasonic cleaning in an ethanol solution and set on a sample support.

基板とバーナーの火口距離を7mmに保ち、バーナー口
よりアセチレン5.0/min、酸素4.25/minの混合ガス
を大気中で着火し、フェザー内に基板を保ち、基板温度
が1000℃を保持する様に冷却水により基板の支持台温度
を調節する。
Keep the crater distance between the substrate and the burner at 7 mm, ignite a mixed gas of acetylene 5.0 / min and oxygen 4.25 / min from the burner port in the air, keep the substrate in the feather, and keep the substrate temperature at 1000 ° C. The temperature of the support of the substrate is adjusted by the cooling water.

5分後には基板上のフェザー内が薄白色に変色し微細
な結晶核の発生が確認される。直ちに酸素流量を若干増
加し、4.5/minとする。10分後には薄白色域内から小
粒がかなりの数生じ始める。やがて20分後には相互に独
立した粒が肩を競って成長してくる。基板を少しづつ回
転しフェザーを結晶に均一に放射させながら30分間保持
する。
Five minutes later, the inside of the feather on the substrate turns pale white, and the generation of fine crystal nuclei is confirmed. Immediately increase the oxygen flow to 4.5 / min. After 10 minutes, a considerable number of small grains start to form from within the pale white region. Eventually, after 20 minutes, mutually independent grains will compete for shoulders and grow. The substrate is rotated little by little and kept for 30 minutes while emitting the feather uniformly to the crystal.

反応完了後、基板を徐冷し、析出物を走査電子顕微鏡
で観察し、更にX線回析、及びラマン分光により調べ
た。その結果、粒径300〜500μmの又蝶形の大塊が大半
を占め、その周辺に100〜200μmのブロック状の粒塊の
ダイヤモンドが生成していることを確認した。その粒の
代表的な二例の400倍及び200倍の走査電子顕微鏡写真を
第9〜10図に示す。
After completion of the reaction, the substrate was gradually cooled, the precipitate was observed with a scanning electron microscope, and further examined by X-ray diffraction and Raman spectroscopy. As a result, it was confirmed that large butterfly-shaped lumps having a particle size of 300 to 500 μm occupied the majority, and block-shaped lumps of 100 to 200 μm were formed around the large diameter. Scanning electron micrographs at 400 times and 200 times of two representative examples of the grains are shown in FIGS.

〈比較例 1〉 実施例1と同一条件で実験を開始し、酸素流量を変化
させずアセチレン5.0/min、酸素4.25/minの流量を
保持したまま30分間生成を行ない、反応終了後に析出物
を実体顕微鏡で調べた。析出中心には数十ミクロンの表
面に正方又は矩形面を有するミラーボール状の多結晶や
角錐突起を有する金平糖状の粒が中心部に積層し、その
周辺部にはDLC(ダイヤモンドライクカーボン)が見ら
れ、更に外周部にはic(アイカーボン)の丸い粒が夫々
重なって析出し膜状を呈している。即ち本発明の骨格が
交叉した構造のものは得られなかった。尚、いずれも中
心部の析出物はX線回折、及びラマン分光によりダイヤ
モンドであることを確認した。
<Comparative Example 1> An experiment was started under the same conditions as in Example 1, and the production was performed for 30 minutes while maintaining the flow rates of acetylene 5.0 / min and oxygen 4.25 / min without changing the oxygen flow rate. It was examined with a stereo microscope. At the center of the precipitation, polycrystalline mirror-balls with a square or rectangular surface on the surface of several tens of microns or confetti-like grains with pyramidal protrusions are laminated at the center, and DLC (diamond-like carbon) is surrounded by the periphery. In addition, round particles of ic (eye carbon) overlap and deposit on the outer periphery to form a film. That is, a structure in which the skeleton of the present invention crossed was not obtained. In each case, the precipitate at the center was confirmed to be diamond by X-ray diffraction and Raman spectroscopy.

〈比較例 2〉 実施例1と同様に基板を処理し、基板〜火口距離を7m
mに保ち試料支持台上にセットした。
<Comparative Example 2> A substrate was treated in the same manner as in Example 1, and the distance between the substrate and the crater was 7 m.
m and set on a sample support.

アセチレン5.0/min、酸素4.5/minの流量を保持し
て、35分間生成を行ない、反応終了後に析出物を実体顕
微鏡で観察した。
Generation was performed for 35 minutes while maintaining a flow rate of acetylene of 5.0 / min and oxygen of 4.5 / min. After the reaction was completed, the precipitate was observed with a stereoscopic microscope.

基板温度が上昇した析出中心部はグラファイトの大塊
が盛り上がり、ダイヤは見い出せなかった。周辺部に
(100)面のみ成長した単面体の粒が少し析出している
のを認めた。
At the center of the precipitation where the substrate temperature was increased, a large lump of graphite was raised, and no diamond was found. It was found that monohedral grains, which had grown only on the (100) plane, were slightly precipitated in the periphery.

〈発明の効果〉 本発明のダイヤモンド粒子は、従来の気相法で得られ
る通常数ミクロンから数十ミクロンの結晶粒子より著し
く粒径も大きく、形状も天然や他の人造ダイヤでは見ら
れない特長を持つ。しかも容易に大粒のダイヤモンドが
得られるので、従来の人造ダイヤが使用されている分
野、即ち(石油)掘削用ビット、石材加工用砥石、各種
切削用工具に使用可能である。又、多くのへき開面を持
つのでマトリクスへのアンカー効果が期待されるし、切
削工程において自発刃性が高く、切れ味の良い耐久性の
あるツールの出現が可能である。
<Effect of the Invention> The diamond particles of the present invention have a remarkably larger particle size than ordinary crystal particles of several microns to several tens of microns obtained by a conventional vapor phase method, and have features that are not found in natural or other artificial diamonds. have. Moreover, since large diamonds can be easily obtained, they can be used in fields where conventional artificial diamonds are used, that is, for (petroleum) drill bits, stone processing grindstones, and various cutting tools. Further, since it has many cleaved surfaces, an effect of anchoring to the matrix is expected, and a highly durable tool with high spontaneous cutting performance in the cutting process can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の多結晶ダイヤモンド粒の基本形の平面
図、 第2図は本発明の多結晶ダイヤモンド粒の基本形のピラ
ミッド状多面体の立図面、 第3図、第4図、第5図、第6図、第7図は第1図の基
本形の交叉する骨格の各種の例を示す平面図、 第8図はその構造が多重堆積型である例を示す平面図、 第9図、第10図は実施例1により製造された本発明の多
結晶粒ダイヤモンド代表的な二例の400倍、200倍の走査
電子顕微鏡写真を示す。
FIG. 1 is a plan view of a basic form of a polycrystalline diamond grain of the present invention, FIG. 2 is a vertical view of a pyramidal polyhedron of a basic form of a polycrystalline diamond grain of the present invention, FIG. 3, FIG. 6 and 7 are plan views showing various examples of intersecting skeletons of the basic form in FIG. 1, FIG. 8 is a plan view showing an example in which the structure is a multi-stack type, FIG. 9 and FIG. The figure shows 400 × and 200 × scanning electron micrographs of two typical examples of the polycrystalline diamond of the present invention produced according to Example 1.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】結晶の骨格が互いに交叉した構造である多
結晶体ダイヤモンド粒。
1. Polycrystalline diamond grains having a structure in which the crystal skeletons cross each other.
【請求項2】アセチレンを不完全燃焼領域を有するよう
に燃焼させて、燃焼炎法によりダイヤモンド合成する際
に、 基材上に核を形成させる第一工程と、形成されたダイヤ
ンモンド核を生長させる第二工程とを設け、第一工程と
第二工程の燃焼炎用混合ガス組成を変化させ、且つ第一
工程の燃焼炎用混合ガスはO2/C2H2が0.80〜0.87、第二
工程の燃焼炎用混合ガスはO2/C2H2が0.85〜0.98の範囲
である多結晶体ダイヤモンド粒の製造法。
2. A first step in which acetylene is burned so as to have an incomplete combustion region to form a nucleus on a substrate when diamond is synthesized by a combustion flame method, and the formed diamond nucleus is grown. is a second step is provided to the first step and changing the mixed gas composition for combustion flame of the second step, and mixed gas combustion flame in the first step O 2 / C 2 H 2 is from 0.80 to 0.87, the gas mixture for two-step combustion flame O 2 / C 2 H 2 is the preparation of polycrystalline diamond grains in the range of 0.85 to 0.98.
JP24638389A 1989-09-25 1989-09-25 Polycrystalline diamond grains and method for producing the same Expired - Fee Related JP2754260B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24638389A JP2754260B2 (en) 1989-09-25 1989-09-25 Polycrystalline diamond grains and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24638389A JP2754260B2 (en) 1989-09-25 1989-09-25 Polycrystalline diamond grains and method for producing the same

Publications (2)

Publication Number Publication Date
JPH03112896A JPH03112896A (en) 1991-05-14
JP2754260B2 true JP2754260B2 (en) 1998-05-20

Family

ID=17147724

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24638389A Expired - Fee Related JP2754260B2 (en) 1989-09-25 1989-09-25 Polycrystalline diamond grains and method for producing the same

Country Status (1)

Country Link
JP (1) JP2754260B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10373725B2 (en) 2014-11-06 2019-08-06 Ii-Vi Incorporated Highly twinned, oriented polycrystalline diamond film and method of manufacture thereof

Also Published As

Publication number Publication date
JPH03112896A (en) 1991-05-14

Similar Documents

Publication Publication Date Title
KR100503542B1 (en) Diamond growth
US20210140038A1 (en) Self-supporting ultra-fine nanocrystalline diamond thick film
JPH01246116A (en) Production of acicular, fibrous or porous diamond or their aggregate
JP2007531681A5 (en)
EP2788534A1 (en) Method of forming carbonaceous particles and articles therefrom
US11684981B2 (en) Ultra-fine nanocrystalline diamond precision cutting tool and manufacturing method therefor
JP2754260B2 (en) Polycrystalline diamond grains and method for producing the same
CN110975761A (en) Method for synthesizing diamond single crystal by using special-shaped {100} seed crystal at high temperature and high pressure
Hirmke et al. Diamond single crystal growth in hot filament CVD
JPS61151095A (en) Synthesis of diamond
JPH1081586A (en) Vapor synthesized diamond and its production
WO2001036081A1 (en) Cubic boron nitride clusters
US5653952A (en) Process for synthesizing diamond using combustion method
Liu et al. Structure evolution of hBN grown on molten Cu by regulating precursor flux during chemical vapor deposition
JPH0238304A (en) Improved abrasive grain of fine diamond and production thereof
DE102004034667A1 (en) Producing synthetic diamond particles comprises exposing hydrogen and fluidized carbon seed particles to an energy source
TW445245B (en) Diamond product having core diamond and diamond coating
TWI596660B (en) Carbon-based composite materials production methods
JPH01317111A (en) Polycrystalline diamond abrasive grain and production thereof
JPH06165929A (en) Method for synthesizing diamond single crystal
Haubner The microstructures of polycrystalline diamond, ballas and nanocrystalline diamond
JPH01286912A (en) Fine diamond polycrystal particle and production thereof
Shang et al. Morphological Evolution of In 2 O 3 Crystallites by Metallothermal Reaction Growth: A Unified Elucidation
JP2798907B2 (en) Method of making diamond coating
Aoki et al. Arrowhead-like diamond crystals formed by hot-filament chemical vapor deposition

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees