JPH03112813A - Superconductor - Google Patents

Superconductor

Info

Publication number
JPH03112813A
JPH03112813A JP1250222A JP25022289A JPH03112813A JP H03112813 A JPH03112813 A JP H03112813A JP 1250222 A JP1250222 A JP 1250222A JP 25022289 A JP25022289 A JP 25022289A JP H03112813 A JPH03112813 A JP H03112813A
Authority
JP
Japan
Prior art keywords
superconductor
formula
superconducting
magnetic field
current density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1250222A
Other languages
Japanese (ja)
Other versions
JP2817259B2 (en
Inventor
Hitoshi Nobumasa
均 信正
Kazuharu Shimizu
一治 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP1250222A priority Critical patent/JP2817259B2/en
Publication of JPH03112813A publication Critical patent/JPH03112813A/en
Application granted granted Critical
Publication of JP2817259B2 publication Critical patent/JP2817259B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PURPOSE:To provide a superconductor having electron as a charge carrier, high zero resistance-superconducting transition temperature and high current density in magnetic field, comprising La, etc., sr or (and) Ca, Cu, O and F in a specific atomic ratio. CONSTITUTION:This superconductor has a composition shown by formula I. With the proviso that in the formula I, alpha is at least one element selected from La, Nd, Sm, Eu and Gd and beta is Sr and(or) Ca. Further 1.8<eta<2.1, 0.9<theta<2.2, 5<gamma<6.4, 0.1<delta<1.2. Compounds shown by formula Il, formula III, etc., may be cited as the concrete example of the superconductor. The superconductor is produced by weighing each powder of La2O3, LaF3, SrCO3, CuO, etc., in a given ratio, mixing, grinding, calcining, further grinding, molding and calcining. The superconductor has a structure wherein two units of pyramid structure of coordinating oxygen around copper in a unit lattice are included and the pyramid type units are arranged with opposing the bottoms with an alkaline earth metal between.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、核融合炉、電磁流体発電機、加速器、回転
電気機器(電動機、発電機等)、磁気分離機、磁気浮上
列車、核磁気共鳴測定装置、磁気推進船、電子線露光装
置等のマグネットコイル用材料として適し、また、送電
線、電気エネルギー貯蔵機、変圧器、整流器等の電力損
失が問題になる用途に適し、また、ジョセフソン素子、
5QUID素子、超電導トランジスタなどの各種素子と
して適し、さらに、赤外線探知材料、磁気遮蔽材料等と
して適した超電導体に関する。
Detailed Description of the Invention (Field of Industrial Application) This invention is applicable to nuclear fusion reactors, magnetohydrodynamic generators, accelerators, rotating electrical equipment (electric motors, generators, etc.), magnetic separators, magnetic levitation trains, nuclear magnetic Suitable as a material for magnet coils in resonance measurement devices, magnetic propulsion vessels, electron beam exposure devices, etc. Also suitable for applications where power loss is a problem such as power transmission lines, electrical energy storage devices, transformers, rectifiers, etc. Song Motoko,
The present invention relates to a superconductor suitable as various elements such as a 5QUID element and a superconducting transistor, and further suitable as an infrared detection material, a magnetic shielding material, etc.

(従来の技術) 超電導転移温度の高い超電導体としては、−4の銅複合
酸化物系超電導体がある。これら一連の銅複合酸化物系
超電導体における超電導電流の電荷担体は、(Nd、C
e)2 CuO4や、Nd2Cu 04−J F gを
除き、いずれも正孔である。しかしながら、電荷担体が
正孔であると、コヒーレント長が短くなり、磁場中臨界
電流密度等の超電導特性がよくない。これに対して、上
述した超電導体はその電荷担体が電子であり、コヒーレ
ント長が長く、磁場中臨界電流密度等の超電導特性の高
いものが期待されているが、零抵抗超電導転移温度は約
20にと低い。
(Prior Art) As a superconductor having a high superconducting transition temperature, there is a -4 copper composite oxide superconductor. The charge carriers of superconducting current in these series of copper complex oxide superconductors are (Nd, C
e) Except for 2 CuO4 and Nd2Cu 04-J F g, all of them are holes. However, when the charge carrier is a hole, the coherence length becomes short, and superconducting properties such as critical current density in a magnetic field are not good. On the other hand, the superconductors mentioned above have electrons as charge carriers, have a long coherence length, and are expected to have high superconducting properties such as critical current density in a magnetic field, but the zero-resistance superconducting transition temperature is about 20 Very low.

(発明が解決しようとする課題) この発明の目的は、電荷担体が電子であり、かつ、高い
零抵抗超電導転移温度を有する超電導体を提供するにあ
る。
(Problems to be Solved by the Invention) An object of the present invention is to provide a superconductor whose charge carriers are electrons and which has a high zero-resistance superconducting transition temperature.

(課題を解決するための手段) 上記目的を達成するために、この発明は、下記一般式で
表される超電導体を提供する。
(Means for Solving the Problems) In order to achieve the above object, the present invention provides a superconductor represented by the following general formula.

α、βe Cu20.F4 ただし、 a : LaXNdXSmXEuおよびGdから選ばれ
た少なくとも1種の元素 β二SrおよびCaから選ばれた少なくとも1種の元素 1.8〈η<2.1 0.9<θ〈2.2 5.0〈γ<6.3 0.1〈δ〈1.2 この発明の超電導体は、構造的には、一連の銅複合酸化
物系超電導体とよ(似ており、単位格子中にCuの周り
にOが5配位したピラミッド構造を2ユニット含んでい
る。また、これらCu(!:Oとからなるピラミッド型
ユニットは、アルカリ土類元素(β)をはさんで底面を
対向させた配置になっている。さらに、各単位格子はC
軸方向(ピラミッド型の底面に垂直な方向)にピラミッ
ド型の頂点のOと希土類元素(α)とで岩塩構造を形成
しながら積み重なっている。そうして、希土類元素は、
LaXNd、SmXEuおよびGdから、アルカリ土類
金属元素は、CaおよびSrから、それぞれ選択、使用
することができる。これらは、1種を選択、使用しても
よいし、2種以上を任意の混合比で選択、使用してもよ
い。また、この結晶構造の単一相は、希土類元素とアル
カリ土類元素とCuとの比がある範囲内であるときにの
み得られる。すなわち、この発明の超電導体を表す一般
式において、ηおよびθが上述した範囲から外れると、
結晶構造が別の結晶系になったり、他の不純物相(絶縁
体)の混在が多くなる。
α, βe Cu20. F4 However, a: At least one element selected from LaXNdXSmXEu and Gd β At least one element selected from Sr and Ca 1.8<η<2.1 0.9<θ<2.2 5 .0〈γ<6.3 0.1〈δ〈1.2 The superconductor of the present invention is structurally similar to a series of copper complex oxide superconductors, and contains Cu in the unit cell. It contains two units of a pyramid structure in which five O atoms are coordinated around the Cu(!: Furthermore, each unit cell is C
O at the apex of the pyramid and the rare earth element (α) are piled up in the axial direction (perpendicular to the bottom of the pyramid) forming a rock salt structure. Then, rare earth elements are
The alkaline earth metal element can be selected and used from LaXNd, SmXEu and Gd, and Ca and Sr, respectively. One type of these may be selected and used, or two or more types may be selected and used in an arbitrary mixing ratio. Further, a single phase with this crystal structure is obtained only when the ratio of rare earth elements, alkaline earth elements, and Cu is within a certain range. That is, in the general formula representing the superconductor of this invention, when η and θ are outside the above range,
The crystal structure becomes a different crystal system, and other impurity phases (insulators) often coexist.

さて、電荷担体が正孔である一連の銅酸化物系超電導体
は、磁場中での臨界電流密度の低下が著しい。これは、
一つには、これらの銅複合酸化物系超電導体は多結晶体
であることが多く、粒界の絶縁体部分に、外部から印加
された磁場で容易に破壊してしまう超電導弱結合が存在
するためである。また、超電導電流を運ぶ電荷担体が正
孔であるために、コヒーレント長が短いためである。こ
の発明の超電導体は、電荷担体が電子であるから、コヒ
ーレント長が長い。これは、固相反応中にFを酸素の一
部と置換させることによって電子を注入し、結晶全体の
電荷のバランスを壊し、電荷担体を電子にすることがで
きるからである。すなわち、酸素は2価の陰イオンであ
り、Fは1価の陰イオンであるため、Oの1原子がFの
1原子に置換されると電子1個が注入されることになる
Now, in a series of cuprate-based superconductors whose charge carriers are holes, the critical current density decreases significantly in a magnetic field. this is,
For one thing, these copper composite oxide-based superconductors are often polycrystalline, and there are weak superconducting bonds in the insulating parts of the grain boundaries that are easily destroyed by externally applied magnetic fields. This is to do so. Another reason is that the coherence length is short because the charge carriers that carry the superconducting current are holes. The superconductor of this invention has a long coherence length because the charge carriers are electrons. This is because electrons can be injected by substituting F with part of oxygen during the solid phase reaction, disrupting the charge balance of the entire crystal and making electrons the charge carriers. That is, since oxygen is a divalent anion and F is a monovalent anion, when one atom of O is replaced by one atom of F, one electron is injected.

方、超電導状態が発現されるためには、電荷担体が電子
である場合、電子濃度がある一定の範囲内でなければな
らないことが知られている。この範囲は、結晶内の電荷
の総量をCuの平均価数に換算したとき、1.7〜1.
8である。この発明の超電導体におけるγおよびδの範
囲は、この電子濃度の範囲に関連して決められる。ただ
、希土類元素(α)が3価の陽イオンであり、アルカリ
土類元素(β)が2価の陽イオンであるため、結晶中の
電荷担体の濃度はηおよびθの値にも若干依存する。ま
た、Fが結晶構造中の酸素に置換できるということは、
両者のイオン半径がほとんど同じであるということでも
あり、これから容易に推定できる。
On the other hand, it is known that in order for a superconducting state to occur, when the charge carriers are electrons, the electron concentration must be within a certain range. This range is from 1.7 to 1.0 when the total amount of charge in the crystal is converted to the average valence of Cu.
It is 8. The range of γ and δ in the superconductor of this invention is determined in relation to this range of electron concentration. However, since the rare earth element (α) is a trivalent cation and the alkaline earth element (β) is a divalent cation, the concentration of charge carriers in the crystal slightly depends on the values of η and θ. do. Also, the fact that F can replace oxygen in the crystal structure means that
This also means that the ionic radii of both are almost the same, which can be easily estimated from this.

さて、超電導転移温度は、現象論的には、単位格子中の
CuとOとからなるユニット数に比例して高くなるらし
いことが判明しつつある。上述した、従来の、電荷担体
が電子である超電導体は、単位格子中のCuと0とから
なるユニットを1個しか含んでいないために、超電導転
移温度が低いと推定される。これに対し、この発明の超
電導体では、CuとOとからなるユニットが2個あり、
電荷担体が電子である超電導体では最も高い超電導転移
温度を実現できるものである。
Now, it is becoming clear from a phenomenological perspective that the superconducting transition temperature seems to increase in proportion to the number of units consisting of Cu and O in a unit cell. The above-mentioned conventional superconductor whose charge carriers are electrons is estimated to have a low superconducting transition temperature because it contains only one unit consisting of Cu and 0 in the unit cell. On the other hand, in the superconductor of this invention, there are two units consisting of Cu and O.
Superconductors whose charge carriers are electrons can achieve the highest superconducting transition temperature.

この発明の超電導体は、テープ状、線状、繊維状、シー
ト状等、いろいろな形態にして用いることができる。ま
た、炭素繊維や、セラミックスや、銀等の金属からなる
補強線材上に形成して用いることもできる。また、銀シ
ースなどの補強用の中空材料に詰め込んで使用すること
もできる。さらに、銅などのマトリクスを用いて多芯線
構造の超電導線材を作ることもできる。また、Si、M
gO1LaGa03等の基板上に薄膜として形成して、
各種の素子、あるいは、LSIの配線用として用いるこ
とができる。
The superconductor of the present invention can be used in various forms such as tape, line, fiber, and sheet. It can also be formed on a reinforcing wire made of carbon fiber, ceramics, or metal such as silver. It can also be used by being stuffed into a reinforcing hollow material such as a silver sheath. Furthermore, a superconducting wire with a multifilamentary wire structure can also be made using a matrix of copper or the like. Also, Si, M
Formed as a thin film on a substrate such as gO1LaGa03,
It can be used for wiring of various elements or LSI.

この発明の超電導体は、いろいろな方法によって製造す
ることができる。
The superconductor of this invention can be manufactured by various methods.

たとえば、いわゆる粉末混合法によることができる。こ
の方法は、成分元素の酸化物やその前駆体(炭酸塩、硝
酸塩等)、弗化物の粉末を所望の割合で混合し、それを
焼結温度以下の温度で焼成し、さらに粉砕、混合し、所
望の形状に成形した後に焼成する方法である。また、薄
膜を形成する方法としては、よく知られた、電子ビーム
蒸着法、レーザー蒸着法等の各種蒸着法、マグネトロン
スパッタ法等の各種スパッタ法、ハロゲン化物や有機金
属等を用いる化学的気相成長法、硝酸塩や有機酸塩等を
用いる霧化法、アルコキシド等を用いる塗布法などがあ
る。
For example, a so-called powder mixing method can be used. In this method, oxides of component elements, their precursors (carbonates, nitrates, etc.), and fluoride powders are mixed in the desired proportions, fired at a temperature below the sintering temperature, and then crushed and mixed. This is a method in which the material is molded into a desired shape and then fired. In addition, methods for forming thin films include well-known various evaporation methods such as electron beam evaporation and laser evaporation, various sputtering methods such as magnetron sputtering, and chemical vapor deposition using halides, organic metals, etc. There are growth methods, atomization methods using nitrates, organic acid salts, etc., and coating methods using alkoxides.

なお、この発明の超電導体は、酸素欠損を生じたほうが
、結晶中の電荷担体、すなわち、注入される電子の数を
増やしやすくなるので、焼成後、急冷したり、低酸素分
圧の雰囲気中で熱処理するのが好ましい。
In addition, the superconductor of this invention is easier to increase the number of charge carriers in the crystal, that is, the number of electrons to be injected, when oxygen vacancies are generated. Preferably, heat treatment is performed.

(実施例) 実施例l La2O3、LaF3、SrCO3、CuOの各粉末を
、La:Sr:Cu:Fが1.9:1゜1:2:0.8
になるように計りとり、メノウ乳鉢で粉砕、混合した後
、Al2O3の容器に入れ、空気中にて950℃で12
時間焼成した。その後、再びメノウ乳鉢で粉砕し、ペレ
ット状に成形し、空気中にて1025℃で24時間焼成
した後、液体窒素中で約り000℃/秒の速度で急冷し
た。
(Example) Example 1 Each powder of La2O3, LaF3, SrCO3, and CuO was prepared with a ratio of La:Sr:Cu:F of 1.9:1°1:2:0.8
After crushing and mixing in an agate mortar, place in an Al2O3 container and heat at 950℃ in air for 12 hours.
Baked for an hour. Thereafter, it was crushed again in an agate mortar, formed into a pellet, fired in air at 1025°C for 24 hours, and then rapidly cooled in liquid nitrogen at a rate of about 000°C/sec.

得られた超電導体は、室温および液体窒素温度(77K
)でホール効果を測定したところ、キャリヤは電子であ
った。また、電子線マイクロアナライザによって組成を
分析したところ、La19S rl、I Cu2O3,
4Fo、6であった。さらに、四端子法によって電気抵
抗を測定したところ、29にで抵抗が零になった。また
、交流帯磁率測定法によって粉末試料について超電導体
積率を測定したところ、4.2にで約32%であった。
The obtained superconductor was heated at room temperature and liquid nitrogen temperature (77K
), the carriers were electrons. In addition, when the composition was analyzed using an electron beam microanalyzer, it was found that La19S rl, I Cu2O3,
It was 4Fo, 6. Furthermore, when the electrical resistance was measured by the four-terminal method, the resistance became zero at 29. In addition, when the superconducting volume fraction of the powder sample was measured by the AC magnetic susceptibility measurement method, it was found to be 4.2 and about 32%.

さらに、4.2に、零磁場下での臨界電流密度を測定し
たところ、約930A/cm2であり、0.1T(テス
ラー)の磁場中でも790A/cm2と、外部磁場によ
る臨界電流密度の低下は小さかった。
Furthermore, in Section 4.2, when we measured the critical current density under zero magnetic field, it was approximately 930 A/cm2, and even in a 0.1 T (Tesler) magnetic field it was 790 A/cm2, so the decrease in critical current density due to external magnetic field is It was small.

実施例2 Eu203、Gd2O3、EuF3、CaCO3、Cu
Oの各粉末を、Eu:Gd:Ca:Cu:Fが1.2:
0.6:1.2:2:1.1になるように計りとり、メ
ノウ乳鉢で粉砕、混合した後、Al2O3の容器に入れ
、空気中にて950℃で12時間焼成した。その後、再
びメノウ乳鉢で粉砕し、ペレット状に成形し、空気中に
て1050℃で48時間焼成した後、液体窒素中にて約
り000℃/秒の速度で急冷した。
Example 2 Eu203, Gd2O3, EuF3, CaCO3, Cu
Each powder of O was mixed with Eu:Gd:Ca:Cu:F of 1.2:
The mixture was measured to have a ratio of 0.6:1.2:2:1.1, crushed and mixed in an agate mortar, placed in an Al2O3 container, and fired at 950°C in air for 12 hours. Thereafter, it was crushed again in an agate mortar, formed into pellets, fired in air at 1050°C for 48 hours, and then rapidly cooled in liquid nitrogen at a rate of about 000°C/sec.

得られた超電導体は、キャリヤが電子であり、組成は、
Eul、2 Gdn6Ca1.2 Cu2O3,2F’
o、sであった。また、零抵抗超電導転移温度は26に
であり、超電導体積率は4.2にで約24%であった。
The carriers of the obtained superconductor are electrons, and the composition is as follows:
Eul, 2 Gdn6Ca1.2 Cu2O3,2F'
It was o, s. Further, the zero resistance superconducting transition temperature was 26, and the superconducting volume fraction was 4.2, about 24%.

さらに、4.2に、零磁場下での臨界電流密度は約70
0A/cm20.ITの磁場中での臨界電流密度は約5
50 A / (m2であった。
Furthermore, in 4.2, the critical current density under zero magnetic field is about 70
0A/cm20. The critical current density in the IT magnetic field is approximately 5
It was 50 A/(m2).

実施例3 La203、Nd2O3、LaF3、Sm2O3、Sr
CO3、CaCO3、cuoの各粉末を、La:Nd:
Sm:Sr:Ca:Cu:Fが1、O:0.7:0.a
go、8:0.2:2:0.6になるように計りとり、
メノウ乳鉢で粉砕、混合した後、Al2O3の容器に入
れ、空気中にて950℃で12時間焼成した。その後、
再びメノウ乳鉢で粉砕し、ペレット状に成形し、窒素中
にて1000℃で16時間焼成した後、液体窒素中にて
約1000°C/秒の速度で急冷した。
Example 3 La203, Nd2O3, LaF3, Sm2O3, Sr
Each powder of CO3, CaCO3, and cuo was mixed into La:Nd:
Sm:Sr:Ca:Cu:F is 1, O: 0.7:0. a
go, measure it so that it is 8:0.2:2:0.6,
After pulverizing and mixing in an agate mortar, the mixture was placed in an Al2O3 container and fired in air at 950°C for 12 hours. after that,
The mixture was ground again in an agate mortar, formed into pellets, fired in nitrogen at 1000°C for 16 hours, and then rapidly cooled in liquid nitrogen at a rate of about 1000°C/sec.

得られた超電導体は、キャリヤが電子であり、組成は、
L a 1.ONdn、73mo3S r o、5Ca
02Cu2055F05であった0また1零抵抗超電導
転移温度は25にで、超電導体積率は4.2にで約20
%であった。さらに、4.2K。
The carriers of the obtained superconductor are electrons, and the composition is as follows:
L a 1. ONdn, 73mo3S r o, 5Ca
The zero-resistance superconducting transition temperature of 02Cu2055F05 was 25, and the superconducting volume fraction was 4.2, which was about 20.
%Met. Furthermore, 4.2K.

零磁場下での臨界電流密度は約600A/cm20.1
Tの磁場中での臨界電流密度は約500A/cm2であ
った。
Critical current density under zero magnetic field is approximately 600A/cm20.1
The critical current density in the magnetic field of T was about 500 A/cm2.

(発明の効果) この発明の超電導体は、一般式、 α7βe Cu2O,Fs ただし、 a : La、Nd、Sm、EuおよびGdから選ばれ
た少なくとも1種の元素 β:SrおよびCaから選ばれた少なくとも1種の元素 1.8<η<2.1 0.9〈θ〈2.2 5.0〈γ<6.3 0.1<δ<1.2 で表されるもので、実施例にも示したように、電荷担体
が電子であり、零抵抗超電導転移温度が高く、しかも、
磁場中臨界電流密度が高い。
(Effects of the Invention) The superconductor of the present invention has the general formula α7βe Cu2O,Fs where a: at least one element selected from La, Nd, Sm, Eu and Gd β: selected from Sr and Ca At least one element represented by 1.8<η<2.1 0.9<θ<2.2 5.0<γ<6.3 0.1<δ<1.2, Examples As shown in , the charge carriers are electrons, the zero-resistance superconducting transition temperature is high, and
High critical current density in magnetic field.

Claims (1)

【特許請求の範囲】 下記一般式で表される超電導体。 α_ηβ_θCu_2O_γF_δ ただし、 α:La、Nd、Sm、EuおよびGdから選ばれた少
なくとも1種の元素 β:SrおよびCaから選ばれた少なくとも1種の元素 1.8<η<2.1 0.9<θ<2.2 5.0<γ<6.3 0.1<δ<1.2
[Claims] A superconductor represented by the following general formula. α_ηβ_θCu_2O_γF_δ where α: at least one element selected from La, Nd, Sm, Eu and Gd β: at least one element selected from Sr and Ca 1.8<η<2.1 0.9<θ<2.25.0<γ<6.30.1<δ<1.2
JP1250222A 1989-09-26 1989-09-26 Superconductor Expired - Fee Related JP2817259B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1250222A JP2817259B2 (en) 1989-09-26 1989-09-26 Superconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1250222A JP2817259B2 (en) 1989-09-26 1989-09-26 Superconductor

Publications (2)

Publication Number Publication Date
JPH03112813A true JPH03112813A (en) 1991-05-14
JP2817259B2 JP2817259B2 (en) 1998-10-30

Family

ID=17204653

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1250222A Expired - Fee Related JP2817259B2 (en) 1989-09-26 1989-09-26 Superconductor

Country Status (1)

Country Link
JP (1) JP2817259B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013095648A (en) * 2011-11-02 2013-05-20 Institute Of National Colleges Of Technology Japan Oxide superconductive thin film
KR20160140068A (en) * 2015-05-29 2016-12-07 현대자동차주식회사 Primer system and application device applied the device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013095648A (en) * 2011-11-02 2013-05-20 Institute Of National Colleges Of Technology Japan Oxide superconductive thin film
KR20160140068A (en) * 2015-05-29 2016-12-07 현대자동차주식회사 Primer system and application device applied the device

Also Published As

Publication number Publication date
JP2817259B2 (en) 1998-10-30

Similar Documents

Publication Publication Date Title
JP2859602B2 (en) Manufacturing method of products made of superconducting material
JP3327548B2 (en) Manufacturing method of high temperature superconductor compact with high critical current
JPH03112813A (en) Superconductor
JP2975608B2 (en) Insulating composition
Sakurai et al. Synthesis of superconducting La2− x Sr x CaCu2O6 using O2‐hot‐isostatic‐pressing techniques
JP3219563B2 (en) Metal oxide and method for producing the same
JP3049739B2 (en) Superconducting composition
JP2817257B2 (en) Superconductor
JP2786292B2 (en) Copper oxide superconductor containing halogen
JP2716698B2 (en) Method for producing superconducting oxide
JP2817170B2 (en) Manufacturing method of superconducting material
JP2749194B2 (en) Method for producing Bi-Sr-Ca-Cu-O-based superconductor
JPH03137020A (en) Superconductor
JP3291628B2 (en) Rare earth substituted thallium based superconductor
JP3247914B2 (en) Metal oxide material
JPH026329A (en) Superconducting material composition
JPH0337117A (en) Superconducting material of oxide
JPH02279517A (en) Superconductor
JP3205996B2 (en) Superconductor
JPH04114915A (en) Superconductor
JP2854338B2 (en) Copper oxide superconductor
US5874383A (en) Tibibacacuo based superconductors
JPH04292418A (en) Oxide superconductor and its production
Kandyel Sol–gel synthesis, structural and superconducting properties of (Hg1− ySey) Sr2 (Y1− xCax) Cu2O6+ δ
JPH01176218A (en) Superconducting material of compound oxide and production thereof

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees