JPH0311240Y2 - - Google Patents

Info

Publication number
JPH0311240Y2
JPH0311240Y2 JP1984088547U JP8854784U JPH0311240Y2 JP H0311240 Y2 JPH0311240 Y2 JP H0311240Y2 JP 1984088547 U JP1984088547 U JP 1984088547U JP 8854784 U JP8854784 U JP 8854784U JP H0311240 Y2 JPH0311240 Y2 JP H0311240Y2
Authority
JP
Japan
Prior art keywords
single crystal
ray
outer diameter
pulling
stainless steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1984088547U
Other languages
Japanese (ja)
Other versions
JPS617577U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP8854784U priority Critical patent/JPS617577U/en
Publication of JPS617577U publication Critical patent/JPS617577U/en
Application granted granted Critical
Publication of JPH0311240Y2 publication Critical patent/JPH0311240Y2/ja
Granted legal-status Critical Current

Links

Description

【考案の詳細な説明】 [産業上の利用分野] 本考案は、引き上げ法による−族化合物半
導体等の単結晶製造装置に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an apparatus for producing single crystals of - group compound semiconductors and the like by a pulling method.

[従来の技術] 半導体単結晶の引き上げ法による製造におい
て、引き上げ中の単結晶の形状を検知、制御する
ことは、高品質、高歩留まりの単結晶を得るため
に非常に重要である。
[Prior Art] In the production of semiconductor single crystals by the pulling method, it is very important to detect and control the shape of the single crystal during pulling in order to obtain high-quality, high-yield single crystals.

Si(族元素)では、引き上げ容器の斜め上方
に設けたのぞき窓より引き上げ中の結晶形状を光
学的に観測し、これを引き上げ速度、ヒータ温度
等にフイードバツクして結晶の形状制御を行ない
無転位結晶を得ている。
For Si (group elements), the shape of the crystal being pulled is optically observed through a viewing window installed diagonally above the pulling container, and this is fed back to the pulling speed, heater temperature, etc. to control the crystal shape and eliminate dislocations. Obtaining crystals.

一方、−族化合物半導体では族の蒸気圧
が非常に高いため(例えばGaAsにおいて合成時
のAs圧は約20atm,GaAs状態で融点でのAs圧が
1atm)結晶の引き上げ育成時に族元素が揮散
し、As不足の低品質GaAsとなる。これを防ぐた
め高圧不活性ガス(Ar,N等)を封入した高圧
容器内にて結晶の引き上げ成長を行ない、且つ、
るつぼ内の融液をB2O3の透明融液で封止する
LEC法が一般に−族化合物半導体の引き上
げ成長法として用いられている。
On the other hand, in - group compound semiconductors, the vapor pressure of the group is very high (for example, in GaAs, the As pressure during synthesis is approximately 20 atm, and the As pressure at the melting point in the GaAs state is
1atm) Group elements volatilize during crystal pulling and growth, resulting in low-quality GaAs lacking As. To prevent this, the crystal is pulled and grown in a high-pressure container filled with high-pressure inert gas (Ar, N, etc.), and
Seal the melt in the crucible with a transparent melt of B 2 O 3
The LEC method is generally used as a pulling growth method for − group compound semiconductors.

しかし、この方法でも、結晶引き上げ中に族
元素が徐々にB2O3と反応あるいはB2O3を通して
揮散し、これによつてB2O3の濁りやのぞき窓の
レンズ表面のくもりを生じるため、光学的手法に
よる結合形状観測及び制御が困難である。
However, even with this method, group elements gradually react with B 2 O 3 or volatilize through B 2 O 3 during crystal pulling, which causes turbidity of B 2 O 3 and clouding of the lens surface of the viewing window. Therefore, it is difficult to observe and control the bond shape using optical methods.

そこで、−族結晶の引き上げ製造法では結
晶の引き上げ棒の上部にロードセルを設けて成長
した結晶重量を測定し、これと引き上げ長さの測
定値より結晶の外径を算出し、この外径値をもと
に形状制御を行つている。
Therefore, in the method for pulling - group crystals, a load cell is installed on the top of the crystal pulling rod to measure the weight of the grown crystal, and the outer diameter of the crystal is calculated from this and the measured value of the pulling length. Shape control is performed based on.

[考案が解決しようとする課題] ところが、引き上げ棒を介して成長中の結晶重
量を測るためには引き上げ棒をロードセルにより
吊り下げる構造としなければならず、一方で、引
き上げ棒には上下運動、回転運動、圧力シール等
の機能が要求されるため構造が複雑となり且つ引
き上げ軸回転時の軸ぶれ等が生じ、高品質の単結
晶が得にくいという問題がある。
[Problems to be solved by the invention] However, in order to measure the weight of a growing crystal using a pulling rod, the pulling rod must be suspended by a load cell. Since functions such as rotational movement and pressure sealing are required, the structure is complicated, and shaft wobbling occurs when the pulling shaft is rotated, making it difficult to obtain high-quality single crystals.

また、結晶の成長界面は必ずしも平面ではな
く、凹面或は凸面の場合もあるので、結晶成長面
を平面を仮定して外径を算出する重量法では、測
定外径値が誤差の大きなものとなる問題がある。
In addition, since the crystal growth interface is not necessarily flat and may be concave or convex, the gravimetric method, which calculates the outer diameter assuming a flat crystal growth surface, may result in a large error in the measured outer diameter value. There is a problem.

上記した従来の外径制御方法の欠点を解消する
ものとして、X線を用いた外径制御法があり、先
に特公昭46−21804号、特公昭58−34440号及び特
開昭49−75467号等が提案されている。
There is an outer diameter control method using X-rays that overcomes the drawbacks of the conventional outer diameter control method described above, and was previously published in Japanese Patent Publication No. 46-21804, Japanese Patent Publication No. 58-34440, and Japanese Patent Application Laid-Open No. 49-75467. No. etc. have been proposed.

特公昭46−21804号公報には、密封石英管内で
単結晶を引き上げ成長させ、石英管の外側にX線
発生源、その反対側に設置したX線スクリーンか
ら成るX線外径検知装置を設け、X線スクリーン
に投影された像から単結晶の外径を検知し、制御
することが開示されている。
In Japanese Patent Publication No. 46-21804, a single crystal is pulled and grown in a sealed quartz tube, and an X-ray outer diameter detection device is installed, which consists of an X-ray source outside the quartz tube and an X-ray screen installed on the opposite side. discloses detecting and controlling the outer diameter of a single crystal from an image projected on an X-ray screen.

また特公昭58−34440号公報及び特開昭49−
75467号公報には、X線外径検知装置を高圧容器
の外側或は内側に投置するのか明らかでないが、
X線を成長単結晶に照射して、単結晶からの回折
X線の強度或は単結晶に進路を妨げられ、(吸収
され)ずに直進してきたX線の強度を測定するこ
とによつて外径を制御することが開示されてい
る。
Also, Japanese Patent Publication No. 58-34440 and Japanese Patent Application Publication No. 49-1989
Although it is not clear in Publication No. 75467 whether the X-ray outer diameter detection device is placed outside or inside the high-pressure container,
By irradiating a growing single crystal with X-rays and measuring the intensity of the diffracted X-rays from the single crystal, or the intensity of the X-rays that have been blocked by the single crystal and have gone straight without being absorbed (absorbed). Controlling the outer diameter is disclosed.

しかし、特公昭46−21804号公報で使用されて
いるような石英管はX線を透過し易いため容易に
X線により単結晶の外径制御を行うことができる
が、雰囲気圧力が高圧となる高圧引き上げ法では
石英管は使用することはできず、(石英管は常温
程度の圧力までしか耐えない)、もつぱらステン
レス製の高圧容器が使用されている。
However, since the quartz tube used in Japanese Patent Publication No. 46-21804 is easily transparent to X-rays, the outer diameter of the single crystal can be easily controlled using X-rays, but the atmospheric pressure is high. In the high-pressure lifting method, quartz tubes cannot be used (quartz tubes can only withstand pressures at room temperature), and high-pressure vessels made of stainless steel are used.

ところが、ステンレスは、その性質上X線をほ
とんど透過せず、従来のステンレス製高圧容器の
外側に大型のX線装置を設置してみても、単結晶
の外径を検知することは極めて困難である。そこ
で高圧容器の材質をX線の透過し易いものにする
ことが考えられるが、高圧容器の外壁が厚く大型
なものになるか、或いはかなり高価なものになつ
てしまうという問題があつた。
However, due to its nature, stainless steel hardly transmits X-rays, and even if a large X-ray device is installed outside a conventional stainless steel high-pressure container, it is extremely difficult to detect the outer diameter of a single crystal. be. Therefore, it has been considered to use a material for the high-pressure container that allows X-rays to easily pass through, but this poses a problem in that the outer wall of the high-pressure container would be thick and large, or it would be quite expensive.

[考案の目的] 本考案の目的は、上記した従来技術の問題点に
鑑み、従来ステンレス製高圧容器を使用した引き
上げ装置では成し得なかつたX線による単結晶の
外径制御を、小型なX線装置を使用して従来のス
テンレス製高圧容器と大きさ及び価格の面でほと
んどかわりない高圧容器により実現できる単結晶
引き上げ装置を提供することにある。
[Purpose of the invention] In view of the problems of the prior art described above, the purpose of the invention is to develop a small-sized single crystal outer diameter control using An object of the present invention is to provide a single crystal pulling apparatus which can be realized by using an X-ray apparatus and a high-pressure container which is almost the same in size and cost as a conventional stainless steel high-pressure container.

[課題を解決するための手段] 本考案の要旨は、X線が透過するステンレス製
高圧容器の側壁の2個所に開口部を有する凸状の
X線透過窓が設けられ、該X線透過窓に該X線透
過窓の開口部を塞ぐアルミニウム板が設けられ、
該アルミニウム板の炉内雰囲気ガスに晒される面
を化学的に保護する防食層が設けられていること
にある。
[Means for Solving the Problems] The gist of the present invention is that a convex X-ray transparent window having openings at two locations is provided on the side wall of a stainless steel high-pressure container through which X-rays can pass. is provided with an aluminum plate that closes the opening of the X-ray transparent window,
A corrosion protection layer is provided to chemically protect the surface of the aluminum plate exposed to the furnace atmosphere gas.

[実施例] 以下、本考案について、図面をともに説明す
る。
[Example] Hereinafter, the present invention will be explained with reference to the drawings.

第1図はX線による単結晶の外径制御装置を具
備したGaAsの直接合成単結晶引き上げ装置を示
す断面図である。同図a及び同図b中、1は
GaAs成長単結晶、2はGaAs融液2を封止する
B2O3融液、4は内側るつぼ、5は外側るつぼ、
6は加熱用ヒーター、12はるつぼ支持体、14
は引き上げ軸である。X線外径検知装置は、X線
発生装置7、X線検知装置8、X線透視装置9、
必要によつて、TVモニター10により構成され
ている。ただし、これらに限られるものではな
い。
FIG. 1 is a sectional view showing a GaAs direct synthesis single crystal pulling apparatus equipped with a device for controlling the outer diameter of a single crystal using X-rays. In Figure a and Figure b, 1 is
GaAs grown single crystal, 2 seals GaAs melt 2
B 2 O 3 melt, 4 is the inner crucible, 5 is the outer crucible,
6 is a heating heater, 12 is a crucible support, 14
is the pulling axis. The X-ray outer diameter detection device includes an X-ray generation device 7, an X-ray detection device 8, an X-ray fluoroscopy device 9,
It is configured with a TV monitor 10 if necessary. However, it is not limited to these.

X線発生装置7側のX線透過窓50a及びX線
検知装置8側のX線透過窓50bは、単結晶成長
界面高さ付近で、且つ、第1図bに示す様に成長
単結晶1を通る直線上のステンレス製高圧容器1
1にそれぞれ位置しており、どちらのX線透過窓
50a,50bも同じ構造であり、ステンレス製
高圧容器11の外側に凸状にしてある。なお、X
線透過窓50a,50bを凸状にするのは、窓部
20の着脱を容易にするためである。
The X-ray transmitting window 50a on the X-ray generating device 7 side and the X-ray transmitting window 50b on the X-ray detecting device 8 side are located near the height of the single crystal growth interface, and as shown in FIG. Stainless steel high pressure vessel 1 on a straight line passing through
Both X-ray transmission windows 50a and 50b have the same structure and are convex on the outside of the stainless steel high-pressure vessel 11. In addition, X
The reason why the radiation transmitting windows 50a and 50b are made convex is to facilitate the attachment and detachment of the window portion 20.

X線透過窓50a,50bの開口部を塞ぐ窓部
20としては、X線透過率が良く、かつ機械的強
度の強いものを選ばなければならないが、検討を
重ねた結果、本発明者らはアルミニウムが最適で
あることを見い出した。
As the window portion 20 that closes the openings of the X-ray transmitting windows 50a and 50b, one must be selected that has good X-ray transmittance and strong mechanical strength.As a result of repeated studies, the present inventors We have found that aluminum is optimal.

しかしながら、アルミニウムは例えばAs蒸気
等に対して腐食しやすいため、アルミニウム製窓
部20の内側には、これをAs蒸気から化学的に
保護する防食層70を設ける必要がある。防食層
70の材質としてはAl2O3,SiO2等の無機酸化
物、Si3N4等の無機窒化物、さらにポリテトラフ
ロロエチレン等の有機高分子でもよい。
However, since aluminum is easily corroded by, for example, As vapor, it is necessary to provide an anti-corrosion layer 70 inside the aluminum window portion 20 to chemically protect it from As vapor. The anti-corrosion layer 70 may be made of an inorganic oxide such as Al 2 O 3 or SiO 2 , an inorganic nitride such as Si 3 N 4 , or an organic polymer such as polytetrafluoroethylene.

なお、窓部20は、ボルト13で固定して気密
封止する。
Note that the window portion 20 is fixed with bolts 13 and hermetically sealed.

本発明者らは、窓部20に厚さ39mmのアルミニ
ウム板、防食層70にAl2O3を用いて、GaAs結
晶成長時の圧力30atmで引き上げを行なつた。成
長中の結晶成長界面付近の状態はX線透過装置7
でX線が照射され、X線透過窓50a及び50b
と、チヤンバー内を透過したX線がX線検知装置
8で検知される。それと同時にX線透視装置9に
より内部のGaAs成長結晶の状況を観測し、TV
モニター10に映像化して手動計測或いは画像処
理による自動計測によりGaAs成長結晶1の外径
を求め、これを引き上げ装置制御部(図示省略)
にフイードバツクして成長条件(引き上げ速度、
ヒーター温度、引き上げ回転数等)を制御して所
望の形状のGaAs単結晶を得た。成長条件の制御
のうち、引き上げ速度の制御が最も効果的であつ
た。
The present inventors used an aluminum plate with a thickness of 39 mm for the window portion 20 and Al 2 O 3 for the anticorrosive layer 70, and performed pulling at a pressure of 30 atm during GaAs crystal growth. The state near the crystal growth interface during growth can be observed using the X-ray transmission device 7.
X-rays are irradiated through the X-ray transmitting windows 50a and 50b.
Then, the X-rays transmitted through the chamber are detected by the X-ray detection device 8. At the same time, the condition of the internal GaAs grown crystal was observed using the X-ray fluoroscopy device 9, and the
The outer diameter of the GaAs grown crystal 1 is determined by manual measurement by visualizing it on the monitor 10 or by automatic measurement using image processing, and this is determined by the pulling device control unit (not shown).
The growth conditions (pulling speed,
A GaAs single crystal with a desired shape was obtained by controlling the heater temperature, pulling rotation speed, etc. Of the growth conditions controlled, the pulling rate was most effective.

厚さ39mmのアルミニウム板2枚分の透視に必要
なX線管電圧は100〜120Kvであつた。又、結晶
成長に伴ない結晶成長界面がX線透視領域から下
がるため、るつぼ支持台12と引き上げ軸14を
等しく上げてやることにより、常に単結晶成長界
面高さが一定になるようにした。
The X-ray tube voltage required for fluoroscopy of two 39 mm thick aluminum plates was 100 to 120 Kv. Furthermore, since the crystal growth interface lowers from the X-ray viewing area as the crystal grows, the crucible support 12 and the pulling shaft 14 are raised equally, so that the height of the single crystal growth interface is always constant.

引き上げ後GaAs単結晶の外径を測定してみる
と、第2図に示すような結果が得られた。ここで
測定外径誤差xの計算方法は次の通りである。
When we measured the outer diameter of the GaAs single crystal after pulling it, we obtained the results shown in Figure 2. Here, the method for calculating the measured outer diameter error x is as follows.

x=(R/R′−1)×100 (%) R:測定外径値 R′:真の外径値 このようにステンレス製高圧容器11に、アル
ミニウム板からなるX線透過窓50a及び50b
を設け、X線を用いてGaAs成長結晶1の外径制
御をすることにより引き上げられたGaAs単結晶
を外径誤差が全測定点で±0.1%以内という非常
に良好な結果をもたらした。
x = (R/R'-1) x 100 (%) R: Measured outer diameter value R': True outer diameter value In this way, the stainless steel high pressure vessel 11 is provided with X-ray transmission windows 50a and 50b made of aluminum plates.
By using X-rays to control the outer diameter of the GaAs grown crystal 1, we achieved very good results in which the outer diameter error of the pulled GaAs single crystal was within ±0.1% at all measurement points.

さらに防食層70が窓部20のアルミニウム板
をAs蒸気から化学的に保護しているため、アル
ミニウム板が腐食することはなかつた。
Furthermore, since the anti-corrosion layer 70 chemically protected the aluminum plate of the window portion 20 from As vapor, the aluminum plate did not corrode.

第3図に本考案の他の実施例の断面図を示す。
ただし、X線透過窓以外の構成は第1図と同様な
ので説明を省略する。
FIG. 3 shows a sectional view of another embodiment of the present invention.
However, the configuration other than the X-ray transmission window is the same as that in FIG. 1, so the explanation will be omitted.

高圧容器11の内壁には皿状の防食層70が取
り付けられており、X線が透過しない部分にいく
つかの小孔80が設けられている。この小孔80
は、高圧により防食層70が破壊されないように
するためで、単結晶成長中でも予じめ不活性ガス
が空隙90に充満しているため、ほとんどAs蒸
気等が拡散してくることはなく、窓部20を保護
することができる。15は気密封止のためのパツ
キングである。
A dish-shaped anti-corrosion layer 70 is attached to the inner wall of the high-pressure vessel 11, and several small holes 80 are provided in areas through which X-rays do not pass. This small hole 80
This is to prevent the anti-corrosion layer 70 from being destroyed by high pressure, and since the void 90 is filled with inert gas in advance even during single crystal growth, almost no As vapor etc. will diffuse into the window. 20 can be protected. 15 is packing for airtight sealing.

[考案の効果] 以上本考案を詳細に説明したように、ステンレ
ス製高圧容器の外側でかつ単結晶成長界面近傍の
高さに単結晶の外径をX線により検知するX線外
径検知装置とを備えた単結晶引き上げ装置におい
て、X線が透過するステンレス製高圧容器の側壁
の2個所に開口部を有する凸状のX線透過窓が設
けられ、該X線透過窓に該X線透過窓の開口部を
塞ぐアルミニウム板が設けられ、該アルミニウム
板の炉内雰囲気ガスに晒される面を化学的に保護
する防食層が設けられていることにより、次のよ
うな顕著な効果を奏する。
[Effects of the invention] As described above in detail, the present invention is an X-ray outer diameter detection device that detects the outer diameter of a single crystal using X-rays at a height near the single crystal growth interface outside a stainless steel high-pressure container. In a single crystal pulling apparatus equipped with By providing an aluminum plate that closes the window opening and providing an anticorrosion layer that chemically protects the surface of the aluminum plate that is exposed to the furnace atmosphere gas, the following remarkable effects are achieved.

(1) ステンレス製高圧容器のX線透過部分にアル
ミニウム板を取り付けたX線透過窓を設け、か
つアルミニウム板を防食層により化学的に保護
したことにより、従来ステンレス製高圧容器を
使用した引き上げ装置では実現が困難であつた
X線による単結晶の外径制御を容易に実現する
ことができる。
(1) By installing an X-ray transparent window with an aluminum plate attached to the X-ray transparent part of the stainless steel high pressure vessel, and chemically protecting the aluminum plate with an anti-corrosion layer, the lifting equipment that previously used a stainless steel high pressure vessel has been improved. It is now possible to easily control the outer diameter of a single crystal using X-rays, which was difficult to achieve in the conventional method.

(2) 超大型で高価なX線検知装置や高圧容器を使
用することはなく、従来のステンレス高圧容器
とほぼ同じ大きさ、価格のものを使用すること
ができる。
(2) There is no need to use ultra-large and expensive X-ray detection equipment or high-pressure containers, and it is possible to use containers that are approximately the same size and price as conventional stainless steel high-pressure containers.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案の一実施例であるGaAsの直接
合成単結晶引き上げ装置を示す断面図、第2図は
X線による外径制御法により得た単結晶と従来の
重量法による外径制御法により得た単結晶の外径
誤差を比較した説明図、第3図は本考案の他の実
施例を示す断面図である。 1:GaAs成長単結晶、2:GaAs融液、3:
B2O3融液、4:内側るつぼ、5:外側るつぼ、
6:加熱用ヒーター、7:X線発生装置、8:X
線検知装置、9:X線透視装置、10:TVモニ
ター、11:高圧容器、12:るつぼ支持台、1
3:ボルト、14:引き上げ軸、15:パツキン
グ、20:窓部(アルミニウム板)、50:X線
透過窓、70:防食層、80:小孔、90:空
隙。
Figure 1 is a cross-sectional view showing a GaAs single crystal pulling device for direct synthesis, which is an embodiment of the present invention, and Figure 2 shows a single crystal obtained using the X-ray outer diameter control method and a conventional gravimetrically controlled outer diameter control method. FIG. 3 is a cross-sectional view showing another embodiment of the present invention. 1: GaAs grown single crystal, 2: GaAs melt, 3:
B 2 O 3 melt, 4: inner crucible, 5: outer crucible,
6: Heating heater, 7: X-ray generator, 8: X
ray detection device, 9: X-ray fluoroscope, 10: TV monitor, 11: high pressure container, 12: crucible support, 1
3: bolt, 14: pulling shaft, 15: packing, 20: window (aluminum plate), 50: X-ray transparent window, 70: anti-corrosion layer, 80: small hole, 90: void.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 結晶を構成する元素の合成反応及び単結晶成長
を行う単結晶製造中の雰囲気圧力に耐え得るステ
ンレス製高圧容器と該ステンレス製高圧容器の外
側でかつ単結晶成長界面近傍の高さに前記単結晶
の外径をX線により検知するX線外径検知装置と
を備えた単結晶引き上げ装置において、前記X線
が透過する前記ステンレス製高圧容器の側壁の2
個所に開口部を有する凸状のX線透過窓が設けら
れ、該X線透過窓に該X線透過窓の開口部を塞ぐ
アルミニウム板が設けられ、該アルミニウム板の
炉内雰囲気ガスに晒される面を化学的に保護する
防食層が設けられていることを特徴とする単結晶
引き上げ装置。
A stainless steel high-pressure container capable of withstanding atmospheric pressure during the synthesis reaction of the elements constituting the crystal and single crystal production during single crystal growth; 2 of the side wall of the stainless steel high pressure vessel through which the X-rays are transmitted.
A convex X-ray transmitting window having openings at certain locations is provided, an aluminum plate is provided on the X-ray transmitting window to close the openings of the X-ray transmitting window, and the aluminum plate is exposed to the furnace atmosphere gas. A single crystal pulling device characterized by being provided with an anti-corrosion layer that chemically protects the surface.
JP8854784U 1984-06-14 1984-06-14 Single crystal pulling equipment Granted JPS617577U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8854784U JPS617577U (en) 1984-06-14 1984-06-14 Single crystal pulling equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8854784U JPS617577U (en) 1984-06-14 1984-06-14 Single crystal pulling equipment

Publications (2)

Publication Number Publication Date
JPS617577U JPS617577U (en) 1986-01-17
JPH0311240Y2 true JPH0311240Y2 (en) 1991-03-19

Family

ID=30641792

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8854784U Granted JPS617577U (en) 1984-06-14 1984-06-14 Single crystal pulling equipment

Country Status (1)

Country Link
JP (1) JPS617577U (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4975467A (en) * 1972-11-21 1974-07-22

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4975467A (en) * 1972-11-21 1974-07-22

Also Published As

Publication number Publication date
JPS617577U (en) 1986-01-17

Similar Documents

Publication Publication Date Title
CN107904662B (en) Device and method for improving synthesis stability of tellurium-zinc-cadmium polycrystal
EP2793234B1 (en) Device for producing radiation detection panel and method for producing radiation detection panel
JPH0311240Y2 (en)
JPH11335194A (en) Semiconductor crystal, its production and production apparatus
JPS594374B2 (en) Reaction vessel for depositing elemental silicon
JPS6333975Y2 (en)
Campbell et al. Radioscopic visualization of indium antimonide growth by the vertical Bridgman-Stockbarger technique
EP0146002B1 (en) Apparatus for production of a single crystal and monitoring of the production
TWI779966B (en) Quartz glass crucible, method for producing the same, and method for producing silicon single crystal
JP2855497B2 (en) Semiconductor single crystal pulling equipment
JPS59174598A (en) Manufacture of semiconductor single crystal of group iii- v compound
JPH04362083A (en) Synthesis of ii-vi compound semiconductor polycrystal
KR940009942B1 (en) Method for monocrystaline growth of dissociative compound semiconductors
JPH07237990A (en) Method for growing single crystal according to method for solidification in vertical container and apparatus therefor
JPH052614Y2 (en)
KR940009940B1 (en) Method for mono crystalline growth of dissociative compound semiconductors
JPS63277592A (en) Production unit for single crystal
KR940009943B1 (en) Method for monocrystalline growth of dissociative compound semiconductors
JP2734813B2 (en) Method for manufacturing compound semiconductor single crystal
JP2710289B2 (en) Method and apparatus for measuring weight of pulled crystal
JP2949806B2 (en) Single crystal manufacturing equipment
JPS63281022A (en) Level measuring method for molten liquid of single crystal growing device
JP2992539B2 (en) Processing equipment for high dissociation pressure compounds
Cantwell et al. Novel method for the growth of high quality cadmium telluride crystals for use in X-ray and gamma-ray sensors
JP3170577B2 (en) Processing equipment for high dissociation pressure compounds