KR20040028908A - the synthesis of electrolyte for coating of magnesium and magnesium-alloy - Google Patents

the synthesis of electrolyte for coating of magnesium and magnesium-alloy Download PDF

Info

Publication number
KR20040028908A
KR20040028908A KR1020040018228A KR20040018228A KR20040028908A KR 20040028908 A KR20040028908 A KR 20040028908A KR 1020040018228 A KR1020040018228 A KR 1020040018228A KR 20040018228 A KR20040018228 A KR 20040018228A KR 20040028908 A KR20040028908 A KR 20040028908A
Authority
KR
South Korea
Prior art keywords
magnesium
reagent
corrosion resistance
surface treatment
mass production
Prior art date
Application number
KR1020040018228A
Other languages
Korean (ko)
Inventor
신홍섭
김진수
엄호천
Original Assignee
(주)케이엠티
신홍섭
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)케이엠티, 신홍섭 filed Critical (주)케이엠티
Priority to KR1020040018228A priority Critical patent/KR20040028908A/en
Publication of KR20040028908A publication Critical patent/KR20040028908A/en

Links

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F37/00Details specific to washing machines covered by groups D06F21/00 - D06F25/00
    • D06F37/26Casings; Tubs
    • D06F37/28Doors; Security means therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C23/00Cranes comprising essentially a beam, boom, or triangular structure acting as a cantilever and mounted for translatory of swinging movements in vertical or horizontal planes or a combination of such movements, e.g. jib-cranes, derricks, tower cranes
    • B66C23/18Cranes comprising essentially a beam, boom, or triangular structure acting as a cantilever and mounted for translatory of swinging movements in vertical or horizontal planes or a combination of such movements, e.g. jib-cranes, derricks, tower cranes specially adapted for use in particular purposes
    • B66C23/20Cranes comprising essentially a beam, boom, or triangular structure acting as a cantilever and mounted for translatory of swinging movements in vertical or horizontal planes or a combination of such movements, e.g. jib-cranes, derricks, tower cranes specially adapted for use in particular purposes with supporting couples provided by walls of buildings or like structures
    • B66C23/201Cranes comprising essentially a beam, boom, or triangular structure acting as a cantilever and mounted for translatory of swinging movements in vertical or horizontal planes or a combination of such movements, e.g. jib-cranes, derricks, tower cranes specially adapted for use in particular purposes with supporting couples provided by walls of buildings or like structures with supporting couples provided from above, e.g. by ceilings of buildings
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F37/00Details specific to washing machines covered by groups D06F21/00 - D06F25/00
    • D06F37/02Rotary receptacles, e.g. drums
    • D06F37/04Rotary receptacles, e.g. drums adapted for rotation or oscillation about a horizontal or inclined axis
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F37/00Details specific to washing machines covered by groups D06F21/00 - D06F25/00
    • D06F37/02Rotary receptacles, e.g. drums
    • D06F37/04Rotary receptacles, e.g. drums adapted for rotation or oscillation about a horizontal or inclined axis
    • D06F37/10Doors; Securing means therefor
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F37/00Details specific to washing machines covered by groups D06F21/00 - D06F25/00
    • D06F37/20Mountings, e.g. resilient mountings, for the rotary receptacle, motor, tub or casing; Preventing or damping vibrations
    • D06F37/22Mountings, e.g. resilient mountings, for the rotary receptacle, motor, tub or casing; Preventing or damping vibrations in machines with a receptacle rotating or oscillating about a horizontal axis
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F39/00Details of washing machines not specific to a single type of machines covered by groups D06F9/00 - D06F27/00 
    • D06F39/12Casings; Tubs
    • D06F39/14Doors or covers; Securing means therefor
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES E05D AND E05F, RELATING TO CONSTRUCTION ELEMENTS, ELECTRIC CONTROL, POWER SUPPLY, POWER SIGNAL OR TRANSMISSION, USER INTERFACES, MOUNTING OR COUPLING, DETAILS, ACCESSORIES, AUXILIARY OPERATIONS NOT OTHERWISE PROVIDED FOR, APPLICATION THEREOF
    • E05Y2900/00Application of doors, windows, wings or fittings thereof
    • E05Y2900/30Application of doors, windows, wings or fittings thereof for domestic appliances
    • E05Y2900/312Application of doors, windows, wings or fittings thereof for domestic appliances for washing machines or laundry dryers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B40/00Technologies aiming at improving the efficiency of home appliances, e.g. induction cooking or efficient technologies for refrigerators, freezers or dish washers

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Structural Engineering (AREA)
  • Civil Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Treatment Of Metals (AREA)

Abstract

PURPOSE: A reagent synthesizing method for improving corrosion resistance considering large area mass production of magnesium alloy is provided which enables environmentally friendly surface treatment to be done and simplifies process by fundamentally removing generation of environmental contaminants such as Cr and Mn. CONSTITUTION: The reagent synthesizing method is characterized in that a composition for reagent used in the surface treatment of magnesium and magnesium alloy comprises 1 to 300 g/L of sodium hydroxide (NaOH), 50 to 500 g/L of sodium silicate (Na2SiO3) and 1 to 100 g/L of potassium acetate (CH3COOK) as principal constituents, and 0 to 300 g/L of trisodium citrate (C6H5Na3O7), 0 to 300 g/L of trisodium phosphate (Na3PO4), 0 to 100 g/L of sodium borate (NaBO2·xH2O) and 0 to 50 g/L of ammonium fluoride (NH4F) added as subsidiary constituents according to application of magnesium sample so that the principal constituents and the subsidiary constituents are synthesized, wherein the reagent synthesizing method comprises a pretreatment process, a spark anodizing process, and a posttreatment process.

Description

마그네슘 합금의 대면적 양산성을 고려한 내식성 향상을 위한 시약 합성방법{the synthesis of electrolyte for coating of magnesium and magnesium-alloy}The synthesis of electrolyte for coating of magnesium and magnesium-alloy in consideration of the large-area mass production of magnesium alloys

본 발명은 마그네슘 합금의 대면적 양산성을 고려한 내식성 향상을 위한 시약 합성방법에 관한 것으로서, 보다 상세하게는 종래 마그네슘 및 마그네슘 합금의 대면적 양극산화처리 시 사용되는 크롬 및 망간성분과 같은 환경오염물질을 포함하지 않는 새로운 조성의 친환경적인 시약(전해액)을 합성하여 표면처리 공정에 사용함으로써 마그네슘 및 마그네슘 합금의 표면에 치밀한 산화막을 형성시켜 마그네슘 및 마그네슘 합금의 내부식성, 내마모성 및 도장 밀착성을 향상시킨 마그네슘 합금의 대면적 양산성을 고려한 내식성 향상을 위한 시약 합성방법에 관한 것이다.The present invention relates to a method for synthesizing a reagent for improving corrosion resistance in consideration of the large-area mass production of magnesium alloys, and more particularly, environmental pollutants such as chromium and manganese components used in large-area anodization of magnesium and magnesium alloys. Magnesium improves corrosion resistance, abrasion resistance, and paint adhesion of magnesium and magnesium alloys by forming a dense oxide film on the surface of magnesium and magnesium alloys by synthesizing environmentally friendly reagents (electrolytes) with a new composition that does not contain The present invention relates to a method for synthesizing reagents for improving corrosion resistance in consideration of mass production of alloys.

일반적으로 마그네슘은 비중이 1.74로 알루미늄합금의 2/3, 티타늄합금의 1/3, 철의 1/4에 해당하는 상용 금속재료 중 가장 가벼운 재료이다. 또한 비강도, 전자파 차폐성, 방열성, 진동흡착력 등 우수한 특성을 보유하고 있어, 자동차용 부품, 휴대용 전자기기 케이스류, 레저 및 스포츠용품, 첨단 우주항공소재 등의 산업분야에서 그 사용이 점점 증가하고 있다.In general, magnesium has a specific gravity of 1.74, which is the lightest among commercial metals, which corresponds to 2/3 of aluminum alloy, 1/3 of titanium alloy and 1/4 of iron. In addition, it possesses excellent characteristics such as specific strength, electromagnetic shielding, heat dissipation, and vibration absorption, and its use is increasing in industries such as automobile parts, portable electronic device cases, leisure and sporting goods, and advanced aerospace materials. .

그러나 상기와 같은 뛰어난 성질을 가지고 있는 반면, 마그네슘 합금은 활성이 큰 금속으로 알칼리 및 산에 모두 부식되며, 특히 산에는 매우 취약한 단점을 가지고 있다. 또한, 상온에서 염분이나 물과 접하게 되면 매우 격렬하게 부식이 진행되기 때문에 이러한 부식을 방지하기 위한 표면처리과정을 반드시 거쳐야 하는 번거러움을 가지고 있다.However, while having the excellent properties as described above, magnesium alloys are highly active metals, which corrode both alkali and acid, and are particularly vulnerable to acids. In addition, when contacted with salt or water at room temperature, the corrosion proceeds very vigorously, and thus has a hassle to undergo surface treatment to prevent such corrosion.

이러한 마그네슘 합금의 내부식성 등을 향상시키기 위한 표면처리방법으로는 건식표면처리와 습식표면처리가 있으나, 주로 크롬 화성처리나 도장 및 양극산화처리 등과 같은 습식표면처리가 이용되고 있다.As a surface treatment method for improving the corrosion resistance of such magnesium alloy, there are dry surface treatment and wet surface treatment, but wet surface treatment such as chromium chemical treatment, coating and anodizing treatment is mainly used.

습식표면처리방법 중 대표적인 양극산화처리에는 HAE법, GALVANIC법, DOW17법이 있다.Representative anodization among the wet surface treatment methods include HAE, GALVANIC, and DOW17.

그러나, 이러한 종래의 양극산화처리는 마그네슘 및 마그네슘 합금의 내부식성과 내마모성의 향상에 그다지 큰 도움이 되지 못하며, 양극산화처리과정에서 크롬이나 망간 성분과 같은 환경오염물질을 시약(전해액)으로 사용함으로써 심각한 공해문제를 야기시키고 있어, 향후 강력한 사용규제가 따르게 되는 문제점을 가지고 있다.However, such conventional anodization treatment is not very helpful in improving corrosion resistance and abrasion resistance of magnesium and magnesium alloys, and by using environmental pollutants such as chromium or manganese as a reagent (electrolyte) during anodization It causes serious pollution problems, and has a problem that strong usage regulations will follow.

도 1에 도시된 공정도를 참조하여 종래의 양극산화처리 공정을 살펴보면, 마그네슘, 알루미늄 등의 금속모재의 이물질을 제거하고 표면의 산화층을 제거하는 전처리공정(S1); 물로 세정하는 수세공정(S2); 상기 금속모재를 시약(전해액)에 담근 후 전류를 가하여 금속모재의 표면을 코팅하는 아노다이징공정(S3); 재차 물로 세정하는 수세공정(S4); 금속모재를 증류수 등의 시약(전해액)에 담궈 상기 아노다이징공정으로 인해 다공화된 금속모재의 표면을 메워주는 실링공정(S5); 다시 물로 세정하는 수세공정(S6) 및 온수세공정(S7); 금속모재의 표면을 건조시키는 건조공정(S8) 등 매우 복잡한 공정으로 이루어지는 것을 알 수 있다.Looking at the conventional anodizing process with reference to the process diagram shown in Figure 1, the pre-treatment step (S1) to remove the foreign material of the metal base material such as magnesium, aluminum and remove the oxide layer on the surface; Washing with water (S2); Anodizing (S3) to immerse the metal base material in a reagent (electrolyte) and apply a current to coat the surface of the metal base material; Washing step (S4) to wash again with water; Sealing step (S5) to immerse the metal base material in a reagent (electrolyte) such as distilled water to fill the surface of the metal base material porous by the anodizing step (S5); Washing with water again (S6) and hot water washing step (S7); It turns out that it consists of a very complicated process, such as a drying process (S8) which dries the surface of a metal base material.

그리고 표 1에서는 상기한 양극산화처리(HAE법, GALVANIC법, DOW17법) 공정 중 아노다이징공정(S3)에서 사용되는 시약(전해액)의 성분을 나타내었는 데, 이 전해액의 성분 중에 환경오염물질인 망간과 크롬이 포함되어 있는 것을 알 수 있다.Table 1 shows the components of the reagent (electrolyte solution) used in the anodizing step (S3) during the anodization process (HAE method, GALVANIC method, DOW17 method), and manganese which is an environmental pollutant in the electrolyte solution. You can see that it contains and chromium.

표 1. 양극산화처리에 사용되는 시약(전해액) 조성표Table 1.Reagent (Electrolyte) Composition Table Used for Anodizing

구 분division 전해액 조성Electrolyte composition HAEHAE 수산화나트륨 165g/L불화칼륨 35g/L인산나트륨 35g/L수산화알루미늄 35g/L과망간사칼륨 20g/L증류수Sodium hydroxide 165g / L Potassium fluoride 35g / L Sodium phosphate 35g / L Aluminum hydroxide 35g / L Permanganese potassium 20g / L Distilled water GALVANICGALVANIC 황산암모늄 30g/L중크롬산나트륨 30g/L수산화암모늄 2.6ml/L증류수Ammonium Sulfate 30g / L Sodium Dichromate 30g / L Ammonium Hydroxide 2.6ml / L Distilled Water DOW17DOW17 산성불화암모늄 300g/L인산 90ml/L중크롬산나트륨 100g/L증류수Ammonium Fluoride 300g / L Phosphoric Acid 90ml / L Sodium Dichromate 100g / L Distilled Water

따라서 본 발명의 목적은 위와 같은 종래의 마그네슘 및 마그네슘 합금의 표면처리에 사용되는 크롬 및 망간을 함유한 시약이 갖고 있던 문제점을 해결하기 위한 것으로서, 수산화나트륨, 규산나트륨 및 초산칼륨을 주성분으로 하고, 마그네슘 모재의 재질 및 용도에 따라 구연산3나트륨, 제3인산나트륨, 붕사 및 불화암모늄 등의 보조성분을 첨가하여 합성시킨 시약을 마그네슘 및 마그네슘 합금의 표면처리에 사용함으로써 공해가 발생되지 않으며, 표면처리공정이 단순화되며, 마그네슘 및 마그네슘 합금의 내부식성, 내마모성 및 도장 밀착성을 향상시킨 마그네슘 합금의 대면적 양산성을 고려한 내식성 향상을 위한 시약 합성방법을 제공하는 데 있다.Therefore, an object of the present invention is to solve the problems of the reagents containing chromium and manganese used for the surface treatment of the conventional magnesium and magnesium alloys as described above, with sodium hydroxide, sodium silicate and potassium acetate as main components, Depending on the material and use of the magnesium base material, the reagents synthesized by adding auxiliary components such as trisodium citrate, trisodium phosphate, borax and ammonium fluoride are used for the surface treatment of magnesium and magnesium alloys, so that no pollution occurs. To simplify the process, and to provide a method for synthesizing reagents for improving the corrosion resistance in consideration of the large-area mass production of magnesium alloy with improved corrosion resistance, abrasion resistance and paint adhesion of magnesium and magnesium alloy.

도 1은 종래 일반적인 마그네슘 표면처리방법의 공정도,1 is a process chart of a conventional general magnesium surface treatment method,

도 2는 본 발명에 따른 시약을 사용한 마그네슘 및 마그네슘 합금의 표면처리 공정도,2 is a surface treatment process diagram of magnesium and magnesium alloy using a reagent according to the present invention,

도 3은 본 발명에 따른 시약을 사용하여 표면처리할 경우 마그네슘 표면에 생성되는 산화층의 치밀한 구조를 보여주는 사진이다.3 is a photograph showing the dense structure of the oxide layer formed on the surface of magnesium when the surface treatment using the reagent according to the present invention.

상기한 목적을 달성하기 위한 수단으로서 본 발명에 따른 마그네슘 합금의대면적 양산성을 고려한 내식성 향상을 위한 시약 합성방법은, 수산화나트륨(NaOH), 규산나트륨(Na2SiO3) 및 초산칼륨(CH3COOK)을 주성분으로 하고, 마그네슘 모재의 용도에 따라 구연산3나트륨(C6H5Na3O7), 제3인산나트륨(Na3PO4), 붕사(NaBO2·xH2O) 및 불화암모늄(NH4F)을 첨가하여 합성하는 것을 특징으로 한다.As a means for achieving the above object, a method for synthesizing reagents for improving the corrosion resistance in consideration of the large-area mass production of magnesium alloys according to the present invention includes sodium hydroxide (NaOH), sodium silicate (Na 2 SiO 3 ), and potassium acetate (CH 3 COOK). The main ingredient is trisodium citrate (C 6 H 5 Na 3 O 7 ), trisodium triphosphate (Na 3 PO 4), borax (NaBO 2 · xH 2 O) and ammonium fluoride (NH 4 F) It is characterized in that the synthesis by the addition.

상기와 같은 본 발명에 따른 마그네슘 합금의 대면적 양산성을 고려한 내식성 향상을 위한 시약 합성방법으로 완성된 시약을 사용하여 양극산화처리를 하게 되면 종래의 공정 중 각각 별도로 실시하던 아노다이징공정(3)과 실링공정(S5)이 도 2에 도시된 바와 같이 하나의 공정(스파크 아노다이징공정)으로 줄어들게 되는 데, 이는 본 발명에 따른 시약에 마그네슘 및 마그네슘 합금을 담근 다음 스파크 아노다이징(S20)을 실시할 경우 표면에 형성되는 마그네슘 산화층이 도 3에 도시된 바와 같이 매우 치밀한 조직구조를 갖게 되어 결과적으로는 종래의 아노다이징공정과 실링공정이 동시에 이루어지기 때문이다. 따라서 종래에 아노다이징공정 이후에 실시하던 실링공정을 실시하지 않아도 되기때문에 전체 공정이 간단해진다.Anodizing step (3), which was carried out separately in the conventional processes, when anodizing was performed using a reagent synthesis method for improving corrosion resistance in consideration of the large-area mass production of magnesium alloy according to the present invention as described above. The sealing process (S5) is reduced to one process (spark anodizing process) as shown in Figure 2, which is a surface when immersing magnesium and magnesium alloy in the reagent according to the invention and then performing spark anodizing (S20) This is because the magnesium oxide layer formed on the structure has a very dense structure as shown in FIG. 3, and as a result, the conventional anodizing process and the sealing process are simultaneously performed. Therefore, since the sealing process conventionally performed after the anodizing process does not need to be performed, the whole process becomes simple.

아래의 표 2와 같은 다양한 조성을 가지는 시약을 이용하여 마그네슘에 대하여 도 2의 공정도에 따라 양극산화처리 실험을 하였다.Anodization experiments were performed according to the process diagram of FIG.

표 2. 양극산화처리 실험에 사용된 시약(전해액)의 조성Table 2. Composition of reagents (electrolytes) used in the anodization experiment

구분division 규산나트륨(Na2SiO3)Sodium Silicate (Na 2 SiO 3 ) 구연산3나트륨(C6H5Na3O7)Trisodium citrate (C 6 H 5 Na 3 O 7 ) 수산화나트륨(NaOH)Sodium Hydroxide (NaOH) 붕사(NaBO2·xH2O)Borax (NaBO 2 · xH 2 O) 제3인산나트륨(Na3PO4)Trisodium Phosphate (Na3PO4) 불화암모늄(NH4F)Ammonium Fluoride (NH 4 F) A(g)A (g) 22.522.5 1212 2020 44 22 1One B(g)B (g) 22.522.5 1212 2020 22 1One 1One C(g)C (g) 22.522.5 1212 2020 44 1One 1One D(g)D (g) 22.522.5 1212 2020 -- -- 1One E(g)E (g) 22.522.5 -- 2020 -- -- 1One F(g)F (g) 22.522.5 -- -- -- -- 1One G(g)G (g) 22.522.5 -- 1One -- -- 1One H(g)H (g) 22.522.5 -- 33 -- -- 1One I(g)I (g) 22.522.5 -- 55 -- -- 1One J(g)J (g) 1313 -- -- -- -- 1One K(g)K (g) 1313 -- 1One -- -- 1One L(g)L (g) 1313 -- 33 -- -- 1One M(g)M (g) 1313 -- 55 -- -- 1One

상기 표 2.에서처럼 A에서 M까지 여러 조성의 시약(전해액)을 사용하여 아노다이징을 실시한 결과 A~D 조성에서는 마그네슘시편 표면에 연한 회색의 산화막이 생성되었으나, E~M용액에서는 기대되는 산화막이 생성되지 않았다.As shown in Table 2 above, anodizing using various reagents (electrolyte solution) from A to M produced light gray oxide film on the surface of magnesium specimen in A ~ D composition, but expected oxide film was produced in E ~ M solution. It wasn't.

이와 같이 산화막이 생성되지 않은 F~M 조성의 전해액에서 양극산화처리를 하였을 경우의 공통된 특징은 시편걸이에 스파크가 발생되지 않고, 200~400V 정도의 아주 높은 전압치를 보였다는 점이다.The common feature when anodizing the F-M composition in which no oxide film was formed was that sparks did not occur in the specimen hanger, and a very high voltage value of about 200 to 400V was shown.

그리고, E 조성의 시약의 경우에는 마그네슘 시편 표면에 형성된 산화막의 표면이 거칠고 균일하지 못하여 산화막이 두껍게 생성된 부분과 입혀지지 않은 부분의 차이가 크게 나타났다.In the case of the reagent having the composition E, the surface of the oxide film formed on the surface of the magnesium specimen was rough and uneven, so that the difference between the portion where the oxide film was thickly formed and the portion not coated was large.

상기 실험의 A~D 조성과 비슷하게 마그네슘 표면에 산화막이 형성되는 본 발명에 따른 시약의 조성은 수산화나트륨(NaOH) 1~300g/L, 규산나트륨(Na2SiO3)50~500g/L 및 초산칼륨(CH3COOK) 1~100g/L을 주성분으로 하고, 마그네슘 시편의 용도에 따라 구연산3나트륨(C6H5Na3O7) 0~300g/L, 제3인산나트륨(Na3PO4) 0~300g/L, 붕사(NaBO2·xH2O) 0~100g/L 및 불화암모늄(NH4F) 0~50g/L을 첨가한 경우로 나타났다.The composition of the reagent according to the present invention in which an oxide film is formed on the surface of magnesium similar to the composition of A to D of the above experiment is sodium hydroxide (NaOH) 1 to 300 g / L, sodium silicate (Na 2 SiO 3 ) 50 to 500 g / L and acetic acid Potassium (CH3COOK) 1-100 g / L, based on the magnesium specimen, trisodium citrate (C 6 H 5 Na 3 O 7 ) 0-300 g / L, trisodium phosphate (Na3PO4) 0-300 g / L, borax (NaBO 2 · xH 2 O) 0 ~ 100g / L and ammonium fluoride (NH 4 F) 0 ~ 50g / L was added to the case was added.

상기 조성에서 구연산3나트륨(C6H5Na3O7)은 마그네슘 산화물 코팅층의 조직을 치밀하게 만들어주는 성분으로, 구연산3나트륨(C6H5Na3O7)을 함유한 시약을 사용하여 양극산화처리를 실시하여 생성된 치밀한 조직구성을 갖는 마그네슘 산화층을 도 3의 사진에서 보여주고 있다.In the composition, trisodium citrate (C 6 H 5 Na 3 O 7 ) is a component that makes the structure of the magnesium oxide coating layer dense, using a reagent containing trisodium citrate (C 6 H 5 Na 3 O 7 ) A magnesium oxide layer having a dense structure formed by performing anodization is shown in the photograph of FIG. 3.

그리고, 상기 규산나트륨(Na2SiO3)을 첨가함으로써 종래 모재표면을 메꾸기 위한 실링공정을 실시할 필요가 없어진다. 따라서, 본 시약합성 방법으로 제조된 전해액을 사용하여 스파크 아노다이징을 행한 경우 내식성이 우수한 마그네슘 합금의 대면적 양산이 가능하다.By adding the sodium silicate (Na 2 SiO 3 ), there is no need to perform a sealing process for filling the surface of the conventional base material. Therefore, when spark anodizing is performed using the electrolytic solution manufactured by this reagent synthesis method, it is possible to mass-produce a large area of magnesium alloy excellent in corrosion resistance.

한편, 이와 같은 본 발명에 따른 시약을 사용하여 양극산화처리를 실시할 때 사용되는 전류밀도는 0~5A/dm2의 범위까지 가능하며, 특히 1.5A/dm2이하의 전류밀도에서 최적의 산화막 코팅층이 형성되며, 우수한 코팅 평활도 및 전류효율이 향상된다. 또한, 30분 이내에 20㎛ 두께의 코팅층이 형성되고, 장시간 사용할 수 있게 되며, 무엇보다 내부식성과 내마모성 및 도장 밀착성이 향상되는 탁월한 효과를 가지게 된다.On the other hand, the current density used in the anodizing treatment using the reagent according to the present invention can be up to the range of 0 ~ 5A / dm 2 , in particular the optimum oxide film at a current density of 1.5A / dm 2 or less A coating layer is formed, and excellent coating smoothness and current efficiency are improved. In addition, a coating layer having a thickness of 20 μm is formed within 30 minutes, and it can be used for a long time, and above all, has an excellent effect of improving corrosion resistance, abrasion resistance, and paint adhesion.

상기의 시약 조성을 사용하여 제조된 시료에 대한 염수분무시험(35℃, 10%NaCl용액) 결과, 마그네슘 산화층의 두께가 10~20㎛인 경우 300시간 동안 전혀 부식되지 않음을 확인하였다.As a result of the salt spray test (35 ℃, 10% NaCl solution) for the sample prepared using the above reagent composition, it was confirmed that no corrosion at all for 300 hours when the thickness of the magnesium oxide layer is 10 ~ 20㎛.

이상의 실시예에서 살펴 본 바와 같이 본 발명에 따른 마그네슘 합금의 대면적 양산성을 고려한 내식성 향상을 위한 시약 합성방법으로 완성된 시약을 사용할 경우 다음과 같이 뛰어난 효과가 나타나게 된다.As described in the above embodiment, when using the reagents completed by the method for synthesizing the reagents for improving the corrosion resistance in consideration of the large-area mass production of the magnesium alloy according to the present invention, the following excellent effects are obtained.

첫째, 마그네슘 및 마그네슘 합금의 표면처리(양극산화처리) 공정에서 발생하는 크롬 및 망간성분과 같은 환경오염물질의 발생을 원천적으로 제거함으로써 친환경적인 표면처리가 가능해진다.First, environmentally friendly surface treatment is possible by fundamentally eliminating the generation of environmental pollutants such as chromium and manganese components generated in the surface treatment (anodic oxidation treatment) process of magnesium and magnesium alloys.

둘째, 종래 복잡한 양극산화처리공정과 달리 공정이 단순화된다.Second, unlike the conventional complex anodizing process, the process is simplified.

셋째, 마그네슘 및 마그네슘 합금의 표면에 치밀한 산화막을 형성시킴으로써 내부식성과 내마모성, 코팅평활도 및 도장밀착성이 향상되고, 대면적 양산이 가능해진다.Third, by forming a dense oxide film on the surfaces of magnesium and magnesium alloy, corrosion resistance, wear resistance, coating smoothness and coating adhesion are improved, and large area mass production is possible.

Claims (3)

마그네슘 및 마그네슘 합금의 표면처리에 사용되는 시약의 조성에 있어서,In the composition of the reagents used for the surface treatment of magnesium and magnesium alloys, 수산화나트륨(NaOH), 규산나트륨(Na2SiO3) 및 초산칼륨(CH3COOK)을 주성분으로 하고, 마그네슘 시편의 용도에 따라 구연산3나트륨(C6H5Na3O7), 제3인산나트륨(Na3PO4), 붕사(NaBO2·xH2O) 및 불화암모늄(NH4F) 등의 보조성분을 첨가하여 합성시키는 것을 특징으로 하는 마그네슘 합금의 대면적 양산성을 고려한 내식성 향상을 위한 시약 합성방법.Based on sodium hydroxide (NaOH), sodium silicate (Na 2 SiO 3 ) and potassium acetate (CH3COOK), depending on the purpose of the magnesium specimen, trisodium citrate (C 6 H 5 Na 3 O 7 ), trisodium phosphate ( A method for synthesizing reagents for improving the corrosion resistance in consideration of the large-area mass production of magnesium alloy, characterized in that the synthesis by addition of auxiliary components such as Na 3 PO 4 ), borax (NaBO 2 · xH 2 O) and ammonium fluoride (NH 4 F). 제 1항에 있어서,The method of claim 1, 주성분의 함유량은, 수산화나트륨(NaOH) 1~300g/L, 규산나트륨(Na2SiO3) 50~500g/L 및 초산칼륨(CH3COOK) 1~100g/L인 것을 특징으로 하는 마그네슘 합금의 대면적 양산성을 고려한 내식성 향상을 위한 시약 합성방법.The content of the main component is 1 to 300 g / L sodium hydroxide (NaOH), 50 to 500 g / L sodium silicate (Na 2 SiO 3 ) and 1 to 100 g / L potassium acetate (CH3COOK). Reagent synthesis method for improving corrosion resistance in consideration of mass production. 제 1항에 있어서,The method of claim 1, 주성분 이외에 첨가되는 보조성분의 함유량은, 구연산3나트륨(C6H5Na3O7)0~300g/L, 제3인산나트륨(Na3PO4) 0~300g/L, 붕사(NaBO2·xH2O) 0~100g/L 및 불화암모늄(NH4F) 0~50g/L인 것을 특징으로 하는 마그네슘 합금의 대면적 양산성을 고려한 내식성 향상을 위한 시약 합성방법.The content of auxiliary components added in addition to the main component is trisodium citrate (C 6 H 5 Na 3 O 7 ) 0 to 300 g / L, trisodium phosphate (Na 3 PO 4) 0 to 300 g / L, borax (NaBO 2 · xH 2 O ) 0 to 100 g / L and ammonium fluoride (NH 4 F) A reagent synthesis method for improving the corrosion resistance in consideration of the large-area mass production of magnesium alloy, characterized in that.
KR1020040018228A 2004-03-18 2004-03-18 the synthesis of electrolyte for coating of magnesium and magnesium-alloy KR20040028908A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020040018228A KR20040028908A (en) 2004-03-18 2004-03-18 the synthesis of electrolyte for coating of magnesium and magnesium-alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020040018228A KR20040028908A (en) 2004-03-18 2004-03-18 the synthesis of electrolyte for coating of magnesium and magnesium-alloy

Publications (1)

Publication Number Publication Date
KR20040028908A true KR20040028908A (en) 2004-04-03

Family

ID=37330784

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020040018228A KR20040028908A (en) 2004-03-18 2004-03-18 the synthesis of electrolyte for coating of magnesium and magnesium-alloy

Country Status (1)

Country Link
KR (1) KR20040028908A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100951172B1 (en) * 2007-10-26 2010-04-08 주식회사 엔유씨전자 Method for anodizing surface treating magnesium metal
KR100962418B1 (en) * 2009-08-25 2010-06-14 주식회사 위스코하이텍 Plasma electrolysing oxcidation solution for mg alloys goods
WO2017166995A1 (en) * 2016-03-31 2017-10-05 比亚迪股份有限公司 Magnesium alloy anodizing solution and preparation method therefor, and method for anodizing magnesium alloy
CN107815718A (en) * 2017-11-03 2018-03-20 安徽新合富力科技有限公司 A kind of magnesium alloy differential arc oxidation method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100951172B1 (en) * 2007-10-26 2010-04-08 주식회사 엔유씨전자 Method for anodizing surface treating magnesium metal
KR100962418B1 (en) * 2009-08-25 2010-06-14 주식회사 위스코하이텍 Plasma electrolysing oxcidation solution for mg alloys goods
WO2017166995A1 (en) * 2016-03-31 2017-10-05 比亚迪股份有限公司 Magnesium alloy anodizing solution and preparation method therefor, and method for anodizing magnesium alloy
CN107815718A (en) * 2017-11-03 2018-03-20 安徽新合富力科技有限公司 A kind of magnesium alloy differential arc oxidation method

Similar Documents

Publication Publication Date Title
JP4721708B2 (en) Color finishing method
JP5075940B2 (en) Method for anodizing surface treatment of magnesium or magnesium alloy
JPS63501802A (en) Method of coating magnesium articles and electrolytic bath therefor
CN108560037B (en) A kind of Boron Containing Low Carbon Steel oxidation film layer and preparation method thereof
CN101845662A (en) Magnesium alloy surface treating method and magnesium alloy polished by same
JP3178608B2 (en) Two-step electrochemical method for magnesium coating
Yabuki et al. Anodic films formed on magnesium in organic, silicate-containing electrolytes
JP6369745B2 (en) Anodized film and sealing method thereof
CN106282881A (en) Phosphatization or anodic oxidation are to improve the bonding of thermal spraying figure layer in electromotor cylinder bore
KR100680255B1 (en) The coating method of magnesium-alloy for the protection of environment
US4455201A (en) Bath and method for anodizing aluminized parts
JPH1046366A (en) Liquid etchant for aluminum alloy and etching method
US4784732A (en) Electrolytic formation of an aluminum oxide layer
KR20040028908A (en) the synthesis of electrolyte for coating of magnesium and magnesium-alloy
KR100489640B1 (en) Electrolyte solution for anodizing and corrosion-resisting coating method of magnesium alloy using the same
KR101191564B1 (en) Method for treating a surface of a magnesium alloy and magnesium alloy having a surface treated by the same
US5462634A (en) Surface-treated aluminum material and method for its surface treatment
Yerokhin et al. Anodising of light alloys
KR101576987B1 (en) Method for producing magnesium materials
JP3816363B2 (en) Surface-treated aluminum material excellent in corrosion resistance and method for producing the same
JP3553288B2 (en) Vehicle wheels with excellent corrosion resistance and glitter
KR100434968B1 (en) Surface treatment method of a magnesium alloy by electroplating
JPH11209893A (en) Formation of anode oxidation coating film
Dan et al. Environmentally friendly anodization on AZ31 magnesium alloy
CN114059127A (en) Preparation method of high-temperature-resistant anodic oxidation film layer

Legal Events

Date Code Title Description
A201 Request for examination
A302 Request for accelerated examination
E902 Notification of reason for refusal
E601 Decision to refuse application