JPH03111593A - Surface treatment of aluminum alloy - Google Patents

Surface treatment of aluminum alloy

Info

Publication number
JPH03111593A
JPH03111593A JP25028389A JP25028389A JPH03111593A JP H03111593 A JPH03111593 A JP H03111593A JP 25028389 A JP25028389 A JP 25028389A JP 25028389 A JP25028389 A JP 25028389A JP H03111593 A JPH03111593 A JP H03111593A
Authority
JP
Japan
Prior art keywords
aluminum alloy
treatment
sealing
rust resistance
surface treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25028389A
Other languages
Japanese (ja)
Inventor
Hideo Fujimoto
日出男 藤本
Hideyoshi Usui
碓井 栄喜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP25028389A priority Critical patent/JPH03111593A/en
Publication of JPH03111593A publication Critical patent/JPH03111593A/en
Pending legal-status Critical Current

Links

Landscapes

  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

PURPOSE:To improve the filiform corrosion resistance of an Al alloy and the adhesion of a coating film by subjecting the Al alloy to anodic oxidation, etc., in an electrolytic soln. contg. a surfactant and an alkaline builder at a prescribed concn. and carrying out pore sealing. CONSTITUTION:An electrolytic soln. contg. an alkaline builder at 0.5-5wt.% concn. and a surfactant is prepd. The builder consists of phosphate, silicate, sulfate or borate and alkanolamine. An Al alloy is subjected to anodic electrolysis or cathodic electrolysis and anodic electrolysis in the electrolytic soln. and then pore sealing is carried out to further improve the filiform corrosion resistance of the Al alloy.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はアルミニウム合金の表面処理法に関し、特に塗
装下地処理として使用した場合、優れた塗膜密着性と耐
糸錆性が得られ、自動車パネル材等の用途に供されるア
ルミニウム合金の表面処理法として適している。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a surface treatment method for aluminum alloys, and in particular, when used as a base treatment for painting, excellent paint film adhesion and thread rust resistance can be obtained, and This method is suitable as a surface treatment method for aluminum alloys used in panel materials, etc.

(従来の技術及び解決しようとする課題)アルミニウム
合金は、軽量化を目的として自動車の部品に採用されつ
つあるが、パネル材のように耐糸錆性が要求される用途
に対しては、クロム酸クロメート等の塗装下地処理が必
要であるとされていた。
(Prior art and problems to be solved) Aluminum alloys are being used in automobile parts for the purpose of weight reduction, but chrome It was believed that a pre-painting treatment such as acid chromate was required.

一方、通常の自動車塗装ラインは、プレス成形→脱脂→
リン酸亜鉛処理→カチオン電着→塗装の工程からなる鋼
板用のラインであり、下地処理にはリン酸亜鉛処理が施
されているが、このラインにおいてリン酸亜鉛処理をア
ルミニウム合金の下地処理に適用した場合、カチオンな
着後の塗装密着力(塗装密着性)が不充分となり、耐糸
錆性の点で充分な性能が得られていないのが現状であり
、この塗装ラインを使用して耐糸錆性の優れた下地処理
ができる技術の開発が望まれている。
On the other hand, a normal automobile painting line consists of press molding → degreasing →
This is a line for steel sheets that consists of the process of zinc phosphate treatment → cationic electrodeposition → painting. Zinc phosphate treatment is applied to the base treatment, but in this line, zinc phosphate treatment is used as the base treatment for aluminum alloys. When applied, the paint adhesion after cationic adhesion (paint adhesion) is insufficient, and the current situation is that sufficient performance in terms of thread rust resistance is not obtained. There is a need for the development of a technology that enables surface treatment with excellent thread rust resistance.

この点、自動車塗装ラインの下地処理として、リン酸亜
鉛処理に代えて、クロム酸クロメート処理を採用するこ
とも考えらるが、前述の如く耐糸錆性は向上できるもの
の、クロム酸クロメート処理には 洗浄→水洗→水洗→クロム酸りロメート→水洗(傘)→
水洗耐乾燥 という工程が必要であって、そのための専用の処理設備
が必要となり、且つ前記水洗(*)段階でクローズドシ
ステムによる排水処理が必要であるため、排水処理等を
含めた処理コストが高くなるという問題があり、下地処
理としてクロム酸クロメート処理を採用するには難があ
る。
In this regard, it may be possible to adopt chromate chromate treatment instead of zinc phosphate treatment as a base treatment for automobile painting lines, but as mentioned above, although thread rust resistance can be improved, chromate treatment with chromate Wash → Wash with water → Wash with water → Chromium acid romate → Wash with water (umbrella) →
A process of washing with water and drying resistance is required, and special treatment equipment is required for this, and wastewater treatment using a closed system is required at the washing (*) stage, so the treatment cost including wastewater treatment is high. Therefore, it is difficult to adopt chromic acid chromate treatment as a surface treatment.

本発明は、か\る要請に応えるべくなされたものであっ
て、下地処理としてリン酸亜鉛処理を施す場合であって
も、塗膜密着性、耐糸錆性に優れたアルミニウム合金材
料が得られ、且つ低コストである表面処理法を提供する
ことを目的とするものである。
The present invention was made in response to such a request, and it is possible to obtain an aluminum alloy material with excellent paint film adhesion and thread rust resistance even when zinc phosphate treatment is applied as a base treatment. The object of the present invention is to provide a surface treatment method that is both effective and low-cost.

(課題を解決するための手段) 本発明者らは、下地処理としてリン酸亜鉛処理を採用し
た場合に特に耐糸錆性が劣化する原因を究明すると共に
新規な前処理法(表面処理法)について鋭意研究を重ね
た。その結果、特定条件の陽極酸化処理を施すことによ
り、耐糸錆性の著しい改善効果が得られ、更にその後封
孔することにより、−層の耐糸錆性向上効果が得られる
ことを見い出し、ここに本発明をなしたものである。
(Means for Solving the Problems) The present inventors have investigated the cause of deterioration in thread rust resistance especially when zinc phosphate treatment is adopted as a base treatment, and have developed a new pretreatment method (surface treatment method). I have done extensive research on this. As a result, it was discovered that by performing anodization treatment under specific conditions, a remarkable improvement effect on thread rust resistance was obtained, and further, by subsequent sealing, an effect of improving thread rust resistance of the - layer was obtained, This is where the present invention is made.

すなわち、本発明は、アルカリ性ビルダーと界面活性剤
を含む電解液中で、アルミニウム合金をアノード電解し
た後、封孔することを特徴とするアルミニウム合金の表
面処理法を要旨とするものである。
That is, the gist of the present invention is a surface treatment method for an aluminum alloy, which is characterized in that the aluminum alloy is subjected to anodic electrolysis in an electrolytic solution containing an alkaline builder and a surfactant, and then sealed.

また、他の本発明は、アルカリ性ビルダーと界面活性剤
を含む電解液中で、アルミニウム合金をカソード電解し
、引き続き同一組成の電解液中でアノード電解した後、
封孔することを特徴とするアルミニウム合金の表面処理
法を要旨とするものである。
In addition, in another aspect of the present invention, an aluminum alloy is cathodically electrolyzed in an electrolyte containing an alkaline builder and a surfactant, and then anodically electrolyzed in an electrolyte having the same composition.
The gist of this paper is a method for surface treatment of aluminum alloys, which is characterized by sealing the pores.

以下に本発明を更に詳細に説明する。The present invention will be explained in more detail below.

(作用) 本発明者らは、種々の表面処理法について検問した中で
、アルミニウム合金の表面洗浄に一般的に使用されてい
るアルカリ性ビルダーと界面活性剤の浴中で、洗浄に引
き続き陽極酸化処理を施したところ、耐糸錆性の著しい
改善効果が得られることを見い出した。また、その後封
孔すれば、−層、耐糸錆性が向上することを見い出した
ものである。
(Function) The present inventors investigated various surface treatment methods, and found that following cleaning, anodization treatment was performed in an alkaline builder and surfactant bath commonly used for surface cleaning of aluminum alloys. It has been found that a significant improvement in thread rust resistance can be obtained by applying this method. Furthermore, it has been found that if the holes are sealed after that, the layer and thread rust resistance can be improved.

まず、アルカリ性ビルダーと界面活性剤を含む電解液を
用い、前処理の脱脂洗浄と、陽極酸化皮膜の生成を同一
組成の浴中で行うと、電解液に浸漬直後から表面の脱脂
、洗浄が開始され1次いでアノード電解開始により、ア
ルミニウム合金表面に耐食性、塗膜密着性、耐糸錆性に
優れる陽極酸化皮膜が形成される。また、この表面処理
法によれば、アルミニウム合金の表面洗浄と、表面での
陽極酸化皮膜の生成が共に可能であるので、処理工程の
簡素化と現有の生産設備の改造で対応できるため、コス
トダウン効果も大きい。
First, by using an electrolytic solution containing an alkaline builder and a surfactant, the pre-treatment degreasing and cleaning and the generation of an anodized film are carried out in a bath with the same composition.The surface degreasing and cleaning starts immediately after immersion in the electrolytic solution. Then, by starting anodic electrolysis, an anodized film having excellent corrosion resistance, coating adhesion, and thread rust resistance is formed on the aluminum alloy surface. In addition, this surface treatment method allows both surface cleaning of aluminum alloy and generation of an anodized film on the surface, which can be achieved by simplifying the treatment process and modifying existing production equipment, resulting in lower costs. The down effect is also great.

電解洛中のアルカリ性ビルダーは、洗浄の助剤と陽極酸
化の電解液として作用し、その種類としては、アルミニ
ウム合金表面に陽極酸化皮膜が形成されるものであれば
特に制限されない。要するに、電解液に要求される特性
としては、アルカリ性ビルダーとして、表面洗浄効果を
有し、且つ洗浄効果が得られる温度、濃度の条件でアル
ミニウム合金の表面に陽極酸化皮膜が形成されるもので
あればよい。この点、洗浄剤のアルカリ性ビルダーとし
ての効果も大きいリン酸塩系やけい酸塩系が好ましい。
The alkaline builder in the electrolysis acts as a cleaning aid and an anodizing electrolyte, and its type is not particularly limited as long as it forms an anodic oxide film on the aluminum alloy surface. In short, the required properties of the electrolyte are that it be an alkaline builder, have a surface cleaning effect, and form an anodic oxide film on the surface of the aluminum alloy at the temperature and concentration conditions that provide the cleaning effect. Bye. In this respect, phosphate-based and silicate-based detergents are preferred because they are highly effective as alkaline builders for cleaning agents.

この場合、リン酸塩系ビルダーを用いると、比較的厚い
皮膜が得られ、けい酸塩系ビルダーを用いると、薄いが
緻密な皮膜が得られる。
In this case, when a phosphate builder is used, a relatively thick film is obtained, and when a silicate builder is used, a thin but dense film is obtained.

アルカリ性ビルダーとしては、例えば、トリポリリン酸
ナトリウム、リン酸2ナトリウム、オルソけい酸ナトリ
ウム、炭酸ナトリウム、トリエタノールアミンなどを挙
げることができる。
Examples of the alkaline builder include sodium tripolyphosphate, disodium phosphate, sodium orthosilicate, sodium carbonate, and triethanolamine.

また、更に、リン酸塩、けい酸塩、硫酸塩、ホウ酸塩、
アルカノールアミンを単独或いは適宜混合すれば、電流
密度の増加、すなよち、単時間処理が可能となる。
Furthermore, phosphates, silicates, sulfates, borates,
If alkanolamines are used alone or in appropriate combinations, it becomes possible to increase the current density, that is, to perform treatment for a single time.

界面活性剤は脱脂のために添加されるが、(の種類、濃
度は、ベースとなるアルカリ性ビルダーとの組合せによ
り最適の種類、濃度が決定されるが、脱脂性があれば特
に制限されない。
The surfactant is added for degreasing, and the optimal type and concentration are determined depending on the combination with the base alkaline builder, but there are no particular limitations as long as it has degreasing properties.

処理温度等の条件については、電解液の脱脂効果と電解
液の陽極酸化皮膜の生成効果、電解電圧等によって最適
温度が得られるが、40〜80℃の範囲で電解電圧15
〜60Vであれば、装置としての危険性も少なく、充分
な耐糸錆性が得られる。
Regarding conditions such as treatment temperature, the optimum temperature can be obtained depending on the degreasing effect of the electrolytic solution, the effect of forming an anodic oxide film on the electrolytic solution, the electrolytic voltage, etc.
If it is 60 V, there is little danger as a device and sufficient thread rust resistance can be obtained.

また、#極酸化皮膜の膜厚は、目的に合わせてコントロ
ールできる。すなわち、厚くする場合には、リン酸塩系
のアルカリ性ビルダーを用い、高電圧、長時間処理すれ
ば良い。硫酸塩やアルカノールアミンを添加して電流密
度を上げることにより、単時間で比較的厚い陽極酸化皮
膜を得ることも可能であり、コイルによる連続処理の場
合に有効である。一方、薄くして、耐糸錆性の向上のみ
を目的とするのであれば、けい酸塩系のアルカリ性ビル
ダーを用いるか、リン酸塩系+けい酸塩或いはホウ酸塩
を用いれば良い。また、リン酸塩系アルカリ性ビルダー
を用い、短時間処理を施してもよい。
In addition, the thickness of the #polar oxide film can be controlled according to the purpose. That is, in order to increase the thickness, a phosphate-based alkaline builder may be used and treatment may be performed at high voltage for a long time. By increasing the current density by adding sulfate or alkanolamine, it is possible to obtain a relatively thick anodic oxide film in a single time, which is effective in continuous treatment using a coil. On the other hand, if the purpose is to make it thinner and improve thread rust resistance, a silicate-based alkaline builder may be used, or a phosphate-based + silicate or borate may be used. Alternatively, a short-time treatment may be performed using a phosphate-based alkaline builder.

このように、望ましい電解条件は。Thus, the desirable electrolytic conditions are:

電解液:0.5”5wt%のリン酸塩、けい酸塩、硫酸
塩、ホウ酸塩、アルカノールアミンのそれぞれ嗅独又は
2種以りと、洗浄性を有する界面活性剤との混合浴 電解液温度240〜80℃ 電解液電圧=15〜60V(アノード電解)であるが、
この範囲を外れると、生産性、安全性等の実用上、良好
な陽極酸化皮膜が得られ難くなる。
Electrolyte: Mixed bath electrolysis with 0.5" 5wt% of each of phosphate, silicate, sulfate, borate, and alkanolamine or two or more of them and a detergent surfactant. Solution temperature: 240-80°C Electrolyte voltage: 15-60V (anodic electrolysis)
Outside this range, it becomes difficult to obtain a good anodic oxide film in terms of productivity, safety, and other practical aspects.

このようにして得られる陽極酸化皮膜は、アルカリ性電
解液中で生成されたものであり、耐アルカリ性が大きい
ため、特に、その後のプレス加工→脱脂→リン酸亜鉛処
理→カチオン電着の工程を経て塗装されたアルミニウム
合金材料の場合、耐糸錆性を著しく向上できる。
The anodic oxide film obtained in this way is produced in an alkaline electrolyte and has high alkali resistance, so it is especially difficult to use after the subsequent steps of pressing → degreasing → zinc phosphate treatment → cationic electrodeposition. In the case of painted aluminum alloy materials, thread rust resistance can be significantly improved.

なお、この陽極酸化処理の前処理としては、前述の如く
1通常は、素材を電解液中に浸漬するだけでよく1表面
洗浄できる。しかし、更に表面の脱脂、洗浄時間を短縮
し、更に洗浄効果を上げるためには、アノード電解の前
に同一浴中で或いは同一組成を有する別の洛中でカソー
ド電解すればよい。同一浴中でカソード電解する場合は
、引き続き極性を切り換えてアノード電解を行うため、
被処理材の取り出しや、水洗は全く不用である。
Note that as a pretreatment for this anodizing treatment, as described above, it is usually enough to simply immerse the material in an electrolytic solution and the surface can be cleaned. However, in order to further shorten the surface degreasing and cleaning time and further increase the cleaning effect, cathodic electrolysis may be performed in the same bath or in a separate bath having the same composition before the anodic electrolysis. If cathodic electrolysis is performed in the same bath, the polarity will be switched and anodic electrolysis will be performed.
There is no need to take out the material to be treated or wash it with water.

また、コイルフオームで処理する場合には、給電方式を
液−液給電とし、対極の配置のみで連続処理が可能とな
る。連続処理する場合には、電解液の供給はスプレー法
が好ましい。この場合には、片面処理や液−液給電が容
易に行われ、設備的に効果が大きい。しかし、電解液中
に浸漬し電解しても充分な性能は得られる。
Furthermore, in the case of processing using a coil form, the power supply method is liquid-liquid power supply, and continuous processing is possible by simply arranging the counter electrode. In the case of continuous treatment, a spray method is preferable for supplying the electrolytic solution. In this case, single-sided processing and liquid-liquid power supply can be easily performed, which is highly effective in terms of equipment. However, sufficient performance can be obtained by immersing it in an electrolytic solution and electrolyzing it.

アノード電解後、封孔を行うが、これは、耐糸錆性の一
層の向上のほか、プレス成形時に使用する潤滑油の脱脂
性向上に有効である。
After the anodic electrolysis, pore sealing is performed, which is effective in further improving thread rust resistance and in improving the degreasing properties of the lubricating oil used during press molding.

封孔には種々の液を用いることができ、クロム酸又はク
ロム酸塩による封孔は、多孔質の陽極酸化皮膜の孔中に
クロム酸を含浸させ、耐食性、耐糸錆性の向上を図るも
のであり、特に耐糸錆性向上が顕著である。けい酸、ホ
ウ酸のアルカリ塩及びアルカノールアミンによる封孔は
、多孔質の陽極酸化皮膜の孔を吸着封孔させ、耐糸錆性
の向上と脱脂性の向上を図るものであり、特に脱脂性向
上効果が顕著である。これら封孔に関与するイオンは何
れもアニオンであり、アノード電解することにより、単
時間で封孔による所望の効果が得られる。この場合、電
解電源は、カソード電解脱脂との共用、アノード電解陽
極酸化との共用も可能であり、単に電極を設置するだけ
で電解封孔が可能となる。
Various liquids can be used for sealing, and for sealing with chromic acid or chromate, chromic acid is impregnated into the pores of the porous anodic oxide film to improve corrosion resistance and thread rust resistance. In particular, the improvement in thread rust resistance is remarkable. Pore sealing with alkali salts of silicic acid, boric acid, and alkanolamines adsorbs and seals the pores of the porous anodic oxide film, improving thread rust resistance and degreasing properties. The improvement effect is remarkable. These ions involved in pore sealing are all anions, and by performing anodic electrolysis, the desired effect of pore sealing can be obtained in a single time. In this case, the electrolytic power source can be used in common with cathodic electrolytic degreasing and anodic electrolytic anodization, and electrolytic pore sealing can be performed simply by installing electrodes.

封孔に使用する液の濃度は特に限定されないが。The concentration of the liquid used for sealing is not particularly limited.

何れの液の場合も、0.01〜1%が実用的である。0
.01%以下の濃度では効果が充分でなく、また1%を
超えると効果は飽和し、水洗に長時間要する等の問題が
新たに生じるため、好ましくないが、限定されるもので
はない。
For any liquid, 0.01 to 1% is practical. 0
.. If the concentration is less than 0.01%, the effect will not be sufficient, and if it exceeds 1%, the effect will be saturated and new problems will arise, such as the need for a long time for washing with water, so this is not preferable, but it is not limited to this.

同様に、封孔温度も、室温以上であれば効果が得られる
が、封孔時間を短縮する場合には、40〜80℃の範囲
が適当である。
Similarly, if the sealing temperature is room temperature or higher, an effect can be obtained, but if the sealing time is to be shortened, a range of 40 to 80°C is appropriate.

アノード電解による封孔は前述のように封孔の効果を更
に向上するが、その時の電圧は、封孔の促進性と量産時
の設備面からの安全性を考慮すると、10〜100Vの
範囲が実用的である。
Sealing by anodic electrolysis further improves the sealing effect as mentioned above, but the voltage at that time is in the range of 10 to 100 V, considering the ability to promote sealing and the safety of equipment during mass production. It's practical.

かくして表面処理されたアルミニウム合金材料は、特に
自動車のパネル用として使用した場合、処理後加工され
、リン酸亜鉛処理、カチオン電着が施されるが、その場
合には著しい効果が期待でき、耐糸錆性向上に関するユ
ーザーニーズに充分対応できる。
When the aluminum alloy material thus surface-treated is used for automobile panels in particular, it is processed after treatment and subjected to zinc phosphate treatment and cationic electrodeposition, in which case remarkable effects can be expected and durability is improved. It can fully meet user needs regarding improvement in thread rust resistance.

勿論、その他の用途、例えば、キャン材の塗装下地処理
、カラーアルミの下地処理等に応用できることは云うま
でもない。また、皮膜を厚くすることにより、単独で耐
食性を有するアルミニウム合金の表面処理法としても適
用できる。
Of course, it goes without saying that the present invention can be applied to other uses, such as coating base treatment for can materials, base treatment for colored aluminum, etc. Furthermore, by increasing the thickness of the film, it can also be applied as a surface treatment method for aluminum alloys that alone have corrosion resistance.

なお、処理素材であるアルミニウム合金としては、耐糸
錆性が要求される種々の成分系、成分組成のもが可能で
あることは云うまでもない。
It goes without saying that the aluminum alloy used as the treated material can have various component systems and compositions that require thread rust resistance.

(実施例) 次に本発明の実施例を示す。(Example) Next, examples of the present invention will be shown.

災庭貫土 素材として、JIS5182−0材の圧延板(1mmX
75s■X 150+am)を準備し、これに第1表に
示す条件の表面処理と第2表に示す条件の封孔を行った
A rolled plate of JIS5182-0 material (1mm x
75s x 150+am) was prepared, and subjected to surface treatment under the conditions shown in Table 1 and pore sealing under the conditions shown in Table 2.

得られた供試材について、プレス油脱脂性を評価するた
め、市販プレス加工用の油を供試材表面に塗布し、室温
で27日間放置後1通常の自動車の表面処理に用いられ
るけい酸塩系の洗浄剤を使用し、濃度3%、温度40℃
、2分の条件で脱脂肪を行い、脱脂性を評価した。
In order to evaluate the press oil degreasing property of the obtained test material, commercially available press oil was applied to the surface of the test material and left at room temperature for 27 days. Use salt-based cleaning agent, concentration 3%, temperature 40℃
Defatting was performed under conditions of , 2 minutes, and the defatting properties were evaluated.

脱脂性は、脱脂後の供試材表面の水濡れ性で評価し、評
価基準はO(優)、O(良)、Δ(やや劣る)。
The degreasing property is evaluated by the water wettability of the surface of the sample material after degreasing, and the evaluation criteria are O (excellent), O (good), and Δ (slightly poor).

×(劣)とした。その結果を第3表及び第4表に示す。It was rated as × (poor). The results are shown in Tables 3 and 4.

失意−I 実施例1で得られた供試材について、J l52704
に準する塩水噴霧試験で、連続100時間後の孔食発生
状況を調べ、耐食性を評価した。その結果を第3表及び
第4表に示す。
Disappointment-I Regarding the test material obtained in Example 1, J l52704
Corrosion resistance was evaluated by examining the occurrence of pitting corrosion after 100 hours of continuous salt spray testing. The results are shown in Tables 3 and 4.

1庭透及 実施例1で得られた供試材に自動車用カチオン電着塗装
(膜厚25μm)を施した後、塗膜にスクラッチ傷を付
け、塩水噴霧24時間→湿潤(50℃×85%RH)1
44時間を1サイクルとする耐糸錆性の評価を行った。
After applying cationic electrodeposition coating for automobiles (film thickness 25 μm) to the test material obtained in Example 1, the coating film was scratched and salt water sprayed for 24 hours → wet (50°C x 85°C). %RH)1
The yarn rust resistance was evaluated using one cycle of 44 hours.

5サイクル後の耐糸錆性の評価結果を第3表及び第4表
に示す。
The evaluation results of thread rust resistance after 5 cycles are shown in Tables 3 and 4.

去J1鱈A− 実施例1で得られた供試材(プレス油塗布→室温放置→
脱脂)に下地処理(コロイダルチタン浸漬耐リン酸亜鉛
処理)を行った後、カチオン電着塗装(膜厚25μ、)
を施し、実施例3と同様の要領で耐糸錆性の評価を行っ
た。5サイクル後の耐糸錆性の評価結果を第3表及び第
4表に示す。
J1 Cod A- Test material obtained in Example 1 (applied with press oil → left at room temperature →
After degreasing) and base treatment (colloidal titanium immersion phosphate-resistant zinc treatment), cationic electrodeposition coating (film thickness 25μ)
The yarn rust resistance was evaluated in the same manner as in Example 3. The evaluation results of thread rust resistance after 5 cycles are shown in Tables 3 and 4.

失五貫且 実施例1で得られた供試材にウレタン系塗料を塗装(1
5μ+a)シ、実施例3と同様の要領で塗膜密着性の評
価を行った。5サイクル後の塗膜v!jj着性の評価結
果を第3表及び第4表に示す。
The sample material obtained in Example 1 was coated with urethane paint (1
5μ+a) The coating film adhesion was evaluated in the same manner as in Example 3. Coating film after 5 cycles! jj adhesion evaluation results are shown in Tables 3 and 4.

第3表及び第4表より明らかなように、本発明例はいず
れも優れた耐糸錆性、塗膜密着性を示し、また良好な耐
食性、脱脂性を示している。
As is clear from Tables 3 and 4, the examples of the present invention all exhibit excellent thread rust resistance and coating adhesion, as well as good corrosion resistance and degreasing properties.

一方、従来例のうち、クロム酸クロメート又はリン酸ク
ロメートを施したものは、脱脂性に劣り。
On the other hand, among conventional examples, those treated with chromate chromate or chromate phosphate have poor degreasing properties.

また前述のように排水処理等の問題があって実用的でな
く、他の従来例では耐糸錆性が劣っている。
Furthermore, as mentioned above, it is not practical due to problems such as wastewater treatment, and other conventional examples have poor thread rust resistance.

また、比較例は、脱脂性、耐食性、塗膜密着性又は耐糸
錆性に難がある。
In addition, the comparative example has problems in degreasing properties, corrosion resistance, coating film adhesion, and thread rust resistance.

【以下余白] (発明の効果) 以上詳述したように、本発明によれば、特定条件で陽極
酸化処理並びに封孔を行うので、耐糸錆性、塗膜密着性
、耐食性、脱脂性に優れるアルミニウム合金材料が得ら
れ、種々の下地処理として或いは耐食性向上の表面処理
として適用でき、特に塗膜下地処理として適用した場合
、優れた耐糸錆性が得られる。
[Blank below] (Effects of the invention) As detailed above, according to the present invention, since anodizing and sealing are performed under specific conditions, thread rust resistance, paint film adhesion, corrosion resistance, and degreasing properties are improved. An excellent aluminum alloy material can be obtained, which can be applied as a variety of base treatments or as a surface treatment to improve corrosion resistance. In particular, when applied as a paint film base treatment, excellent thread rust resistance can be obtained.

また、脱脂洗浄と陽極酸化皮膜の形成が同−浴或いは同
一組成を有する浴中で行うことができるので、処理コス
トが大幅に低減でき、且つ既存の洗浄装置の改修で適用
できるため、その効果は著しく大きい。特に自動車用パ
ネル材にアルミニウム合金を使用する場合には、従来か
ら最大の問題点であった耐糸錆性の問題が解決できるの
で、既存のラインを使用できる等、その効果は著しい。
In addition, since degreasing and anodic oxide film formation can be performed in the same bath or a bath with the same composition, processing costs can be significantly reduced, and the process can be applied by modifying existing cleaning equipment, resulting in improved effectiveness. is significantly large. Particularly when aluminum alloys are used for automobile panel materials, the problem of thread rust resistance, which has been the biggest problem in the past, can be solved, and the effects are significant, such as allowing the use of existing lines.

Claims (1)

【特許請求の範囲】 (1)アルカリ性ビルダーと界面活性剤を含む電解液中
で、アルミニウム合金をアノード電解した後、封孔する
ことを特徴とするアルミニウム合金の表面処理法。 (2)アルカリ性ビルダーと界面活性剤を含む電解液中
で、アルミニウム合金をカソード電解し、引き続き同一
組成の電解液中でアノード電解した後、封孔することを
特徴とするアルミニウム合金の表面処理法。 (3)アルカリ性ビルダーが、濃度0.5〜5wt%の
リン酸塩、けい酸塩、硫酸塩、ホウ酸塩及びアルカノー
ルアミンからなる群から選ばれた1種又は2種以上を含
むものである請求項1又は2に記載の方法。 (4)電解液温度が40〜80℃である請求項1又は2
に記載の方法。 (5)電解電圧が15〜60Vである請求項1、2、3
又は4に記載の方法。 (6)電解液をスプレーノズルから供給する請求項1、
2、3、4又は5に記載の方法。(7)クロム酸又はク
ロム酸のアルカリ金属塩、けい酸、ホウ酸或いはアルカ
リ性のアルカノールアミン塩のいずれかを含む水溶液で
封孔する請求項1又は2に記載の方法。 (8)封孔時、20〜100Vの電圧でアノード電解す
る請求項1、2又は7に記載の方法。 (9)アルミニウム合金が耐糸錆性を要求される自動車
パネル用に使用されるものである請求項1、2、3、4
、5、6、7又は8に記載の方法。
[Scope of Claims] (1) A method for surface treatment of an aluminum alloy, which comprises subjecting the aluminum alloy to anode electrolysis in an electrolytic solution containing an alkaline builder and a surfactant, and then sealing the pores. (2) A method for surface treatment of an aluminum alloy, which comprises cathodically electrolyzing the aluminum alloy in an electrolytic solution containing an alkaline builder and a surfactant, followed by anodically electrolyzing the aluminum alloy in an electrolytic solution having the same composition, and then sealing the pores. . (3) A claim in which the alkaline builder contains one or more selected from the group consisting of phosphates, silicates, sulfates, borates, and alkanolamines at a concentration of 0.5 to 5 wt%. The method described in 1 or 2. (4) Claim 1 or 2, wherein the electrolyte temperature is 40 to 80°C.
The method described in. (5) Claims 1, 2, and 3, wherein the electrolytic voltage is 15 to 60V.
Or the method described in 4. (6) Claim 1, wherein the electrolyte is supplied from a spray nozzle.
2. The method described in 2, 3, 4 or 5. (7) The method according to claim 1 or 2, wherein the pores are sealed with an aqueous solution containing any one of chromic acid, an alkali metal salt of chromic acid, silicic acid, boric acid, or an alkaline alkanolamine salt. (8) The method according to claim 1, 2 or 7, wherein anode electrolysis is performed at a voltage of 20 to 100 V during sealing. (9) Claims 1, 2, 3, and 4, wherein the aluminum alloy is used for automobile panels that require thread rust resistance.
, 5, 6, 7 or 8.
JP25028389A 1989-09-26 1989-09-26 Surface treatment of aluminum alloy Pending JPH03111593A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25028389A JPH03111593A (en) 1989-09-26 1989-09-26 Surface treatment of aluminum alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25028389A JPH03111593A (en) 1989-09-26 1989-09-26 Surface treatment of aluminum alloy

Publications (1)

Publication Number Publication Date
JPH03111593A true JPH03111593A (en) 1991-05-13

Family

ID=17205598

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25028389A Pending JPH03111593A (en) 1989-09-26 1989-09-26 Surface treatment of aluminum alloy

Country Status (1)

Country Link
JP (1) JPH03111593A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5411607A (en) * 1993-11-10 1995-05-02 Novamax Technologies Holdings, Inc. Process and composition for sealing anodized aluminum surfaces
JP2011224540A (en) * 2010-04-01 2011-11-10 Raydent Kogyo Kk Method of coating metal part for road vehicle

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5411607A (en) * 1993-11-10 1995-05-02 Novamax Technologies Holdings, Inc. Process and composition for sealing anodized aluminum surfaces
US5478415A (en) * 1993-11-10 1995-12-26 Novamax Technology Holdings, Inc. Process and composition for sealing anodized aluminum surfaces
JP2011224540A (en) * 2010-04-01 2011-11-10 Raydent Kogyo Kk Method of coating metal part for road vehicle

Similar Documents

Publication Publication Date Title
CN110369244A (en) A kind of without phosphorus silane process of car body coating environmental protection pre-treatment
CN101845662A (en) Magnesium alloy surface treating method and magnesium alloy polished by same
JP3987633B2 (en) Metal protective film forming treatment agent and forming method
WO2015146440A1 (en) Anodic oxide film and method for sealing same
KR20090007081A (en) Conductivity anodizing method
WO2017070780A1 (en) Electrolytic process and apparatus for the surface treatment of non-ferrous metals
JPH03111593A (en) Surface treatment of aluminum alloy
DE10025643B4 (en) A method of coating aluminum and magnesium die castings with a cataphoretic electrocoating layer and aluminum and magnesium die castings produced by this method
JPS60116800A (en) Degreasing and activating method by high speed current inversion electrolysis
JP3176470B2 (en) Multilayer coating method
KR20090115034A (en) Method for surface treating available colour performance and luster of magnesium metal
JPH03111592A (en) Surface treatment of aluminum alloy
JPH0759755B2 (en) Method for manufacturing A-l alloy coated plate for automobiles having excellent system rust resistance
JP3673477B2 (en) Method for forming a film of magnesium alloy
JPH03111590A (en) Surface treatment of aluminum alloy
CN113005496A (en) Surface treatment process for improving durability of aluminum alloy product
JPH03111591A (en) Surface treatment of aluminum alloy
JPH08283990A (en) Aluminum material
JPS6144200A (en) Production of steel sheet galvanized on one side
KR20040028908A (en) the synthesis of electrolyte for coating of magnesium and magnesium-alloy
JPH09184093A (en) Aluminum material and its production
JPS6213593A (en) Production of one-side electroplated steel sheet
JPS6237714B2 (en)
CN114351208A (en) Surface treatment method for automobile parts
JPH041079B2 (en)